Supporting Information

Conversion of CO₂ into Cyclic Carbonate Catalyzed by N-Doped Mesoporous Carbon Catalyst

Dan Liu^{ab}, Jinxia Fu^c, Kuo Zhou^a, Shimin Kang^{*a}, Zhuodi Cai^a, Yongjun Xu^{*a} and Peigao Duan^b

^aEngineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong 523808, China

^b School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an710049, P. R. China

^c Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI,
96822, USA

*Corresponding author.

E-mail: kangshimin@dgut.edu.cn; xuyj@dgut.edu.cn.

Scheme S1. The cycloaddition of CO_2 with epoxides.

Figure S1. The C1s (a-c), O1s (d-f) and XPS survey spectra (g) of different N-MCS

samples.

Figure S2. The N percentage composition of different N-MCS materials measured by XPS.

Figure S3. FT-IR spectra of N-MCS800 before (A) and after (B) interaction with CO₂.

Figure S4. Impacts of reaction conditions on the cycloaddition of CO_2 with ECH: (a) reaction time, (b) catalyst amount, (c) reaction temperature, (d) reaction pressure.

Figure S5. Coupling of CO_2 and various epoxides.

SO-160: The reaction temperature is 160 °C. SO-24: The reaction time is 24 h.

Figure S6. (a) Cycloaddition of CO_2 with ECH over (a) N-CMS800 and (b) in the filtrate solution (catalyst filtered off after 6 h), (b) Knoevenagel condensation reaction.

Entry	Catalyst	$\mathbf{S}_{\mathrm{BET}}$	V _{Meso}	I_D/I_G	Basic amount (mmol·g ⁻¹)			
		(m^2g^{-1})	(cm^3g^{-1})		Weak	Strong	Total	
					base ^a	base ^b	base	
1	N-MCS600	599.5	0.89	0.88	0.47	0.59	1.06	
2	N-MCS700	634.7	0.95	0.95	0.49	0.64	1.13	
3	N-MCS800	1341.9	1.47	1.00	0.70	0.89	1.59	
4	Reused N-	1298.7	1.44	-	-	-	-	
	MCS800							

Table S1. Texture parameters of various N-MCS materials.

 $^{\rm a}$ Measured at 50-250 °C; $^{\rm b}$ Measured at 250-600 °C.

Entrv	Catalyst	Pres./	Temp./	Time/	Yield/	Ref.
		MPa	°C	h	%	
1	N-MCS800	0.8	140	12	58.2	This work
2	N-MCS800 ^a	0.8	100	12	99.1	This work
3	UF-MCN ^b	0.8	100	10	34.0	[1]
4	prop-Br/NOMC-450-140 °	2.5	150	10	65.0	[2]
5	$ZnBr_2/g\text{-}C_3N_4{}^d$	2.0	140	6	52.0	[3]
6	$u-g-C_3N_4-480^{e}$	2.0	130	4	23.7	[4]
7	$ZnBr_2\!/mp\text{-}C_3N_4{}^{\rm f}$	2.5	140	6	10.4 (96.8) °	[5]
8	MS-CN g	0.8	140	10	30.6	[6]
9	$g-C_3N_4/SBA-15^{h}$	3.5	150	1.5	28.8 (96.1) °	[7]
10	Zn-C ₃ N ₄ ⁱ	2.0	130	5	7.0 (91.0) °	[8]
11	g-C ₃ N ₄ /TBAB ^j	3.5	150	1.5	28.8 (94.5) °	[9]
12	g-C ₃ N ₄ -450-NaOH ^k	2.0	140	6	3.7 (79.2) °	[10]
13	P-C ₃ N ₄ -2 ¹	2.0	100	4	20.8 (99.8) °	[11]

Table S2. The comparison of CN catalysts for the cycloaddition of CO₂ and ECH.

^a: ZnBr₂ was used as co-catalyst. ^b: prepared using disk-shaped 2D hexagonal mesoporous silica as a hard template, urea and formaldehyde resin as precursors. ^c: prepared through a soft templating method and then utilized as supports to immobilize alkyl bromide. ^d: ZnBr₂ supported on a g-C₃N₄ material. ^e: prepared using urea as a starting material without addition of any template. ^f: ZnBr₂ supported on a mp-C₃N₄ material. ^g: prepared using disk-shaped 2D hexagonal mesoporous silica as a hard template and melamine as a precursor. ^h: prepared using SBA-15 as a catalytic support and dicyandiamide as a precursor through a chemical vapor deposition method. Zn²⁺ was further doped into g-C₃N₄/SBA-15 as an additive. ⁱ: Zn modified carbon nitride catalyst and KI was used as co-catalyst. ^j: Tetrabutylammonium bromide (TBAB) was used as co-catalyst. ^k: synthesized using guanidine hydrochloride as a precursor treated with NaOH and ZnI₂ was used as co-catalyst. ^l: prepared by direct thermolysis of melamine, hexachlorotriphosphazene and Bu₄NBr was used as co-catalyst. ^o: the values in brackets are obtained in the presence of co-catalyst.

- [1] L. Y. Zhao, X. L. Dong, J. Y. Chen, A. H. Lu, Chem. Eur. J. 2020, 26, 2041-2050.
- [2] D. Ma, H. Zheng, H. M. Wan, Y. Chen, J. Xu, B. Xue, Micropor. Mesopor. Mater., 2018, 258, 244-250.
- [3] J. Xu, Y. L. Gan, P. Hu, H. Zheng, B. Xue, Catal. Sci. Technol., 2018, 8, 5582-5593.
- [4] Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Catal. Sci. Technol., 2014, 4, 1556-1562.
- [5] J. Xu, F. Wu, Q. Jiang, J. K. Shang, Y. X. Li, J. Mol. Catal. A, 2015, 403, 77-83.
- [6] M. B.h Ansari, B. H. Min, Y. H. Mo, S. E. Park, Green Chem., 2011, 13, 1416-1422.
- [7] Z. Huang, F. Li, B. Chen, T. Lu, Y. Yuan, G. Yuan, Appl. Catal. B Environ., 2013, 136-137, 269-277.
- [8] X. W, M. S. Liu, L. Y, J. W. Lan, Y. L. Chen, J. M. Sun, ChemistrySelect, 2018, 3, 4101-4109.
- [9] T. Biswas, V. Mahalingam, New J. Chem., 2017, 41, 14839-14842.
- [10] J. Xu, J. K. Shang, Q. Jiang, Y. Wang, Y. X. Li, RSC Adv., 2016, 6, 55382-55392.
- [11] D. H. Lan, H. T. Wang, L. Chen, C. T. Au, S. F. Yin, Carbon, 2016, 100, 81-89