Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information for:

New Ruthenium Polypyridyl Complexes and their Applications in Acetonitrile Detection and in Catalysis for Water Oxidation

Pedro O. Abate,^[a] Analía M. Peyrot,^[a] Xavier Fontrodona,^[b] Isabel Romero,^[b] Florencia Fagalde^{[a]*} and Néstor E. Katz^{[a]*}

 [a] Dr. P. O. Abate, Lic. Analía M. Peyrot, Dr. F. Fagalde (corresponding author) and Dr. N. E. Katz (corresponding author) INQUINOA (CONICET-UNT) Ayacucho 471 4000 San Miguel de Tucumán Argentina E-mail: <u>nestor.katz@fbqf.unt.edu.ar</u> <u>florencia.fagalde@fbqf.unt.edu.ar</u>

[b] Dr. X. Fontrodona and Dr. María I. Romero Serveis Tècnics de Recerca and Departament de Química Universitat de Girona C/ M. Aurèlia Campmany 69 E-17003 Girona Spain

Table of Contents

Figure S1. ESI-MS of complex 1.

Figure S2. 400 MHz ¹H NMR spectrum of 1 dissolved in CD_3OD .

Figure S3. 2D $^{1}H^{-1}H$ COSY spectrum of 1 dissolved in CD₃OD.

Figure S4. 2D 1 H $^{-1}$ H NOESY spectrum of **1** dissolved in CD₃OD.

Figure S5. ¹H-¹⁵N HMBC spectrum of **1** dissolved in CD₃OD.

Figure S6. 100 MHz ¹³C NMR spectrum of **1** dissolved in CD₃OD.

Figure S7. 2D 1 H- 13 C HSQC spectrum of 1 dissolved in CD₃OD.

Figure S8. 2D ¹H-¹³C HMBC spectrum of **1** dissolved in CD₃OD.

Figure S9. Crystal structure of 1·3H₂O. with counter-anion and solvent molecules.

Table S1. Sample and crystal data for 1·3H₂O.

Table S2. Data collection and structure refinement for 1·3H₂O.

Table S3. Bond lengths (Å) for 1·3H₂O.

Figure S10. View of the two-dimensional layer formed by the cationic part of 1·3H₂OFigure S11. DPV vs 2 pH.

Figure S12. CV of 2 at different pH values.

Figure S13. $[O_2]$ vs t for 2 in HClO₄ 0.1 M, C= 3.10⁻⁵ M after adding 30 equivalents of Ce(IV)

Figure S14^{$\log v_{O_2}$} vs. ($\log [cat]_0$) for 2 in HClO₄ 0.1 M at T=20°C.

Table S4. Energies and percent contributions of selected MO's for complexes 1-3.

Table S5. Selected singlet excited state transitions with their group contributions for 1.

Table S6. Selected singlet excited state transitions with their group contributions for 2.

Table S7. Selected singlet excited state transitions with their group contributions for 3.

Figure S15. EDDM for selected transitions of complexes 1-3.

Figure S1. ESI-MS of complex 1.

Figure S2. 400 MHz ¹H NMR spectrum of 1 dissolved in CD₃OD.

Figure S3. 2D $^{1}H^{-1}H$ COSY spectrum of 1 dissolved in CD₃OD.

Figure S4. 2D 1 H- 1 H NOESY spectrum of 1 dissolved in CD₃OD.

Figure S5. ¹H-¹⁵N HMBC spectrum of **1** dissolved in CD₃OD.

Figure S6. 100 MHz ¹³C NMR spectrum of **1** dissolved in CD₃OD.

Figure S7. 2D $^{1}H^{-13}C$ HSQC spectrum of 1 dissolved in CD₃OD.

Figure S8. 2D 1 H- 13 C HMBC spectrum of 1 dissolved in CD₃OD.

Figure S9. Crystal structure of $1.3H_2O$ with counter-anion and solvent molecules.

