Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Copper-catalyzed Redox-neutral Regioselective Chlorosulfonylation of Vinylarenes

Lixia Liu, Chengming Wang*

Department of Chemistry, College of Chemistry and Materials Science Jinan University Guangzhou, 511443, China Email: <u>cmwanq2019@jnu.edu.cn</u>

Table of Contents:

General Methods and Materials	1
Conditions Screening	2-5
General Procedure for Chlorosulfonylation	6
Characterization of Products	7-16
General Procedure for Scale-up Reaction	17
Late-stage Modification of Bioactive Molecules	18-20
Mechanistic Study	21-25
References	26
NMR Spectra Images of Products	27-73

General Methods and Materials:

Unless specified, all reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions. Alkenes starting materials were synthesized according to a previous reported literature.¹ The *BipG*-derived alkene,² fenofibratederived alkene and estrone-derived alkene,³ cholesterol-derived alkene,⁴ (-)mentholderived alkene⁴ were synthesized according to reported literatures. Cu(OTf)₂ (purity: 98%) and acetonitrile (super dry, 99.9%) were purchased from J&K; all other reagents were purchased and used without further purification unless specified otherwise. Solvents for chromatography were technical grade and distilled prior to use. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). ¹H NMR and ¹³C NMR data were recorded on Bruker 300 M nuclear resonance spectrometers unless otherwise specified, respectively. Chemical shifts (δ) in ppm are reported as quoted relative to the residual signals of chloroform (¹H 7.26 ppm or ¹³C 77.16 ppm). Multiplicities are described as: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet); and coupling constants (J) are reported in Hertz (Hz). ¹³C NMR spectra were recorded with total proton decoupling. High resolution mass spectrometry (HRMS) analysis was performed using electrospray ionization (ESI) with a quadrupole-time of flight (QTOF) mass analyzer. HRMS (ESI) analysis was performed by The Analytical Instrumentation Center at College of Chemistry and Materials Science, Jinan University, and (HRMS) data were reported with ion mass/charge (m/z) ratios as values in atomic mass units.

Conditions Screening

Table 1 Solvent opitimizations^a

	+ TsCl 2a 1a	Cu(OTf) ₂ , bpy NaHCO ₃ , Solvent 100 °C, 4 h 3a
Entry	Solvent	Yield ^b
1	DMSO	20%
2	1, 4-dioxane	72%
3	MeCN	91%
4	MTBE	4%
5	DMF	4%
6	Isopropanol	0%

^{*a*} Reaction on a 0.2 mmol scale, using **1a** (1.0 equiv.), **2a** (2.0 equiv.), Cu(OTf)₂ (10 mol%), bpy (10 mol%), NaHCO₃ (1.1 equiv.), solvent (1.5 mL), under N₂, 4 h; ^{*b*} ¹H NMR yield.

Table 2 Ligand opitimizations^a

Entry	Ligand	Yield ^b
1	dtbpy	46%
2	2,2'-biquinoline	69%
3	AIBN	28%
4	bру	91%
5	tri(<i>o</i> -tolyl)-phosphine	41%
6	4,4'-dimethoxy-2,2'-bipyridine	40%
7	2,2'-bi(5-methylpyridine)	31%

^{*a*} Reaction on a 0.2 mmol scale, using **1a** (1.0 equiv.), **2a** (2.0 equiv.), Cu(OTf)₂ (10 mol%), ligand (10 mol%), NaHCO₃ (1.1 equiv.), MeCN (1.5 mL), under N₂, 4 h; ^{*b*} ¹H NMR yield.

Table 3 Catalyst opitimizations^a

Entry	Catalyst	Yield ^b
1	CuBr ₂	25%
2	Cu(OAc) ₂	33%
3	CuCl	79%
4	FeSO ₄	4%
5	Pd(OAc) ₂	17%
6	Cu(OTf) ₂	91%
7	Pd(TFA) ₂	0%

^{*a*} Reaction on a 0.2 mmol scale, using **1a** (1.0 equiv.), **2a** (2.0 equiv.), catalyst (10 mol%), bpy (10 mol%), NaHCO₃ (1.1 equiv.), MeCN (1.5 mL), under N₂, 4 h; ^{*b*} ¹H NMR yield.

Table 4 Base opitimizations^a

	1a	+ TsCl 2a	Cu(OTf) ₂ , bpy Base, MeCN 100 °C, 4 h	CI Ts 3a
Entry		Base		Yield ^b
1		Na ₂ CO ₃		8%
2		K ₃ PO ₄		9%
3		Li ₂ CO ₃		56%
4		CH₃COOK		44%
5		Et ₃ N		21%
6		K ₂ CO ₃		25%
7		KHCO ₃		50%
8		Cs ₂ CO ₃		9%
9		CsF		ND
10		NaOH		56%
11		LiO ^t Bu		88%
12		DIPEA		81%
13		DABCO		22%
14		DMAP		39%
15		DBU		86%
16		TMG		55%
17		NaHCO₃		91%

^{*a*} Reaction on a 0.2 mmol scale, using **1a** (1.0 equiv.), **2a** (2.0 equiv.), Cu(OTf)₂ (10 mol%), bpy (10 mol%), base (1.1 equiv.), MeCN (1.5 mL), under N₂, 4 h; ^{*b* 1}H NMR yield.

Table 5 Temperature opitimizations^a

Entry	Temperature (°C)	Yield ^b
1	100	91%
2	80	70%
3	60	9%
4	40	ND
5	rt	ND

^{*a*} Reaction on a 0.2 mmol scale, using **1a** (1.0 equiv.), **2a** (2.0 equiv.), Cu(OTf)₂ (10 mol%), bpy (10 mol%), NaHCO₃ (1.1 equiv.), MeCN (1.5 mL), under N₂, 4 h; ^{*b*} ¹H NMR yield.

Table 6 Amounts of Cu(OTf)₂ opitimizations^a

	+ TsCl 1a 2a	Cl Cu(OTf) ₂ (x mol%), bpy NaHCO ₃ , MeCN 100 °C, 4 h 3a
Entry	Catalyst (mol%)	Yield ^b
1	10 mol%	91%
2	5mol%	79%
3	1mol%	24%

^a Reaction on a 0.2 mmol scale, using **1a** (1.0 equiv.), **2a** (2.0 equiv.), Cu(OTf)₂ (x mol%), bpy (10 mol%), NaHCO₃

(1.1 equiv.), MeCN (1.5 mL), under N₂, 4 h; $^{b\ 1}\text{H}$ NMR yield.

