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1. Materials and methods

1.1. General

Ethylene (99.9 %, «Mostehgaz» LLC), ethylene glycol (99.5%, «Component-Reactive» LLC),
technical mixture of 1,2-propanediol and 1,3-propanediol (99.0%, appr. 1:1 mol., «Component-
Reactive» LLC), glycerol (99,3%, «Component-Reactive» LLC) and RhCl3-4H,0 «Aurat» LLC) were
used without any pretreatment. The solvents were pretreated by standard procedures. Liquid
products were analyzed by gas-liquid chromatography on a Khromos chromatograph equipped
with a flame ionization detector and a 50-m-long capillary column coated with the SE-30 phase
using temperature programming of 60-230°C, helium as a carrier gas. H, 13C, and 3P NMR
spectra were registered on a spectrometer Bruker Avance 400. Gaseous mixtures were analyzed
by gas chromatography on Crystallux-4000M chromatograph with a thermal conductivity
detector, Porapak-Q column of 5m length, the detector temperature of 70°C, evaporator
temperature of 70°C, and column constant temperature 70°C, gas-carrier helium, flow rate 15

ml/min.

1.2. TPPTS synthesis
TPPTS (triphenylphosphine-3,3’,3"-trisulfonic acid trisodium salt) ligand was synthesized

according to the described procedure [1].

1.3. Catalytic Testing Procedure

The reactions were carried out in a steel reactor connected to thermostat and equipped
with a manometer and magnetic stir bar. TPPTS ligand, polyol, catalytic precursor RhCl;
(previously dissolved in water, with concentration 3 mg/ml), sulfonic acid (5% vol.), and solvent
were introduced into the reactor. The reactor was closed, then sealed with Ar and with CO/H,
for 3 times, after this pressurized with ethylene and CO/H, at the demanded pressures. The
mixture was stirred at demanded temperature, and after the reaction was finished, the reactor
was cooled down and depressurized. The organic phase was carefully separated from the
aqueous phase. Then 2 ml of fresh solvent was added to aqueous phase for extraction of residual
products. Joint organic phases were analyzed by GLC using heptane as an internal standard. In
recycles, water phase from the previous cycle was put into the autoclave, fresh portions of EG

and toluene were added, then the procedure was made as described above.



2. Table S1. Comparison of Rh/TPPTS activities in ethylene hydroformylation without

and with ethylene glycol

Total amount of Selectivity, %
oxygenates, mol Total yield of
Run 2-ethyl- System after
Solvent In oxygenates, %, n
Ne In water Propanal 1,3- the reaction
organic (ald+ac)/n(ethylene)
phasec dioxolane
phase
- 0.023 Homogeneous
12 - 99 99 -
Total 0.023 Fig S1, a
0.017 0.006
Biphasic
22 | Tolueneb Total 0.023 99 99 -
Fig S1, b
Total 0.023
1st extraction
0.003
0.019 Biphasic
3 Toluene® 2nd extraction 99 10 90
Fig S1, c
0.001
Total 0.023

Conditions: RhCl; (3 mg, 0.011 mol), TPPTS (35 mg, 0.06 mol), EG (4.0 mL, 0.71 mol), water (1.0 mL),
H,S0, (5% vol., 90 uL), pH = 4.0, ethylene 0.65 g (0.023 mol), CO/H, (1:1) (total pressure 6.0 MPa, 0.75 g),
90° 2 h

9 reaction without EG
b toluene 2 ml

¢ determined by extraction with toluene (2.0 mL) followed by the GLC analysis
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Fig. S1. Photographs of the samples obtained in reactions presented in tab. S1



3. Calibration graph and equation for estimation propanal and 2-ethyl-1,3-dioxolane yield

by GCL

Calibration graphs were obtained for 2-ethyl-1,3,-dioxolane and propanal quantitative
determination by GLC with heptane as an internal standard. For 2-ethyl-1,3-dioxolane, the ratio
of peak areas S,cetal/Sheptane Was calculated at a number of 2-ethyl-1,3-dioxolane concentration

values. The data used for the graph are given below:

m (2-ethyl-1,3-dioxolane), g n (2-ethyl-1,3-dioxolane), mol S/So
1 0.1519 0.002614 0.2365
2 0.363 0.006248 0.5917
3 0.6752 0.011621 1.1109
4 0.9886 0.017015 1.6371
5 1.2757 0.021957 2.1674
6 1.408 0.024234 2.4235

m is a mass of the acetal added to the initial mixture of the solvent (diphenyl ether, 2.0
mL) and the internal standard (heptane, 0.5 mL), n is a molar quantity of the acetal, S is a peak

area of the acetal, and Sy is a peak area of the internal standard.

The equation was derived by Microsoft Excel LINEST function.
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The analogous graph was obtained for several propanal quantities.
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m (propanal), g n (propanal), mol S/So

1 0.1777 0.001742 0.272
2 0.3607 0.003536 0.563
3 0.7357 0.007213 1.161
4 1.1127 0.010909 1.773
5 1.8797 0.018428 3.066

m is a mass of the propanal added to the initial mixture of the solvent (toluene, 2.0 mL)
and the internal standard (heptane, 0.5 mL), n is a molar quantity of propanal, S is a peak area of

propanal, and Sq is a peak area of the internal standard.
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For the estimation of the yield of propanal and acetal by GLC, after the reaction, heptane
(0.5 mL) was added as an internal standard, the S/S, ratio was determined, then the molar
guantities of the products was calculated by the equations presented on the graphs. The yields
were calculated by dividing these quantities by the quantity of ethylene determined from its

mass. Analogously, the yield of propanal was calculated.



4. Chromatogram of the gaseous mixtures
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Fig S2. The chromatogram of the gaseous mixtures
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5. Chromatograms of product mixtures
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Fig S3. The chromatogram of the final mixture of ethylene HF-AC reaction

in the presence of EG (tab. 2, run 1)
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Fig S4. The chromatogram of the final mixture of ethylene HF-AC reaction

in the presence of propanediols (tab. 2, run 2)
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Fig S5. The chromatogram of the final mixture of ethylene HF-AC reaction

in the presence of glycerol (tab. 2, run 4)
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6. NMR spectra of obtained acetals
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Fig S6. 'H NMR spectra of 2-ethyl-1,3-dioxolane (CDCls, 400 MHz)
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Fig S7. 13C NMR spectra of 2-ethyl-1,3-dioxolane (CDClz, 100 MHz)
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Fig S8. 'H NMR spectra of 1,2- and 1,3- propanediol acetals (CDCls, 400 MHz)
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Fig S9. 13C NMR spectra of 1,2- and 1,3- propanediol acetals (CDCl;, 100 MHz)
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Fig $10. 'H NMR spectra of glycerol acetals (CDCl;, 400 MHz)
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Fig S11. 13C NMR spectra of glycerol acetals (CDCl;, 100 MHz)
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