Chemical formula	$C_{29}H_{36}CI_2N_6O_6Ru$	
Formula weight	736.61 g/mol	
Temperature	1001 K	
Wavelength	0.71076 Å	
Crystal size	0.060 x 0.120 x 0.5	00 mm
Crystal habit	black needle	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 10.869(13) Å	α = 107.961°
	b = 11.422(13) Å	β = 110.491°
	c = 14.735(17) Å	γ = 94.301°
Volume	1595.1 ų	
Z	2	
Density (calculated)	1.533 g/cm ³	
Absorption coefficient	0.710 mm ⁻¹	
F(000)	756	

Table S1. Sample and crystal data for $1.3H_2O$.

Table S2. Data collection and structure refinement for $1{\cdot}3H_2O.$

Diffractometer	D8 QUEST ECO th	nree-circle diffractometer	
Radiation source	Ceramic x-ray tub	oe (Mo Kα, λ = 0.71076 Å)	
Theta range for data collection	2.8	9 to 29.11°	
Index ranges	-14<=h<=14, -1	15<=k<=15, -20<=l<=20	
Reflections collected		110330	
Independent reflections	8564 [F	R(int) = 0.0639]	
Coverage of independent reflections		99.70%	
Absorption correction	N	1ulti-Scan	
Max. and min. transmission	0.7458 and 0.6599		
Structure solution technique	direct methods		
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2017	7/1 (Sheldrick, 2017)	
Function minimized	Σν	$v(F_0^2 - F_c^2)^2$	
Data / restraints / parameters	856	54 / 0 / 401	
Goodness-of-fit on F ²		1.057	
Final R indices	7188 data; I>2σ(I)	R1 = 0.0445, wR2 = 0.1072	
	all data	R1 = 0.0597, wR2 = 0.1200	
Woighting scheme	w=1/[o ² (F _o ²)+(0.0495P) ² +5.8501P]		
weighting scheme	where	$P=(F_o^2+2F_c^2)/3$	
Largest diff. peak and hole	3.604 and -2.276 eÅ ⁻³		
R.M.S. deviation from mean	0).126 eÅ⁻³	

Table S3. Bond lengths (Å) for $1.3H_2O$.