Table 7 Amounts of TsCl opitimizations^a

	+ TsCl 1a 2a	Cu(OTf) ₂ , bpy NaHCO ₃ , MeCN 100 °C, 4 h 3a
Entry	TsCl (equiv.)	Yield ^b
1	1.0 (equiv.)	18%
2	1.2 (equiv.)	38%
3	1.5 (equiv.)	71%
4	2.0 (equiv.)	91%

^a Reaction on a 0.2 mmol scale, using 1a (1.0 equiv.), 2a (x equiv.), Cu(OTf)₂ (10 mol%), bpy (10 mol%), NaHCO₃

(1.1 equiv.), MeCN (1.5 mL), under N₂, 4 h; $^{b 1}$ H NMR yield.

Table 8 Control experiments^a

Entry	Conditions	Yield ^b
1	without Cu(OTf) ₂	ND
2	without bpy	<5%
3	without NaHCO ₃	ND
4	under air	31%

^{*a*} Reaction on a 0.2 mmol scale, using **1a** (1.0 equiv.), **2a** (2.0 equiv.), Cu(OTf)₂ (10 mol%), bpy (10 mol%), NaHCO₃ (1.1 equiv.), MeCN (1.5 mL), under N₂, 4 h; ^{*b*} ¹H NMR yield.

Note:

MTBE = *tert*-butyl methyl ether; dtbpy = 4,4'-di-*tert*-butyl-2,2'-dipyidyl; AIBN = 2,2'-azobis(2methylpropionitrile); bpy = 2,2'-bipyridine; DIPEA = N,N-diisopropylethylamine; DABCO = 1,4diaza[2.2.2]bicyclooctane; DBU = 1,8-diazabicyclo[5,4,0]undec-7-ene; TMG = 1,1,3,3-tetramethyl guanidine; ND = Not Detected.

General Procedure for Chlorosulfonylation

Sulfonyl chloride **2** (0.4 mmol, 2.0 equiv.), Cu(OTf)₂ (10 mol%) and NaHCO₃ (0.22 mmol, 1.1 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then alkene **1** (0.2 mmol, 1.0 equiv.) in MeCN (1.5 mL) was added through the side-arm by syringe. The reaction was stirred under nitrogen at 100 °C for 4 h. After reaction, the mixture was cooled to room temperature. Volatile solvent and reagents were removed by rotary evaporation and the residue was purified by silica gel flash chromatography using petroleum ether/EtOAc (50:1 to 15:1) to afford the desired product **3** or **4**.

Characterization of Products

1-((2-chloro-2-phenylethyl)sulfonyl)-4-methylbenzene (3a).⁵ yield: 93%, white solid, melting point: 76-77 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.28-7.23 (m, 7H), 5.34 (t, *J* = 6.9 Hz, 1H), 3.99-3.82 (m, 2H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.9, 138.6, 136.2, 129.8, 129.1, 128.9, 128.2, 127.2, 64.1, 55.2, 21.6. IR (ATR): 3061, 2977, 2830, 1599, 1320, 1139, 693 cm⁻¹. HRMS (ESI) m/z: found: 295.0558, calcd. for C₁₅H₁₆ClO₂S [M+H]⁺: 295.0554.

1-(1-chloro-2-tosylethyl)-2-methylbenzene (3b).⁶ yield: 80%, white solid, melting point: 89-90 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 7.4 Hz, 1H), 7.07-7.01 (m, 3H), 5.29 (t, *J* = 6.9 Hz, 1H), 3.98-3.80 (m, 2H), 2.40 (s, 3H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.8, 138.7, 138.4, 136.2, 129.9, 129.7, 128.8, 128.2, 127.7, 124.4, 64.0, 55.2, 21.6, 21.3. IR (ATR): 3102, 2815, 1608, 1573, 1312, 897, 679 cm⁻¹. HRMS (ESI) m/z: found: 309.0717, calcd. for C₁₆H₁₈ClO₂S [M+H]⁺: 309.0711.

1-bromo-2-(1-chloro-2-tosylethyl)benzene (3c). yield: 37%, white solid, melting point: 75-76 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.6 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 1H), 7.28 (m, 3H), 7.14 (t, *J* = 7.3 Hz, 1H), 5.76 (t, *J* = 7.5 Hz, 1H), 3.94-3.80 (m, 2H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 149.5, 145.2, 137.0, 136.0, 132.5, 130.1, 129.8, 128.9, 128.0, 121.2, 63.9, 54.2, 21.5. IR (ATR): 2917, 2849, 1511, 1322, 1264, 1213, 1156, 920, 810, 792 cm⁻¹. HRMS (ESI): found: 394.9482, calcd. for C₁₅H₁₄BrClO₂SNa [M+Na]⁺: 394.9479.

1-(1-chloro-2-tosylethyl)-3-methylbenzene (3d).⁷ yield: 81%, white solid, melting point: 109-110 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.25-7.02 (m, 6H), 5.63 (t, *J* =

5.6 Hz, 1H), 4.01-3.84 (m, 2H), 2.40 (d, J = 2.3 Hz, 6H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.9, 136.6, 136.2, 135.5, 130.9, 129.8, 128.9, 128.1, 126.8, 126.7, 63.4, 51.4, 21.6, 19.1. IR (ATR): 3059, 2990, 1598, 1316, 914, 760, 553 cm⁻¹. HRMS (ESI) m/z: found: 309.0719, calcd. for C₁₆H₁₈ClO₂S [M+H]⁺: 309.0711.

1-(1-chloro-2-tosylethyl)-3-methoxybenzene (3e).⁶ yield: 97%, white solid, melting point: 105-106 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.23-7.14 (m, 3H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.81-6.74 (m, 2H), 5.28 (t, *J* = 6.9 Hz, 1H), 3.96-3.79 (m, 2H), 3.73 (s, 3H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 159.8, 144.9, 139.9, 136.2, 130.0, 129.7, 128.2, 119.5, 114.7, 112.6, 64.1, 55.3, 55.1, 21.6. IR (ATR): 2996, 2832, 1592, 1491, 1190, 940, 772 cm⁻¹. HRMS (ESI) m/z: found: 325.0663, calcd. for C₁₆H₁₈ClO₃S [M+H]⁺: 325.0660.

