Chemo-enzymatic oxidative cleavage of isosafrole for the synthesis of piperonal

Francesca Tentori,*^[a] Elisabetta Brenna,* ^[a] Chiara Ferrari, ^[a] Francesco G. Gatti, ^[a] Maria Chiara Ghezzi, ^[a] and Fabio Parmeggiani^[a]

 ^[a] Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
 E-mail: <u>francesca.tentori@polimi.it</u>; <u>mariaelisabetta.brenna@polimi.it</u>

SUPPORTING INFORMATION

Table of contents

Page

Table S1. Factorial design for the enzymatic epoxidation of isosafrole	S2
Table S2. Results of factorial design experiments	S3
Figures S1-S3. Coefficients and contour plots of DOE investigation	S4
Copies of ¹ H and ¹³ C NMR spectra	S6
References	S8

n° run	Enzyme	Isosafrole	H_2O_2	Isosafrole conversion	
	[mg]	[M]	[M]	[%] ^a	
1	10	0.5	0.3	27	
2	20	0.2	0.6	87	
3	20	0.5	0.6	56	
4	20	0.2	0.3	72	
5	10	0.2	0.6	77	
6	10	0.5	0.6	47	
7	20	0.5	0.3	35	
8	10	0.2	0.6	74	
9	20	0.5	0.6	55	
10	20	0.2	0.6	83	
11	10	0.5	0.3	29	
12	10	0.2	0.3	48	
13	20	0.5	0.3	34	
14	10	0.5	0.6	44	
15	20	0.2	0.3	77	
16	10	0.2	0.3	55	

Table S1. Factorial design for the enzymatic epoxidation of isosafrole.

^a Calculated on the basis of GC/MS analysis

The intervals of the three variables submitted to DOE^1 optimization were chosen on the basis of preliminary data found in the literature on similar reactions²⁻⁴ and considering also our first experiments carried out in batch conditions using the simple method of changing one variable at a time.

	Epoxide	Monoethyl ethers	Diol	Monoacetates	Isosafrole
\mathbf{n}° run	(8)	(11a,b)	(10)	(9a,b)	((E)- and (Z)-3)
	[%] ^a	[%]a	[%] ^a	[%] ^a	[%] ^a
1	3	4	16	4	73
2	16	10	16	45	13
3	7	5	11	33	44
4	6	7	38	21	28
5	18	5	33	21	23
6	7	4	18	18	53
7	3	7	22	3	65
8	16	5	25	28	26
9	7	5	14	29	45
10	14	10	16	43	17
11	3	3	18	5	71
12	4	5	31	8	52
13	3	5	19	7	66
14	7	3	15	19	56
15	8	5	38	26	23
16	5	7	31	12	45

 Table S2. Results of factorial design experiments.

^a Calculated on the basis of GC/MS analysis

Figure S1. Coefficient plot showing the effects of the three variables (enzyme load, isosafrole concentration and H_2O_2 concentration) and of their interactions on conversion: red=positive value = positive effect; light blue= negative value = negative effect.

(multivariate regression model obtained by DOE analysis: $Y = 56.25 + 6.125X_1 - 15.375X_2 + 9.125X_3 - 2.00X_1X_2 - 1.250X_1X_3 + 0.500X_2X_3 + 2.125X_1X_2X_3$ - enzyme load X₁, isosafrole concentration X₂, H₂O₂ concentration X₃).

From the graph it is possible to observe that isosafrole has the highest influence on the final reaction conversion in a negative way (the increase of isosafrole concentration determines a decrease of conversion, "negative effect"), while hydrogen peroxide and enzyme concentration are less effective, but their increase produces an increase of the final conversion ("positive effect"). Second order interactions between the variables are not effective on final conversion (very low values of 2nd order terms).

Figure S2. Contour plot of conversion [%] as a function of isosafrole concentration [M] and hydrogen peroxide concentration [M] evaluated at an enzyme load of 10 mg. Lines refer to constant conversion corresponding to the value reported on the labels.

It is possible to observe that the yellow line (corresponding to higher values of conversion) is found in correspondence of low values of isosafrole concentration and high values of hydrogen peroxide concentration.

Figure S3. Contour plot of conversion [%] as a function of isosafrole concentration [M] and hydrogen peroxide concentration [M] evaluated at an enzyme load of 20 mg. Lines refer to constant conversion corresponding to the value reported on the labels.

The analysis of the contour plot shows that the best values of conversion (yellow line) are related to low isosafrole concentration and high hydrogen peroxide concentration. With respect to the plot in Figure S2, obtained for a lower lipase amount (10 mg), the conversions in this second plot are higher than the previous ones since the increase of enzyme amount has a positive effect on the final conversion.

Copies of ¹H and ¹³C NMR spectra: epoxides 8

Copies of ¹H and ¹³C NMR spectra: diols 10

References

- B. Dejaegher and Y. V. Heyden, J. Pharm. Biomed. Anal., 2011, 56, 141; R. Leardi, Anal. Chim. Acta, 2009, 652, 161; T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nystrom, J. Pettersen and R. Bergman, Chemom. Intell. Lab. Syst., 1998, 42, 3.
- 2. C. Wiles, M. J. Hammond, P. Watts, Beilstein J. Org. Chem. 2009, 5, 27.
- 3. S. Ranganathan, J. Tebbe, L. O. Wiemann, V. Sieber, Process Biochemistry 2016, 51. 1479-1485.
- 4. M. de Torres et al. *Catalysis Today* 2012, **195**, 76-82.