Ru1-N101.9771Ru1-N242.0501C23-H23A0.98C23-H23B0.98Ru1-N32.0731Ru1-N202.0841C23-H23C0.98N24-C251.357(4)Ru1-N352.0931Ru1-Cl22.4311N24-C291.371(4)C25-C261.385(5)N3-C41.346(4)N3-C81.374(4)C25-H250.95C26-C271.406(4)C4-C51.394(4)C4-H40.95C26-H260.95C27-O361.354(4)C5-C61.396(5)C5-H50.95C27-C281.396(4)C28-C291.403(4)C6-C71.393(5)C6-H60.95C28-H280.95C29-C301.475(4)C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-C381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95<								
Ru1-N32.0731Ru1-N202.0841C23-H23C0.98N24-C251.357(4)Ru1-N352.0931Ru1-Cl22.4311N24-C291.371(4)C25-C261.385(5)N3-C41.346(4)N3-C81.374(4)C25-H250.95C26-C271.406(4)C4-C51.394(4)C4-H40.95C26-H260.95C27-O361.354(4)C5-C61.396(5)C5-H50.95C27-C281.396(4)C28-C291.403(4)C6-C71.393(5)C6-H60.95C28-H280.95C29-C301.475(4)C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95<	Ru1-N10	1.9771	Ru1-N24	2.0501	C23-H23A	0.98	C23-H23B	0.98
Ru1-N352.0931Ru1-Cl22.4311N24-C291.371(4)C25-C261.385(5)N3-C41.346(4)N3-C81.374(4)C25-H250.95C26-C271.406(4)C4-C51.394(4)C4-H40.95C26-H260.95C27-O361.354(4)C5-C61.396(5)C5-H50.95C27-C281.396(4)C28-C291.403(4)C6-C71.393(5)C6-H60.95C28-H280.95C29-C301.475(4)C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95	Ru1-N3	2.0731	Ru1-N20	2.0841	C23-H23C	0.98	N24-C25	1.357(4)
N3-C41.346(4)N3-C81.374(4)C25-H250.95C26-C271.406(4)C4-C51.394(4)C4-H40.95C26-H260.95C27-O361.354(4)C5-C61.396(5)C5-H50.95C27-C281.396(4)C28-C291.403(4)C6-C71.393(5)C6-H60.95C28-H280.95C29-C301.475(4)C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98 <td>Ru1-N35</td> <td>2.0931</td> <td>Ru1-Cl2</td> <td>2.4311</td> <td>N24-C29</td> <td>1.371(4)</td> <td>C25-C26</td> <td>1.385(5)</td>	Ru1-N35	2.0931	Ru1-Cl2	2.4311	N24-C29	1.371(4)	C25-C26	1.385(5)
C4-C51.394(4)C4-H40.95C26-H260.95C27-O361.354(4)C5-C61.396(5)C5-H50.95C27-C281.396(4)C28-C291.403(4)C6-C71.393(5)C6-H60.95C28-H280.95C29-C301.475(4)C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98<	N3-C4	1.346(4)	N3-C8	1.374(4)	C25-H25	0.95	C26-C27	1.406(4)
C5-C61.396(5)C5-H50.95C27-C281.396(4)C28-C291.403(4)C6-C71.393(5)C6-H60.95C28-H280.95C29-C301.475(4)C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22B0.98C22-H22C0.98	C4-C5	1.394(4)	C4-H4	0.95	C26-H26	0.95	C27-O36	1.354(4)
C6-C71.393(5)C6-H60.95C28-H280.95C29-C301.475(4)C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C22-H22C0.98	C5-C6	1.396(5)	C5-H5	0.95	C27-C28	1.396(4)	C28-C29	1.403(4)
C7-C81.399(4)C7-H70.95C30-N351.369(4)C30-C311.387(4)C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C30-H3WB0.87	C6-C7	1.393(5)	C6-H6	0.95	C28-H28	0.95	C29-C30	1.475(4)
C8-C91.488(4)C9-N101.353(4)C31-C321.402(4)C31-H310.95C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C22-H22C0.98	C7-C8	1.399(4)	C7-H7	0.95	C30-N35	1.369(4)	C30-C31	1.387(4)