1-((2-chloro-2-(p-tolyl)ethyl)sulfonyl)-4-methylbenzene (3f).⁶ yield: 88%, yellow solid, melting point: 116-118 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.61 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.05 (d, *J* = 7.9 Hz, 2H), 5.30 (t, *J* = 5.7 Hz, 1H), 3.97-3.80 (m, 2H), 2.41 (s, 3H), 2.31 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.83, 139.2, 136.3, 135.6, 129.7, 129.5, 128.2, 127.1, 64.1, 55.1, 21.6, 21.2. IR (ATR): 3014, 2983, 1594, 1387, 872, 634 cm⁻¹. HRMS (ESI) m/z: found: 331.0537, calcd. for C₁₆H₁₇ClNaO₂S [M+Na]⁺: 331.0530.

1-(*tert***-butyl)-4-(1-chloro-2-tosylethyl)benzene (3g).**⁶ yield: 74%, yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 7.3 Hz, 2H), 7.19 (d, *J* = 7.3 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.3 (t, *J* = 7.0 Hz, 1H), 3.99-3.85 (m, 2H), 2.38 (s, 3H), 1.28 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz): δ 152.3, 144.6, 136.3, 135.4, 129.7, 128.2, 126.9, 125.8, 64.0, 55.1, 34.6, 31.3, 21.6. IR (ATR): 3085, 2932, 2893, 1582, 1372, 932, 534 cm⁻¹. HRMS (ESI) m/z: found: 373.0992, calcd. for C₁₉H₂₃ClNaO₂S [M+Na]⁺: 373.0999.

4-(1-chloro-2-tosylethyl)-1,1'-biphenyl (3h). yield: 81%, white solid, melting point: 98-99 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.54-7.51 (m, 2H), 7.47-7.37 (m, 5H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 5.39 (t, *J* = 8.6 Hz, 1H), 4.03-3.89 (m, 2H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.9, 142.1, 140.1, 137.3, 136.2, 129.8, 128.9, 128.2, 127.8, 127.7, 127.5, 127.1, 64.0, 55.0, 21.6. IR (ATR): 2937, 1595, 1486, 1318, 1135, 759, 693 cm⁻¹. HRMS (ESI): found: 357.0915, calcd. for $C_{21}H_{18}O_2SNa$ [M-HCl+Na]⁺: 357.0920.

1-((2-chloro-2-(4-fluorophenyl)ethyl)sulfonyl)-4-methylbenzene (3i).⁷ yield: 92%, white solid, melting point: 103-104 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.61 (d, J = 8.2 Hz, 2H), 7.29-7.24 (m, 4H), 6.95 (t, J = 8.6 Hz, 2H), 5.34 (t, J = 7.1 Hz, 1H), 3.98-3.80 (m, 2H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 162.9 (d, J = 247.6 Hz), 145.1, 136.2, 134.4 (d, J = 3.3 Hz), 129.8, 129.2 (d, J = 8.5 Hz), 128.1, 115.9 (d, J = 21.8 Hz), 64.1, 54.4, 21.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -111.8 (s, 1F). IR (ATR): 3071, 2932, 1592, 1071, 883, 654 cm⁻¹. HRMS (ESI): found: 335.0284, calcd. for C₁₅H₁₄ClFO₂SNa [M+Na]⁺: 335.0279.

1-chloro-4-(1-chloro-2-tosylethyl)benzene (3j).⁶ yield: 98%, white solid, melting point: 115-116 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.57 (d, *J* = 8.1 Hz, 2H), 7.24-7.19 (m, 6H), 5.29 (t, *J* = 7.2 Hz, 1H), 3.95-3.79 (m, 2H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 145.1, 136.9, 136.0, 135.1, 129.8, 129.0, 128.7, 128.1, 63.9, 54.3, 21.6. IR (ATR): 3015, 2812, 1653, 1587, 1091, 872, 684 cm⁻¹. HRMS (ESI): found: 329.0169, calcd. for C₁₅H₁₅Cl₂O₂S [M+H]⁺: 329.0164.

4-(1-chloro-2-tosylethyl)benzonitrile (3k).⁶ yield: 73%, white solid, melting point: 108-109 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.62-7.55 (m, 4H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.28-7.25 (m, 2H), 5.35 (t, *J* = 6.6 Hz, 1H), 3.95-3.78 (m, 2H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 145.5, 143.4, 136.0, 132.6, 130.0, 128.2, 128.1, 118.0, 113.0, 63.6, 53.9, 21.7. IR (ATR): 2956, 2871, 1607, 1592, 1087, 897, 614 cm⁻¹. HRMS (ESI): found: 342.0321, calcd. for C₁₆H₁₄ClNO₂S Na[M+Na]⁺:

1-((2-chloro-2-(4-nitrophenyl)ethyl)sulfonyl)-4-methylbenzene (3l).⁶ yield: 79%, white solid, melting point: 120-121 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.11 (d, *J* = 8.7 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 5.39 (t, *J* = 6.4 Hz, 1H), 3.97-3.81 (m, 2H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 148.0, 145.5, 145.2, 135.9, 130.0, 128.5, 128.1, 124.1, 63.6, 53.5, 21.6. IR (ATR): 2934, 2715, 1593, 1364, 1139, 1085, 774, 551 cm⁻¹. HRMS (ESI): found: 340.0409, calcd. for C₁₅H₁₅ClNO₂S [M+H]⁺: 340.0405.

1-((2-chloro-2-(4-(trifluoromethyl)phenyl)ethyl)sulfonyl)-4-methylbenzene (3m). yield: 57%, white solid, melting point: 115-116 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.53 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 8.7 Hz, 2H), 5.35 (t, *J* = 7.7 Hz, 1H), 3.99-3.84 (m, 2H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 145.2, 142.0, 135.9, 131.3 (q, *J* = 32.3 Hz), 129.8, 128.0, 127.8, 125.8 (q, *J* = 3.8 Hz), 63.7, 54.1, 21.3; ¹⁹F NMR (282 MHz, CDCl₃): δ -62.9 (s, 3F). IR (ATR): 2918, 2850, 1596, 1321, 1162, 1138, 1068, 912, 780, 548, 515 cm⁻¹. HRMS (ESI): found: 385.0248, calcd. for C₁₆H₁₄ClF₃O₂SNa [M+Na]⁺: 385.0247.

