Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supporting information

Hydrodeoxygenation of sulfoxides into sulfides under mild conditions over a heterogeneous cobalt catalyst

Yanxin Wang,^a Kaiyue Yao,^a Duanjian Tao,^{*b} Nian Xiang,^a Wei Wang,^a and Zehui Zhang^{*a}

^a Key Laboratory of Catalysis and Materials Sciences of Hubei, South-Central University for Nationalities, Wuhan, 430074, China.

^b College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.

* Corresponding author:

Duanjian Tao: E-mail: djtao@jxnu.edu.cn

Zehui Zhang: E-mail: zehuizh@mail.ustc.edu.cn

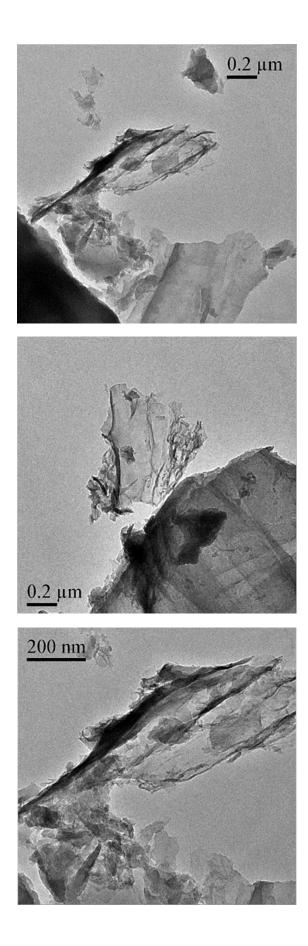


Figure S1. TEM images of the Co-NC/Al₂O₃-400 catalyst.

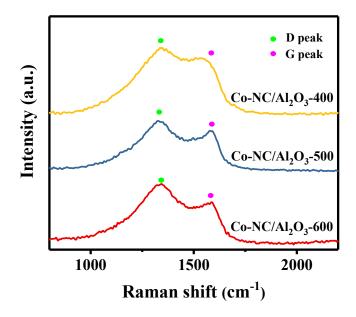


Figure S2. Raman spectra of the Co-NC/Al₂O₃-400, Co-NC/Al₂O₃-500 and Co-NC/Al₂O₃-600 catalysts.

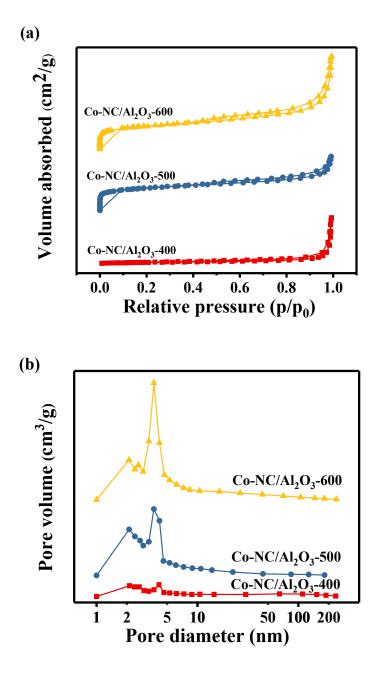


Figure S3. N_2 -Sorption isotherm curves (a) and pore size distributions (b) of the Co- NC/Al_2O_3 -T catalysts.

Catalyst	Surface area (m ² g ⁻¹)	Pore size (nm)	Pore volume (cm ³ g ⁻¹)
Co-NC/Al ₂ O ₃ -400	23.03	2.04	0.20
Co-NC/Al ₂ O ₃ -500	274.11	2.06	0.16
Co-NC/Al ₂ O ₃ -600	280.37	2.05	0.34

 Table S1. The texture properties of the as-prepared catalysts.

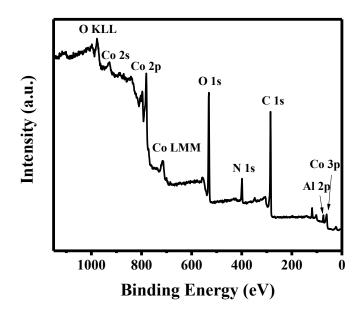
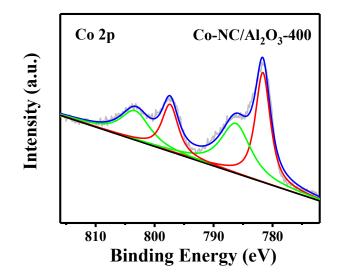



Figure S4. XPS survey scan of the Co-NC/Al₂O₃-500 catalyst.

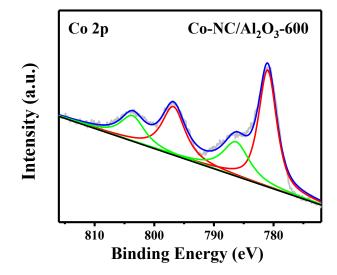


Figure S5. XPS spectra of Co 2p in the Co-NC/Al₂O₃-400 and Co-NC/Al₂O₃-600 catalysts.

