Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Figure S1 – Comparison of model-predicted CH₄ conversions and experimental data for ODRM; Reaction conditions: Temperature (873K to 1023K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0.0756, N₂:0.256).

Figure S2 – Comparison of model-predicted CO₂ conversions and experimental data for ODRM; Reaction conditions: Temperature (873K to 1023K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0.0756, N₂:0.256).

Supplementary data

Figure S3 – Comparison of model-predicted CO yields experimental and data for ODRM; Reaction conditions: Temperature (873K to 1023K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0.0756, N₂:0.256).

Figure S4 – Comparison of model-predicted H₂ yields experimental and data for ODRM; Reaction conditions: Temperature (873K to 1023K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0.0756, N₂:0.256).

Figure S5 – Outlet partial pressure of O₂ with contact time for ODRM; Reaction conditions: Temperature (873K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0.05 to 0.20, N₂:balance), contact time (0 to 0.7 g-h/mol of CH₄)

Figure S6 – Equilibrium factor of RWGS reaction with contact time for ODRM; Reaction conditions: Temperature (873K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0.05 to 0.20, N₂:balance), contact time (0 to 0.7 g-h/mol of CH₄)

Figure S7 – Model-predicted CO yields as a function of O₂ co-feed for ODRM; Reaction conditions: Temperature (873K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0 to 0.20, N₂:balance), Contact time (0.6 g-h/mol of CH₄).

Figure S8 – Model-predicted H₂ yields as a function of O₂ co-feed concentration ODRM; Reaction conditions: Temperature (873K to 1023K), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0 to 0.20, N₂:balance), Contact time (0.6 g-h/mol of CH₄).

Figure S9 – Comparison of model-predicted CH₄ conversions using full mechanism and reduced mechanism; Reaction conditions: Temperature 873K (dashed lines) and 1023K(lines), Pressure (1 atm), Molar feed composition (CH₄:0.333, CO₂:0.333, O₂:0.0 to 0.15, N₂:balance), Contact time (0.6 g-h/mol of CH₄).

Reaction	Equations	A ₀ (cm ² ,	β	E _a (J/mol)	ε _i /CO*
ID		mol, s)/S ₀			(J/mol)
1	$H_2 + 2 * \Longrightarrow 2 H^*$	3.00E-02	0	5.00E+03	0
2	2 H* => H ₂ + 2 *	2.54E+20	0	9.52E+04	0
3	$2 * + O_2 => 2 O*$	4.36E-02	-0.206	1.51E+03	0
4	$2 O^* => 2^* + O_2$	1.19E+21	0.823	4.69E+05	0
5	$H_2O + * => H_2O*$	1.00E-01	0	0	0
6	$H_2O^* \Longrightarrow H_2O + *$	3.73E+12	0	6.08E+04	0
7	$CO_2 + * \Longrightarrow CO_2 *$	7.00E-06	0	0	0
8	$CO_2^* \Longrightarrow CO_2 + *$	6.44E+07	0	2.60E+04	0
9	CO + * => CO*	5.00E-01	0	0	0
10	CO* => CO + *	3.57E+11	0	1.11E+05	-5.00E+04
11	$CH_4 + * => CH_4*$	8.00E-03	0	0	0
12	CH_4 * => CH_4 + *	8.71E+15	0	3.76E+04	0
13	$CH_4* + * => CH_3* + H*$	1.55E+21	0.087	5.58E+04	0
14	$CH_3^* + H^* => CH_4^* + *$	1.44E+22	-0.087	6.35E+04	0
15	$CH_3* + * => CH_2* + H*$	1.55E+24	0.087	9.81E+04	0

16	$CH_2^* + H^* => CH_3^* + *$	3.09E+23	-0.087	5.72E+04	0
17	$CH_2^* + * => CH^* + H^*$	1.55E+24	0.087	9.52E+04	0
18	$CH^* + H^* => CH_2^* + *$	9.77E+24	-0.087	8.11E+04	0
19	CH* + * => C* + H*	9.89E+20	0.5	2.20E+04	0
20	$C^* + H^* => CH^* + *$	1.71E+24	-0.5	1.58E+05	0
21	$CH_4 * + O * => CH_3 * + OH *$	5.62E+24	-0.101	8.79E+04	0
22	$H_2O^* + * => H^* + OH^*$	3.67E+21	-0.086	9.29E+04	0
23	$H^* + OH^* => H_2O^* + *$	1.85E+20	0.086	4.15E+04	0
24	$H_{*} + O_{*} => * + OH_{*}$	3.95E+23	-0.188	1.04E+05	0
25	* + OH* => H* + O*	2.25E+20	0.188	2.96E+04	0
26	C* + O* => CO* + *	3.40E+23	0.000	1.48E+05	0
27	CO* + H* => C* + OH*	3.52E+18	-0.188	1.05E+05	-5.00E+04
28	$C^* + OH^* \Longrightarrow CO^* + H^*$	3.89E+25	0.188	6.26E+04	0
29	$CO_2^* + * => CO^* + O^*$	4.64E+23	-1.000	8.93E+04	-5.00E+04
30	CO*+OH* => COOH* + *	6.00E+21	0.213	9.76E+04	-5.00E+04
31	COOH* + * => CO* + OH*	1.46E+24	-0.213	5.44E+04	0
32	$CO_2^* + H^* => COOH^* + *$	6.25E+24	-0.475	1.17E+05	0
33	$COOH* + * => CO_2* + H*$	3.74E+20	0.475	3.37E+04	0
34	CO* + H* => HCO* + *	4.01E+20	-1	1.32E+05	-5.00E+04
35	$HCO^{*} + * => CO^{*} + H^{*}$	3.71E+21	0	0	5.00E+04

 Table S1: Reduced mechanism developed for oxidative dry reforming in O2 enhanced region