1-((2-chloro-2-(4-(trifluoromethoxy)phenyl)ethyl)sulfonyl)-4-methylbenzene (**3**n). yield: 61%, white solid, melting point: 100-101 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 7.08 (d, *J* = 7.1 Hz, 2H), 5.34 (t, *J* = 6.9 Hz, 1H), 3.97-3.82 (m, 2H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 145.1, 137.5, 135.9, 131.8 (d, *J* = 222.5 Hz), 129.9, 128.9, 128.4, 128.1, 122.9, 62.9, 53.8, 21.7; ¹⁹F NMR (282 MHz, CDCl₃): δ -57.8 (s, 3F). IR (ATR): 2879, 1733, 1596, 1319, 1140, 755, 548 cm⁻¹. HRMS (ESI): found: 401.0206, calcd. for C₁₆H₁₄ClF₃O₃SNa [M+Na]⁺: 401.0196.

4-(1-chloro-2-tosylethyl)-1,2-difluorobenzene (30). yield: 33%, white solid, melting point: 126-127 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.08-7.03 (m, 3H), 5.27 (t, *J* = 6.9 Hz, 1H), 3.93-3.76 (m, 2H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 148.8, 145.3, 143.2, 136.0, 135.4 (t, *J* = 4.3 Hz), 129.9, 128.1, 123.8 (d, *J* = 6.7, 3.8 Hz), 117.7 (d, *J* = 17.4 Hz), 116.5 (d, *J* = 17.9 Hz), 63.9, 53.8, 21.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -135.8 (d, *J* = 20.1 Hz, 1F), -136.1 (d, *J* = 20.1 Hz, 1F). IR (ATR): 2918, 1730, 1521, 1317, 1133, 755, 552 cm⁻¹. HRMS (ESI): found: 353.0184, calcd. for C₁₅H₁₃ClF₂O₂SNa [M+Na]⁺: 353.0185.

4-(1-chloro-2-tosylethyl)-1,2-dimethylbenzene (3p). yield: 95%, yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.00-6.96 (m, 3H), 5.27 (t, *J* = 6.9 Hz, 1H), 3.97-3.82 (m, 2H), 2.40 (s, 3H), 2.20 (s, 3H), 2.15 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.7, 137.9, 137.2, 136.3, 135.8, 130.0, 129.6, 128.2, 128.2, 124.7, 64.0, 55.2, 21.6, 19.7, 19.5. IR (ATR): 2879, 1733, 1596, 1319, 1140, 755, 548, 514 cm⁻¹. HRMS (ESI): found: 287.1105, calcd. for $C_{17}H_{19}O_2S$ [M-HCl+H]⁺: 287.1100.

2-(1-chloro-2-tosylethyl)naphthalene (3q).⁶ yield: 97%, white solid, melting point: 118-119 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.78-7.71 (m, 2H), 7.67 (d, *J* = 9.3 Hz, 2H), 7.52-7.47 (m, 4H), 7.30 (dd, *J* = 6.3, 1.5 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 2H), 5.50 (t, *J* = 7.1 Hz, 1H), 4.08-3.95 (m, 2H), 2.21 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.8, 135.9, 135.3, 133.4, 132.8, 129.5, 129.1, 128.1, 128.1, 127.6, 126.9, 126.7, 124.0, 63.8, 55.6, 21.4. IR (ATR): 2854, 1592, 1352, 1074, 782, 673 cm⁻¹. HRMS (ESI): found: 345.0717, calcd. for C₁₉H₁₈ClO₂S [M+H]⁺: 345.0711.

1-chloro-2-tosyl-2,3-dihydro-1H-indene (3r).⁶ yield: 90%, yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ 7.83 (d, *J* = 8.1 Hz, 2H), 7.35 (t, *J* = 8.0 Hz, 3H), 7.28 (d, *J* = 4.0 Hz, 2H), 7.20-7.19 (m, 1H), 5.70 (d, *J* = 4.7 Hz, 1H), 4.20-4.13 (m, 1H), 3.59-3.40 (m, 2H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 145.4, 140.3, 138.9, 134.8, 130.1, 129.7, 128.8, 128.1, 125.3, 124.6, 72.7, 60.6, 31.9, 21.7. IR (ATR): 2932, 2752, 1587, 1318, 1052, 814, 678 cm⁻¹. HRMS (ESI): found: 307.0559, calcd. for C₁₆H₁₆ClO₂S [M+H]⁺: 307.0554.

(1-chloro-2-(phenylsulfonyl)ethyl)benzene (4a).⁸ yield: 98%, white solid, melting point: 92-93 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.74 (d, *J* = 7.4 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.29-7.23 (m, 5H), 5.35 (t, *J* = 6.9 Hz, 1H), 4.01-3.83 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 139.2, 138.4, 133.8, 129.2, 129.2, 128.9, 128.1, 127.2, 64.1, 55.1. IR (ATR): 3063, 2961, 2926, 1599, 1407, 1319, 748, 552 cm⁻¹. HRMS (ESI): found: 281.0391, calcd. for C₁₄H₁₄ClO₂S [M+H]⁺: 281.0398.

1-bromo-2-((2-chloro-2-phenylethyl)sulfonyl)benzene (4b).⁵ yield: 57%, white solid, melting point: 87-88 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.84 (dd, *J* = 7.5, 1.9 Hz, 2H), 7.64 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.35-7.19 (m, 6H), 5.35 (t, *J* = 7.1 Hz, 1H), 4.37-4.21 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 138.3, 137.9, 135.1, 134.7, 132.1, 129.3, 128.9, 127.9, 127.2, 120.7, 61.2, 55.3. IR (ATR): 3077, 2831, 1597, 1365, 1142, 1095, 759, 528 cm⁻¹. HRMS (ESI): found: 358.9500, calcd. for C₁₄H₁₃BrClO₂S [M+H]⁺: 358.9504.

1-((2-chloro-2-phenylethyl)sulfonyl)-2-nitrobenzene (4c). yield: 65%, yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ 7.84 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.65 (dd, *J* = 6.9, 1.5 Hz, 1H), 7.33 (td, *J* = 6.6, 2.0 Hz, 2H), 7.26 (s, 2H), 7.21-7.19 (m, 3H), 5.35 (t, *J* = 7.1 Hz, 1H), 4.36-4.21 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 138.0, 134.9, 133.3, 132.6, 132.4, 129.5, 129.0, 127.3, 125.0, 64.4, 55.3. IR (ATR): 3032, 2935, 1595, 1303, 1144, 770, 553 cm⁻¹. HRMS (ESI): found: 326.0245, calcd. for C₁₄H₁₃ClNO₄S [M+H]⁺: 326.0248.