C9-C141.392(4)N10-C111.353(4)C32-O381.351(4)C32-C331.395(5)C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C22-H22C	C8-C9	1.488(4)	C9-N10	1.353(4)	C31-C32	1.402(4)	C31-H31	0.95
C11-C121.386(4)C11-C151.491(4)C33-C341.390(4)C33-H330.95C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C37-H3WB0.87	C9-C14	1.392(4)	N10-C11	1.353(4)	C32-O38	1.351(4)	C32-C33	1.395(5)
C12-C131.421(4)C12-H120.95C34-N351.347(4)C34-H340.95C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87C19-H190.95N21-C221.460(5)O3W-H3WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C22-H22C0.98	C11-C12	1.386(4)	C11-C15	1.491(4)	C33-C34	1.390(4)	C33-H33	0.95
C13-N211.364(4)C13-C141.421(5)O36-C371.460(4)C37-H37A0.98C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87C19-H190.95N21-C221.460(5)O3W-H3WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C22-H22C0.98	C12-C13	1.421(4)	C12-H12	0.95	C34-N35	1.347(4)	C34-H34	0.95
C14-H140.95C15-N201.376(4)C37-H37B0.98C37-H37C0.98C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87C19-H190.95N21-C221.460(5)O3W-H3WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C22-H22C	C13-N21	1.364(4)	C13-C14	1.421(5)	O36-C37	1.460(4)	C37-H37A	0.98
C15-C161.393(4)C16-C171.394(5)O38-C391.433(4)C39-H39A0.98C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87C19-H190.95N21-C221.460(5)O3W-H3WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22C0.98C22-H22C	C14-H14	0.95	C15-N20	1.376(4)	C37-H37B	0.98	C37-H37C	0.98
C16-H160.95C17-C181.381(5)C39-H39B0.98C39-H39C0.98C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87C19-H190.95N21-C221.460(5)O3W-H3WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22CO.98C22-H22C	C15-C16	1.393(4)	C16-C17	1.394(5)	O38-C39	1.433(4)	C39-H39A	0.98
C17-H170.95C18-C191.398(5)O1W-H1WA0.877O1W-H1WB0.9101C18-H180.95C19-N201.357(4)O2W-H2WA0.87O2W-H2WB0.87C19-H190.95N21-C221.460(5)O3W-H3WA0.87O3W-H3WB0.87N21-C231.460(4)C22-H22A0.98O4W-H4WA0.87O4W-H4WB0.87C22-H22B0.98C22-H22C0.98C22-H22CO28C22-H22CO28	C16-H16	0.95	C17-C18	1.381(5)	C39-H39B	0.98	C39-H39C	0.98
C18-H18 0.95 C19-N20 1.357(4) O2W-H2WA 0.87 O2W-H2WB 0.87 C19-H19 0.95 N21-C22 1.460(5) O3W-H3WA 0.87 O3W-H3WB 0.87 N21-C23 1.460(4) C22-H22A 0.98 O4W-H4WA 0.87 O4W-H4WB 0.87 C22-H22B 0.98 C22-H22C 0.98 O4W-H4WA O3W-H4WB O4W-H4WB	C17-H17	0.95	C18-C19	1.398(5)	O1W-H1WA	0.877	O1W-H1WB	0.9101
C19-H19 0.95 N21-C22 1.460(5) O3W-H3WA 0.87 O3W-H3WB 0.87 N21-C23 1.460(4) C22-H22A 0.98 O4W-H4WA 0.87 O4W-H4WB 0.87 C22-H22B 0.98 C22-H22C 0.98 O4W-H4WA O.87 O4W-H4WB 0.87	C18-H18	0.95	C19-N20	1.357(4)	O2W-H2WA	0.87	O2W-H2WB	0.87
N21-C23 1.460(4) C22-H22A 0.98 O4W-H4WA 0.87 O4W-H4WB 0.87 C22-H22B 0.98 C22-H22C 0.98	C19-H19	0.95	N21-C22	1.460(5)	O3W-H3WA	0.87	O3W-H3WB	0.87
C22-H22B 0.98 C22-H22C 0.98	N21-C23	1.460(4)	C22-H22A	0.98	O4W-H4WA	0.87	O4W-H4WB	0.87
	C22-H22B	0.98	C22-H22C	0.98				