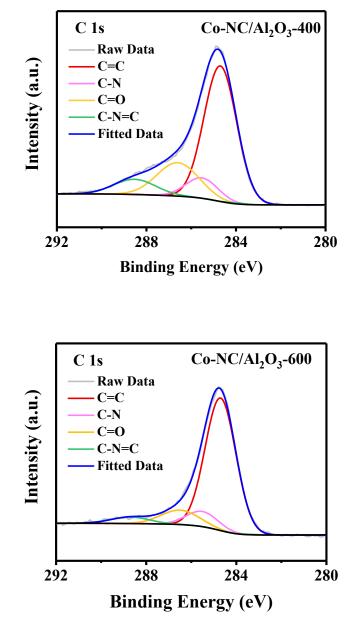


Figure S6. XPS spectra of C 1s in the Co-NC/Al₂O₃-400 and Co-NC/Al₂O₃-600 catalysts.

Catalyst	C=C	C-N	C=O	C-N=C
Co-NC/Al ₂ O ₃ -400	62.2%	9.2%	19.7%	8.9%
Co-NC/Al ₂ O ₃ -500	70.2%	11.4%	11.7%	6.7%
Co-NC/Al ₂ O ₃ -600	76.1%	9.0%	10.3%	4.6%

Table S2. The percentage of the different carbon in C 1s spectra.

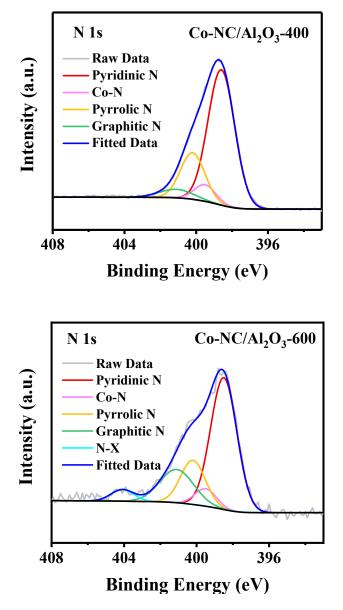


Figure S7. XPS spectra of N 1s in the Co-NC/Al₂O₃-400 and Co-NC/Al₂O₃-600 catalysts.

Table S3. The percentage of the different nitrogen in N 1s spectra and N content in the catalysts.

Catalyst	Pyridinic N	Co-N	Pyrrolic N	Graphitic N	N-X	N (at. %)
Co-NC/Al ₂ O ₃ -400	67.1%	6.5%	21.1%	5.3%	0	17.4%
Co-NC/Al ₂ O ₃ -500	58.4%	6.6%	17.5%	15.1%	2.4%	8.24%
Co-NC/Al ₂ O ₃ -600	54.8%	5.9%	17.3%	17.9%	4.1%	5.43%

Figure S8. XPS spectra of O 1s in the Co-NC/Al₂O₃-400 and Co-NC/Al₂O₃-600 catalysts.

Table S4. The percentage of the different nitrogen in O 1s spectra in the catalysts.

Catalyst	Lattice O	Absorbed O	Surface H ₂ O
Co-NC/Al ₂ O ₃ -400	14.5%	66.7%	18.8%
Co-NC/Al ₂ O ₃ -500	27.8%	58.2%	13.9%
Co-NC/Al ₂ O ₃ -600	23.6%	58.2%	18.2%

Table S5. The comparison between other non-noble metal catalysts and Co-NC/Al $_2O_3$ -

Entry	Catalyst	Condition	Comparison	Ref.
1	Fe ₂ (CO) ₉	Silane, 100 °C,	Use of high-cost	ChemCatChem,
		24 h	reduction agent, long	2011, 3 , 666-
			reaction time, hard to	670.
			separate production	
			and catalyst.	
2	Zn(OTf) ₂	Silane, 100 °C,	Use of high-cost	Catal. Sci.
		24 h	reduction agent, long	Technol., 2011,
			reaction time, hard to	1 , 104-110.
			separate production	
			and catalyst.	
3	Mo@C	Alcohol as	Complex synthesis	ChemCatChem,
		hydrogen	procedure.	2019, 11 , 4139-
		source, 120 °C,		4146.
		3 h		
4	Fe powder	H_2O and CO_2 ,	Fe was consumed	Green Chem.,
		80 °C, 10 h	during the reaction	2013, 15 , 1274-
			and large amount of	1279.
			catalyst was required.	
5	Co-Mo/NC	10 bar H ₂ , 80 °C	Green and accessible	Green Chem.,
			molecular H ₂ was used	2020, 22 , 39-
			but complex synthesis	43.

			procedure.	
6	TiO ₂	>300 nm	(COOH) ₂ was added	Catal.
		photocatalyzed,	as hole scavengers.	Commun.,
		120 min		2014, 54 , 100-
				103.
7	Cu(acac) ₂	Ph ₂ SiH ₂ , 100	Use of high-cost	Catal. Lett,
		°C, 12 h	reduction agent, long	2011, 141 , 833-
			reaction time	838.
8	NbCl ₅ &Zn	THF/PhH, 23	Use of toxic benzene	Tetrahedron,
		°C, 1-24 h	but mild condition.	2009, 65 , 2966-
				2974.
9	Co-NC/Al ₂ O ₃ -	10 bar H ₂ , 80	Green and accessible	This work
	500	°C, 2 h	molecular H ₂ was	
			used, facile	
			preparation method.	