1-bromo-3-((2-chloro-2-phenylethyl)sulfonyl)benzene (4d).⁵ yield: 94%, yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ 7.80 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 2H), 7.32-7.26 (m, 6H), 5.35 (t, *J* = 7.1 Hz, 1H), 4.03-3.88 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 141.0, 137.9, 136.8, 131.1, 130.6, 129.5, 128.9, 127.2, 126.6, 123.1, 64.0, 55.0. IR (ATR): 3072, 2926, 1600, 1138, 915, 524 cm⁻¹. HRMS

(ESI): found: 358.9508, calcd. for C₁₄H₁₃BrClO₂S [M+H]⁺: 358.9503.

1-((2-chloro-2-phenylethyl)sulfonyl)-3-methylbenzene (4e).⁵ yield: 98%, white solid, melting point: 95-96 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.56 (d, *J* = 6.9 Hz, 1H), 7.47 (s, 1H), 7.34 (d, *J* = 7.5 Hz, 2H), 7.29-7.24 (m, 5H), 5.35 (t, *J* = 7.0 Hz, 1H), 4.00-3.84 (m, 2H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 139.4, 139.0, 138.4, 134.6, 129.2, 129.1, 128.8, 128.5, 127.2, 125.2, 64.0, 55.1, 21.2. IR (ATR): 2962, 2831, 1599, 1365, 1134, 685, 573 cm⁻¹. HRMS (ESI): found: 295.0554, calcd. for C₁₅H₁₆ClO₂S [M+H]⁺: 295.0554.

1-((2-chloro-2-phenylethyl)sulfonyl)-4-methoxybenzene (4f).⁵ yield: 97%, white solid, melting point: 97-98 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.65 (d, J = 8.9 Hz, 2H), 7.32-7.21 (m, 5H), 6.88 (d, J = 8.9 Hz, 2H), 5.31 (t, J = 6.9 Hz, 1H), 3.97-3.79 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz): δ 163.9, 138.7, 130.6, 130.4, 129.1, 128.9, 127.2, 114.4, 64.2, 55.7, 55.3. IR (ATR): 3003, 2927, 1594, 1262, 832, 765 cm⁻¹. HRMS (ESI): found: 333.0329, calcd. for C₁₅H₁₅ClNaO₃S [M+Na]⁺: 333.0323.

1-(tert-butyl)-4-((2-chloro-2-phenylethyl)sulfonyl)benzene (4g). yield: 95%, white solid, melting point: 110-111 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.61 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.27-7.22 (m, 5H), 5.35 (t, *J* = 6.9 Hz, 1H), 4.00-3.85 (m, 2H), 1.31 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz): δ 157.7, 138.4, 136.0, 129.1, 128.9, 127.9, 127.2, 126.1, 63.9, 55.2, 35.2, 31.0. IR (ATR): 2987, 1728, 1573, 1313, 1277, 1173, 806, 697, 565 cm⁻¹. HRMS (ESI): found: 375.0575, calcd. for C₁₈H₂₁ClO₂SK [M+K]⁺: 375.0582.

4-((2-chloro-2-phenylethyl)sulfonyl)-1,1'-biphenyl (4h).⁹ yield: 78%, white solid, melting point: 95-96 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.62-7.56 (m, 4H), 7.51-7.43 (m, 3H), 7.29-7.23 (m, 5H), 5.33 (t, *J* = 7.0 Hz, 1H), 4.01-3.83 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 146.7, 139.1, 138.4, 137.6, 129.2, 128.9, 128.8, 128.7, 127.7, 127.4, 127.3, 64.1, 55.2.

IR (ATR): 3062, 2925, 1595, 1173, 837, 692, 533 cm⁻¹. HRMS (ESI): found: 379.0532, calcd. for C₂₀H₁₇ClNaO₂S [M+Na]⁺: 379.0530.

1-((2-chloro-2-phenylethyl)sulfonyl)-4-fluorobenzene (4i).⁵ yield: 94%, white solid, melting point: 87-88 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.73 (q, J = 5.1 Hz, 2H), 7.33-7.21 (m, 5H), 7.08 (t, J = 8.5 Hz, 2H), 5.33 (t, J = 7.0 Hz, 1H), 4.01-3.83 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 165.8 (d, J = 254.9 Hz), 138.3, 135.2 (d, J = 3.1 Hz), 131.1 (d, J = 9.7 Hz), 129.3, 129.0, 127.2, 116.4 (d, J = 22.6 Hz), 64.2, 55.1; ¹⁹F NMR (282 MHz, CDCl₃): δ -103.0 (s, 1F). IR (ATR): 2989, 2937, 1592, 1492, 1233, 1138, 696 cm⁻¹. HRMS (ESI): found: 321.0127, calcd. for C₁₄H₁₂ClFNaO₂S [M+Na]⁺: 321.0127.

1-chloro-4-((2-chloro-2-phenylethyl)sulfonyl)benzene (4j).⁵ yield: 85%, white solid, melting point: 108-109 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.64 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.29-7.22 (m, 5H), 5.34 (t, *J* = 7.0 Hz, 1H), 4.01-3.84 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 140.6, 138.2, 137.6, 129.7, 129.4, 129.3, 129.0, 127.2, 64.1, 55.1. IR (ATR): 3067, 2827, 1599, 1457, 742, 518 cm⁻¹. HRMS (ESI): found: 336.9821, calcd. for C₁₄H₁₂Cl₂NaO₂S [M+Na]⁺: 336.9827.

1-((2-chloro-2-phenylethyl)sulfonyl)-4-iodobenzene (4k).⁵ yield: 94%, white solid, melting point: 103-104 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.78 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.31-7.26 (m, 5H), 5.35 (t, *J* = 7.0 Hz, 1H), 4.02-3.85 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 138.8, 138.4, 138.1, 129.5, 129.3, 129.0, 127.2, 101.9, 64.0, 55.0. IR (ATR): 2872, 1525, 1325, 775, 562 cm⁻¹. HRMS (ESI): found: 428.9187, calcd. for C₁₄H₁₂ClINaO₂S [M+Na]⁺: 428.9183.

4-((2-chloro-2-phenylethyl)sulfonyl)benzonitrile (4I).⁵ yield: 63%, white solid, melting point: 117-118 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.28-7.23 (m, 5H), 5.37 (t, *J* = 7.0 Hz, 1H), 4.08-3.90 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 143.2, 137.8, 132.8, 129.5, 129.1, 128.9, 127.3, 117.4, 117.1, 63.9, 54.6. IR (ATR): 2988, 1600, 1457, 1019, 596 cm⁻¹. HRMS (ESI): found: 306.0357, calcd. for C₁₅H₁₃ClNO₂S [M+H]⁺: 306.0350.