Figure S10. View of the two-dimensional layer formed by the cationic part of $1\cdot 3H_2O$, showing intermolecular π_{tpy} - π_{tpy} (yellow line) and π_{bpy} - π_{bpy} (red line) stacking interactions.

Figure S11. DPV of 2 vs pH.

Figure S13. $[O_2]$ vs t for 2 in HClO₄ 0.1 M, C= 3.10⁻⁵ M after adding 30 equivalents of Ce(IV). V_f= 7.5 mL.

Figure S14. $\log v_{0_2}$ vs. $(\log [cat]_0)$ for **2** in HClO₄ 0.1 M at *T*=20°C. $[cat]_0=2x10^{-5}$ M, 2.5x10⁻⁵ M, 3x10⁻⁵ M y 4.10⁻⁵ M. $[Ce(IV)]_0=8.4x10^{-3}$ M, 1.05x10⁻² M, 1.26x10⁻² M y 1.68x10⁻² M. V_f=7,5 ml.

Table S4. Energies and percent contributions of selected MOs of complexes 1, 2 and 3 in their ground
state.

Complex 1	E (eV)	Ru	dmapy	ру	dmobpy	Cl
L+4	-1.45	1	8	91	0	0
L+3	-1.61	2	0	37	61	0
L+2	-2.29	5	28	27	41	0
L+1	-2.36	5	27	67	0	1
LUMO	-2.39	1	21	23	55	0
НОМО	-5.41	59	30	2	2	7
H-1	-5.45	71	2	11	7	9
H-2	-5.63	74	1	7	17	1
H-3	-6.52	11	68	2	1	19
H-4	-7.09	2	24	29	1	44

Complex 2	E (eV)	Ru	dmapy	ру	dmobpy	H ₂ O
L+4	-1.53	1	9	91	0	0
L+3	-1.67	1	1	48	50	0
L+2	-2.35	4	17	17	62	0
L+1	-2.44	1	31	33	35	0
LUMO	-2.50	5	27	67	0	1
НОМО	-5.61	58	37	1	2	1
H-1	-5.77	77	1	8	13	0
H-2	-5.84	71	2	12	14	0
H-3	-6.73	25	69	4	1	2
H-4	-7.24	1	44	52	3	0

Complex 3	E (eV)	Ru	dmapy	ру	dmobpy	CH₃CN
L+4	-1.52	1	8	91	0	0
L+3	-1.67	1	0	41	58	0
L+2	-2.38	4	22	21	53	1
L+1	-2.45	1	27	29	44	0
LUMO	-2.47	3	28	67	0	1
НОМО	-5.75	50	44	1	2	3
H-1	-5.87	77	2	9	11	2
H-2	-5.93	69	2	10	16	3
H-3	-6.8	30	62	4	1	3
H-4	-7.25	1	44	52	3	0

No.	Wavelength (nm)	Osc. Strength	Major contributions
6	516.7	0.0632	H-2->L+1 (37%)
			HOMO->L+2 (45%)
7	504.0	0.0856	H-2->L+2 (40%)
			H-1->LUMO (12%)
			H-1->L+2 (15%)
			HOMO->L+1 (26%)
8	491.4	0.1263	H-2->LUMO (85%)
18	367.5	0.0584	H-2->L+5 (15%)
			H-1->L+5 (61%)
27	324.9	0.1095	H-2->L+5 (38%)
			H-2->L+6 (10%)
			H-1->L+5 (14%)
			H-1->L+6 (15%)
32	292.4	0.3654	H-5->L+1 (86%)
47	266.6	0.6334	HOMO->L+7 (24%)
			HOMO->L+8 (37%)
99	216.5	0.3319	H-8->L+5 (65%)

Table S5. Selected singlet excited state transitions with their group contributions for complex 1 obtained from TD-DFT calculations in ethanol.

No.	Ru	dmapy	ру	dmobpy	Cl
6	65>5 (-60)	17>27 (10)	5>45 (40)	8>23 (15)	5>0 (-5)
7	69>4 (-65)	9>26 (17)	7>37 (30)	11>33 (22)	5>0 (-5)
8	73>2 (-71)	2>21 (19)	7>25 (18)	16>52 (36)	2>0 (-2)
18	69>8 (-61)	6>4 (-2)	9>51 (42)	9>36 (27)	7>0 (-7)
27	66>6 (-60)	5>5 (0)	9>39 (30)	13>50 (37)	7>0 (-7)
32	6>6 (0)	21>26 (5)	29>66 (37)	9>1 (-8)	35>1 (-34)
47	44>23 (-21)	26>28 1	10>24 (14)	5>23 (18)	15>2 (-13)
99	6>10 (4)	11>7 (-4)	6>45 (39)	71>38 (-33)	6>1 (-5)

