Supporting Information for "Jacket temperature regulation allowing well-defined nonadiabatic lab-scale solution free radical polymerization of acrylates"

Mariya Edeleva,^{1,*} Yoshi W. Marien,¹ Paul H.M. Van Steenberge,¹ Dagmar R. D'hooge^{1,2*}

¹ Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium.

² Centre for Textile Science and Engineering (CTSE), Ghent University, Technologiepark 70A, 9052 Ghent, Belgium.

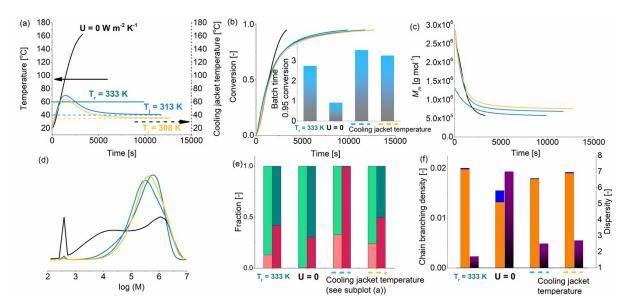


Figure S1. Comparing adiabatic and non-adiabatic reactor operations for solution free radical polymerization (FRP) of *n*-butyl acrylate (*n*BuA) with [*n*BuA]₀ = 3.3 mol L⁻¹ and and $T_{r,0}$ = 298 K but applying the zeroth order initiation case with AIBN. Evolution of (a) reactor temperature (left axis) and jacket temperature (T_{jacket} ; right) axis as a function of time, (b) monomer conversion as a function of time as well the final batch time for 0.9 (monomer) conversion, (c) mass average molar mass M_m as a function of time and (d) molar mass distribution (MMD) (w(log *M*) format) at a monomer conversion of 0.90; (e) fractions of macromonomer and dead polymer at a monomer conversion of 0.90 with light- green/red number fraction and dark-green/red: mass fraction, (f) left axis: orange and blue: short and long chain branching density at a monomer conversion of 0.90, (f) right axis in dark-purple dispersity at 0.90 monomer conversion; blue: $T_{jacket} = 313$ K, yellow: $T_{jacket} = 308$ K, black: adiabatic operation with *U* in Equation (1) equal to 0 instead of 100 W m⁻² K⁻¹(the dimension of *U* is omitted in the figure), dark-cyan: isothermal (theoretical) at 313 K; Arrhenius parameter in Table 1.

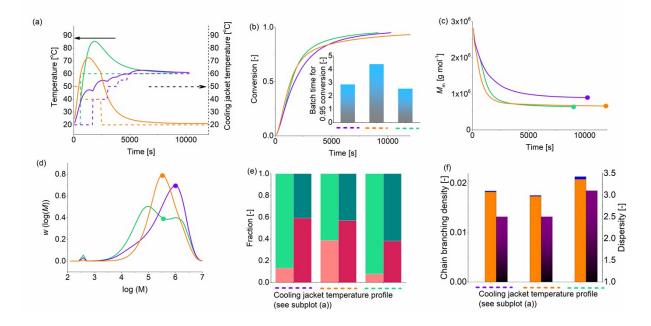


Figure S2. Same outline as in Supplementary Figure S1 considering three non-adiabatic cases with stepwise jacket temperature (T_{jacket}) control; orange: $T_{jacket} = 323$, 313, 293 K, green: $T_{jacket} = 293$, 333 K, violet $T_{jacket} = 293$, 313, 323, 328, 333 K.