1-((2-chloro-2-phenylethyl)sulfonyl)-4-(trifluoromethyl)benzene (4m).⁶ yield: 90%, white solid, melting point: 116-117 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.26-7.20 (m, 5H), 5.36 (t, *J* = 7.2 Hz, 1H), 4.06-3.90 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 142.6, 137.8, 135.3 (q, *J* = 33.0 Hz), 129.4, 129.0, 128.8, 127.2, 126.2 (q, *J* = 3.7 Hz), 123.0 (q, *J* = 271.5 Hz), 63.9, 54.9; ¹⁹F NMR (282 MHz, CDCl₃): δ -63.3 (s, 3F). IR (ATR): 2988, 2830, 1603, 1326, 1138, 703, 546 cm⁻¹. HRMS (ESI): found: 349.0278, calcd. for C₁₅H₁₃ClF₃O₂S [M+H]⁺: 349.0271.

1-((2-chloro-2-phenylethyl)sulfonyl)-4-nitrobenzene (4n).⁶ yield: 97%, white solid, melting point: 87-88 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.23 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 8.9 Hz, 2H), 7.26-7.23 (m, 5H), 5.37 (t, *J* = 7.1 Hz, 1H), 4.09-3.90 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 150.7, 144.7, 137.8, 129.7, 129.5, 129.1, 127.3, 124.2, 64.1, 54.9. IR (ATR): 3062, 2936, 1581, 1321, 771, 633 cm⁻¹. HRMS (ESI): found: 326.0251, calcd. for C₁₄H₁₃ClNO₄S [M+H]⁺: 326.0248.

methyl 4-((2-chloro-2-phenylethyl)sulfonyl)benzoate (40).⁵ yield: 96%, white solid, Melting Point: 110-111 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.05 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 7.28-7.20 (m, 5H), 5.34 (t, J = 7.0 Hz, 1H), 4.04-3.86 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz): δ 165.4, 143.0, 138.1, 134.8, 130.2, 129.3, 129.0, 128.3, 127.2, 63.9, 55.0, 52.8. IR (ATR): 2984, 2940, 2832, 1726, 1459, 1327, 854 cm⁻¹. HRMS (ESI): found: 339.0458, calcd. for C₁₆H₁₆ClO₄S [M+H]⁺: 339.0452.

4-((2-chloro-2-phenylethyl)sulfonyl)-1,2-dimethoxybenzene (4p). yield: 97%, white solid, melting point: 126-127 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.37 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.27-7.21 (m, 5H), 7.13 (d, *J* = 1.8 Hz, 1H), 6.86 (d, *J* = 8.5 Hz, 1H), 5.31 (t, *J* = 6.9 Hz, 1H), 3.99-3.83 (m, 8H); ¹³C NMR (CDCl₃, 75 MHz): δ 153.5, 149.0, 138.6, 130.7, 129.1, 128.9, 127.2, 122.4, 110.7, 110.3, 64.3, 56.3, 56.2, 55.2. IR (ATR): 2931, 1586, 1507, 1260, 1126, 1017, 758, 696, 516 cm⁻¹. HRMS (ESI): found: 363.0428, calcd. for C₁₆H₁₇ClO₄SNa [M+Na]⁺: 363.0428.

2-((2-chloro-2-phenylethyl)sulfonyl)naphthalene (4q). yield: 95%, white solid, melting point: 120-121 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.25 (s, 1H), 7.87 (t, *J* = 8.1 Hz, 3H), 7.73 (d, *J* = 8.7 Hz, 1H), 7.67-7.56 (m, 3H), 7.23 (d, *J* = 7.1 Hz, 1H), 7.17-7.10 (m, 3H), 5.39 (t, *J* = 6.9 Hz, 1H), 4.09-3.92 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 138.3, 135.9, 135.3, 131.9, 130.4, 129.5, 129.5, 129.5, 129.2, 128.8, 127.9, 127.7, 127.2, 122.4, 63.9, 55.2. IR (ATR): 3060, 2976, 1594, 1313, 1123, 799, 548 cm⁻¹. HRMS (ESI): found: 331.0559, calcd. for C₁₈H₁₆ClO₂S [M+H]⁺: 331.0554.

2-((2-chloro-2-phenylethyl)sulfonyl)thiophene (4r).⁵ yield: 83%, yellow solid, melting point: 107-108 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.66 (dd, *J* = 4.9, 1.0 Hz, 1H), 7.48 (dd, *J* = 3.7, 1.1 Hz, 1H), 7.32-7.26 (m, 5H), 7.01 (td, *J* = 4.1, 0.7 Hz 1H), 5.36 (t, *J* = 6.9 Hz, 1H), 4.10-3.93 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 140.0, 138.5, 134.9, 134.7, 129.3, 129.0, 127.9, 127.2, 65.3, 55.1. IR (ATR): 3097, 3060, 2967, 2868, 1600, 1501, 1364, 854, 695 cm⁻¹. HRMS (ESI): found: 308.9782, calcd. for C₁₂H₁₁ClNaO₂S₂ [M+Na]⁺: 308.9781.

(1-chloro-2-(methylsulfonyl)ethyl)benzene (4s).⁵ yield: 78%, yellow oil. ¹H NMR (CDCl₃, 300 MHz): δ 7.42-7.36 (m, 5H), 5.38 (t, J = 6.1 Hz, 1H), 3.85 (dd, J = 15.2 Hz, 7.7 Hz, 1H), 3.64 (dd, J = 15.1 Hz, 5.9 Hz, 1H), 2.75 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 138.6, 129.6, 129.3, 127.2, 63.5, 55.6, 42.7. IR (ATR): 2967, 2868, 1600, 1501, 1364, 854, 695 cm⁻¹. HRMS (ESI): found: 219.0246, calcd. for C₉H₁₂ClO₂S [M+H]⁺: 219.0241.