No.	Wavelength (nm)	Osc. Strength	Major contributions
2	511.6	0.0638	HOMO->LUMO (78%)
	490.6	0.0747	H-2->LUMO (31%)
			HOMO->L+1 (18%)
5			HOMO->L+2 (47%)
8	459.2	0.1771	H-2->L+1 (81%)
			H-1->L+2 (11%)
18	349.5	0.0454	H-1->L+5 (73%)
27	310.3	0.0006	H-1->L+7 (22%)
			H-1->L+10 (12%)
			H-1->L+12 (55%)
32	279.1	0.0004	H-5->LUMO (95%)
47	257.8	0.2246	H-7->L+1 (19%)
			H-7->L+2 (14%)
			H-6->L+2 (49%)
99	206.2	0.0059	H-11->L+1 (53%)
			H-10->L+2 (35%)

Table S6. Selected singlet excited state transitions with their group contributions for complex 2 obtained from TD-DFT calculations in ethanol.

No.	Ru	dmapy	ру	dmobpy	H ₂ O
2	60>5 (-55)	31>26 (-5)	3>60 (57)	4>8 (4)	1>1 (0)
5	61>5 (-56)	26>22 (-4)	5>36 (31)	6>36 (30)	1>0 (-1)
8	71>2 (-69)	3>29 (26)	11>32 (21)	14>38 (24)	0>0 (0)
18	74>9 (-65)	6>2 (-4)	8>42 (34)	12>46 (34)	0>1 1
27	74>67 (-7)	4>8 (4)	8>7 (-1)	14>12 (-2)	0>6 (6)
32	0>5 (5)	0>27 (27)	0>67 (67)	99>0 (-99)	0>1 1
47	6>4 (-2)	1>20 (19)	5>21 (16)	89>55 (-34)	0>0 (0)
99	4>2 (-2)	3>25 (22)	47>30 (-17)	47>43 (-4)	0>0 (0)

No.	Wavelength (nm)	Osc. Strength	Major contributions
2	477.2	0.0103	H-2->LUMO (79%)
			HOMO->L+2 (15%)
6	463.8	0.0589	H-2->LUMO (17%)
			HOMO->L+1 (12%)
			HOMO->L+2 (66%)
8	445.6	0.1695	H-2->L+1 (86%)
20	331.8	0.0678	H-3->LUMO (49%)
			H-2->L+5 (24%)
			H-1->L+6 (19%)
27	308.1	0.1194	H-2->L+5 (51%)
			H-1->L+6 (21%)
28	295.3	0.4253	H-4->LUMO (91%)
49	254.1	0.6217	HOMO->L+7 (79%)
68	228.7	0.3324	H-6->L+3 (27%)
			H-4->L+6 (18%)
			H-2->L+10 (16%)
97	209.3	0.2122	H-7->L+6 (81%)

Table S7. Selected singlet excited state transitions with their group contributions for complex 3 obtained from TD-DFT calculations in ethanol.

No.	Ru	dmapy	ру	dmobpy	CH₃CN
2	65>3 (-62)	10>27 (17)	9>59 (50)	13>10 (-3)	3>1 (-2)
6	53>3 (-50)	37>23 (-14)	3>31 (28)	4>41 (37)	3>1 (-2)
8	69>1 (-68)	3>26 (23)	10>29 (19)	15>43 (28)	3>0 (-3)
20	50>4 (-46)	34>16 (-18)	7>50 (43)	7>29 (22)	3>2 (-1)
27	65>4 (-61)	9>5 (-4)	10>38 (28)	13>50 (37)	3>3 (0)
28	5>4 (-1)	41>27 (-14)	50>67 (17)	4>1 (-3)	0>1 1
49	45>4 (-41)	41>53 (12)	4>33 (29)	7>7 (0)	3>2 (-1)
68	30>10 (-20)	18>3 (-15)	15>18 1	35>42 (7)	2>27 (25)
97	9>2 (-7)	4>6 1	8>6 (-2)	78>86 (8)	1>1 (0)

Complex 1	Complex 2	Complex 3
1		

Figure S15. EDDM obtained for the three transitions with major contributions to the lowest MLCTs in complexes 1-3.