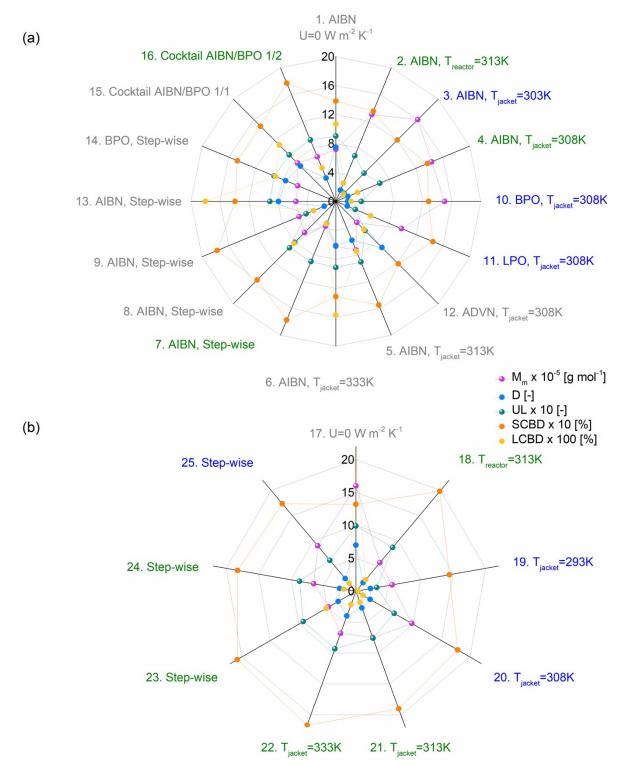


Figure S3. Radar charts with absolute data (normalized in Figuee 11).

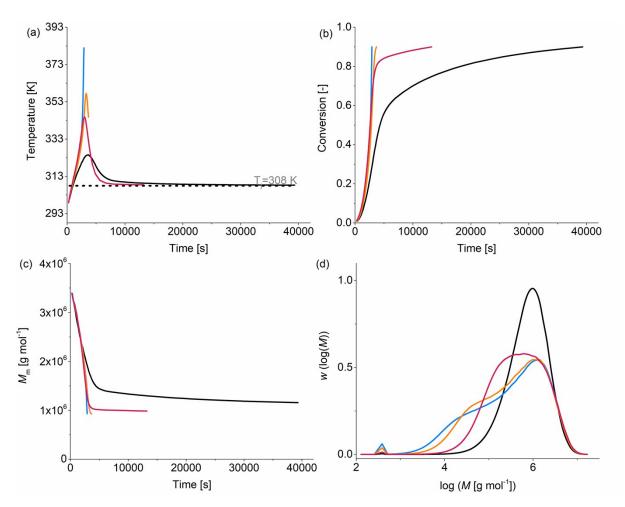


Figure S4: Influence of under/overestimated activation energies for backbiting and β -scission (while also varying pre-exponential factors) on the predicted: (a) reactor temperature, (b) monomer conversion, (c) mass average molar mass $M_{\rm m}$ as a function of time, and (d) log-molar mass distribution (MMD) at 0.9 monomer conversion; flat jacket temperature $T_{\rm jacket} = 308$ K. All rate coefficients equal to the reference values listed in Table 1, except for: orange: $E_{\rm a}^{\rm backbiting} = 34.7$ kJ mol⁻¹, A^{backbiting} = 1.6× 10⁸ s⁻¹ provided by Barth *et al.*¹ blue: $E_{\rm a}^{\rm backbiting} = 31.7$ kJ mol⁻¹, A^{backbiting} = 4.48× 10⁷ s⁻¹ provided by Nikitin *et al.*², dark-red: $E_{\rm a}^{\rm backbiting} = 55.0$ kJ mol⁻¹, A^{backbiting} = 2.8× 10¹¹ s⁻¹ provided theoretically by Cuccato *et al.*³; black: reference values; [M]₀ = 3.3 mol L⁻¹; [AIBN]₀ = 3×10⁻³ mol L⁻¹ and $T_{\rm r,0} = 298$ K; U = 100 W m⁻² K⁻¹.

References:

- 1. J. Barth, M. Buback, P. Hesse and T. Sergeeva, *Macromolecules*, 2010, **43**, 4023-4031.
- 2. A. N. Nikitin, R. A. Hutchinson, M. Buback and P. Hesse, *Macromolecules*, 2007, 40, 8631-8641.
- 3. D. Cuccato, E. Mavroudakis, M. Dossi and D. Moscatelli, *Macromolecular Theory and Simulations*, 2013, **22**, 127-135.