General Procedure for Scale-up Reaction

For Chlorosulfonylation:

Tosyl chloride **2a** (20.0 mmol, 3.8 g), Cu(OTf)₂ (1.0 mol, 360 mg) and NaHCO₃ (11.0 mmol, 0.92 g) were weighed into a 100 mL Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 4-chlorostyrene **1j** (10.0 mmol, 1.39 g) in MeCN (50 mL) was added through the side-arm by syringe. The reaction was stirred under nitrogen at 100 °C for 7 h. After reaction, the mixture was cooled to room temperature. Volatile solvent and reagents were removed by rotary evaporation and the residue was purified by silica gel flash chromatography using petroleum ether/EtOAc (50:1 to 15:1) to afford the desired product **3j** as a white solid, got: 3.02 g, 92% yield.

Late-stage Modification of Bioactive Molecules

Procedures

For all the chlorosulfonylation reactions, follow the General Procedure for Chlorosulfonylation.

ethyl 2-(4-(4-(1-chloro-2-tosylethyl)benzoyl)phenoxy)-2-methylpropanoate (5a). yield: 77%, yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, *J* = 6.2 Hz, 2H), 7.58 (d, *J* = 5.7 Hz, 4H), 7.34 (d, *J* = 5.8 Hz, 2H), 7.19 (d, *J* = 5.8 Hz, 2H), 6.83 (d, *J* = 6.1 Hz, 2H), 5.35 (t, *J* = 5.0 Hz, 1H), 5.08-5.02 (m, 2H), 3.97-3.85 (m, 2H), 2.35 (s, 3H), 1.63 (s, 6H), 1.17 (d, *J* = 4.4 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.3, 173.0, 159.8, 145.2, 142.0, 138.7, 136.0, 132.0, 130.2, 130.0, 129.8, 128.1, 127.2, 117.2, 69.3, 63.7, 60.4, 54.5, 25.4, 21.6, 21.5. IR (ATR): 2985, 1713, 1597, 1280, 1141, 1101, 829, 763, 553 cm⁻¹. HRMS (ESI): found: 543.1596, calcd. for C₂₉H₃₂ClO₆S [M+H]⁺: 543.1603.

(8R,9S,13S,14S)-3-(1-chloro-2-tosylethyl)-13-methyl-6,7,8,9,11,12,13,14,15,16decahydro-17H-cyclopenta[a]phenanthren-17-one (5b). yield: 77%, dr = 1:1, white solid, melting point: 118-119 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.60-7.56 (m, 2H), 7.21-7.14 (m, 3H), 7.04-7.02 (m, 1H), 6.92 (s, 1H), 5.27-5.23 (m, 1H), 3.96-3.81 (m, 2H), 2.88-2.64 (m, 2H), 2.53-2.21 (m, 6H), 2.19-1.94 (m, 4H), 1.17 (d, J = 4.4 Hz, 6H), 0.89 (d, J = 2.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 220.6, 144.6, 140.9, 137.1, 136.3, 135.8, 135.8, 129.6, 128.2, 127.6, 125.9, 124.6, 63.9, 55.1, 55.0, 50.4, 47.9, 44.4, 38.0, 37.9, 35.8, 31.5, 29.2, 26.3, 25.6, 25.6, 21.7, 21.6, 21.6, 13.8. IR (ATR): 2928, 1736, 1711, 1317, 1219, 1137, 1085, 773, 551, 515 cm⁻¹. HRMS (ESI): found: 493.1565, calcd. for C₂₇H₃₁ClO₃SNa [M+Na]⁺: 493.1575.

(3aS,5S,6aS)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 4-(1-chloro-2-tosylethyl)benzoate (5c). yield: 95%, dr = 1:1, white solid, melting point: 120-121 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.37-7.33 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 5.91 (d, *J* = 3.2 Hz, 1H), 5.45 (s, 1H), 5.32 (t, *J* = 6.8 Hz, 1H), 4.58 (d, *J* = 2.8 Hz, 1H), 4.35-4.24 (m, 2H), 4.09-4.04 (m, 2H), 3.93-3.78 (m, 2H), 2.36 (d, *J* = 6.4 Hz, 3H), 1.52 (s, 3H), 1.38 (s, 3H), 1.28 (s, 3H), 1.23 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 164.4, 164.4, 145.3, 145.2, 143.9, 143.6, 136.0, 135.9, 130.3, 130.2, 130.1, 129.9, 129.9, 128.2, 128.1, 127.6, 127.5, 112.4, 109.5, 109.4, 105.1, 105.1, 83.3, 79.9, 79.9, 76.9, 72.5, 72.5, 67.3, 67.3, 63.6, 63.5, 54.2, 26.9, 26.7, 26.2, 25.3, 21.6, 21.6. IR (ATR): 2987, 1716, 1267, 1217, 1085, 1016, 773, 554, 514 cm⁻¹. HRMS (ESI): found: 603.1417, calcd. for C₂₈H₃₃ClO₉SNa [M+Na]⁺: 603.1426.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-(1-chloro-2-tosylethyl)benzoate (5d). yield: 68%, white solid, melting point: 128-129 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 5.43 (d, *J* = 3.9 Hz, 1H), 5.35 (t, *J* = 7.2 Hz, 1H), 4.90-4.82 (m, 1H), 3.94 (dd, *J* = 14.7, 6.4 Hz, 1H), 3.85 (dd, *J* = 14.7, 7.6 Hz, 1H), 2.46 (d, *J* = 7.7 Hz, 2H), 2.40 (s, 3H), 2.05-1.75 (m, 6H), 1.61-1.46 (m, 6H), 1.34-0.99 (m, 17H), 0.93 (d, *J* = 6.5 Hz, 3H), 0.88 (dd, *J* = 6.6, 1.8 Hz, 6H), 0.70 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.1, 145.1, 142.8, 139.5, 136.0, 131.5, 130.1, 129.8, 128.2, 127.2, 123.0, 74.9, 63.8, 56.7, 56.2, 54.4, 50.1, 42.3, 39.8, 39.5, 38.2, 37.0, 36.7, 36.2, 35.8, 32.0, 31.9, 29.7, 29.4, 28.3, 28.0, 27.9, 24.3, 23.9, 22.9, 22.7, 22.6, 21.6, 21.1, 19.4, 18.8, 11.9. IR (ATR): 2936, 1706, 1275, 1138, 903, 758, 557 cm⁻¹. HRMS (ESI): found: 745.3446, calcd. for C₄₃H₅₉ClO₄SK [M+K]⁺: 745.3454.

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl 4-(1-chloro-2-tosylethyl)benzoate (5e). yield: 64%, white solid, melting point: 115-116 °C. ¹H NMR (CDCl₃, 300 MHz): δ 8.10 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 15.4 Hz, 1H), 7.29-7.26 (m, 3H), 7.00-6.95 (m, 2H), 5.40 (t, J = 7.0 Hz, 1H), 3.97 (dd, J = 14.7, 6.5 Hz, 1H), 3.88 (dd, J = 14.7, 7.5 Hz, 1H), 2.97-2.94 (m, 2H), 2.57-2.44 (m, 5H), 2.37-2.31 (m, 1H), 2.23 -1.98 (m, 4H), 1.70 -1.46 (m, 6H), 0.94 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 220.8, 164.6, 148.7, 145.2, 143.8, 138.2, 137.7, 136.0, 130.7, 130.3, 129.9, 128.2, 127.5, 126.6, 121.6, 118.7, 63.8, 54.3, 50.5, 48.0, 44.2, 38.0, 35.9, 31.6, 29.5, 26.4, 25.8, 21.7, 21.6, 13.9. IR (ATR): 2923, 1735, 1321, 1139, 1069, 914, 762, 553 cm⁻¹. HRMS (ESI): found: 629.1517, calcd. for C₃₄H₃₅ClO₅SK [M+K]⁺: 629.1525.

((2-chloro-2-(4-((((1R,2S,5R)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)phenyl)ethyl)sulfonyl)-4-methylbenzene (5f). yield: 73%, white solid, melting point: 89-90 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.65 (d, *J* = 8.1 Hz, 2H), 7.31-7.20 (m, 6H), 5.34 (t, *J* = 6.8 Hz, 1H), 4.64 (d, *J* = 11.8 Hz, 1H), 4.37 (d, *J* = 11.7 Hz, 1H), 3.96 (dd, *J* = 14.7, 6.9 Hz, 1H), 3.84 (dd, *J* = 14.8, 6.8 Hz, 1H), 3.19 (td, *J* = 10.4, 3.8 Hz, 1H), 2.43 (s, 3H), 2.30-2.18 (m, 2H), 1.70-1.64 (m, 2H), 1.36-1.29 (m, 1H), 1.02-0.89 (m, 10H), 0.76 (dd, *J* = 6.8, 2.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.9, 140.5, 140.5, 137.6, 137.6, 136.2, 129.8, 128.2, 128.1, 128.0, 127.1, 79.2, 79.1, 69.8, 69.7, 64.2, 55.0, 48.4, 40.3, 34.6, 31.6, 25.6, 23.3, 22.4, 21.6, 21.0, 16.2. IR (ATR): 2923, 2868, 1713, 1598, 1320, 1138, 1085, 812, 552 cm⁻¹. HRMS (ESI): found: 485.1914, calcd. for C₂₈H₃₃ClO₉SNa [M+Na]⁺: 485.1888.

Mechanistic Study

Scheme 1 Radical capture experiments

Procedures:

(a) TEMPO

Tosyl chloride **2a** (0.4 mmol, 76.3 mg, 2.0 equiv.), $Cu(OTf)_2$ (7.2 mg, 10 mol%, 0.1 equiv.), **TEMPO** (93.8 mg, 0.6 mmol, 3.0 equiv.) and NaHCO₃ (0.22 mmol, 18.5 mg, 1.1 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then styrene **1a** (0.2 mmol, 20.8 mg, 1.0 equiv.) in MeCN (1.5 mL) was added through the side-arm by syringe. The reaction was stirred under nitrogen at 100 °C for 4 h. After reaction, the mixture was cooled to room temperature. It was extracted with EtOAc and the solvent was then removed by rotary evaporation and the residue was submitted to ¹H NMR (0.2 mmol CH₂Br₂ was added as an internal standard).

(b) BHT

Tosyl chloride **2a** (0.4 mmol, 76.3 mg, 2.0 equiv.), $Cu(OTf)_2$ (7.2 mg, 10 mol%, 0.1 equiv.), **BHT** (44.1 mg, 0.2 mmol, 1.0 equiv.) and NaHCO₃ (0.22 mmol, 18.5 mg, 1.1 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then styrene **1a** (0.2 mmol, 20.8 mg, 1.0 equiv.) in MeCN (1.5 mL) was added through the side-arm by syringe. The reaction was stirred under nitrogen at 100 °C for 4 h. After reaction, the mixture was cooled to room temperature. Volatile solvent and reagents were removed by rotary evaporation and the residue was purified by silica gel flash chromatography using petroleum ether/EtOAc (50:1 to 15:1) to directly afford the chlorosulfonylation product **3a** (4.8 mg, 8% yield) and the BHT-adduct **6a** (24 mg, 32% yield).

2,6-di-*tert*-**butyl-4-(tosylmethyl)phenol (6a)**.¹⁰ yield: 32%, yellow solid, melting point: 106-107 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 6.73 (s, 2H), 5.24 (s, 1H), 4.20 (s, 2H), 2.40 (s, 3H), 1.32 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz): δ 154.2, 144.3, 136.0, 134.9, 129.3, 128.9, 127.7, 119.0, 63.4, 34.1, 30.1, 21.5. IR (ATR): 3415, 2816, 2546, 1594, 1325, 889, 673 cm⁻¹. HRMS (ESI): found: 375.1987, calcd. for C₂₂H₃₁O₃S [M+H]⁺: 375.1988.

Scheme 2 Carbon cation capture experiment

Procedures:

Tosyl chloride **2a** (0.4 mmol, 76.3 mg, 2.0 equiv.), $Cu(OTf)_2$ (7.2 mg, 10 mol%, 0.1 equiv.), **KBr** (47.6 mg, 0.4 mmol, 2.0 equiv.) and NaHCO₃ (0.22 mmol, 18.5 mg, 1.1 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then styrene **1a** (0.2 mmol, 20.8 mg, 1.0 equiv.) in MeCN (1.5 mL) was added through the side-arm by syringe. The reaction was stirred under argon at 100 °C for 4 h. After reaction, the mixture was cooled to room

temperature. It was extracted with EtOAc and the solvent was then removed by rotary evaporation and the residue was submitted to ¹H NMR The ratio of the products **3a** and **3a'** were detected as **3a** : **3a'** = 1 : 1.

Scheme 3 From sulfonylation product to chlorosulfonylation product

Procedures:

(*E*)-1-methyl-4-(styrylsulfonyl)benzene **7a** (0.2 mmol, 65.9 mg, 1.0 equiv.), Cu(OTf)₂ (7.2 mg, 10 mol%, 0.1 equiv.), and NaHCO₃ (0.6 mmol, 50.4 mg, 3.0 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then MeCN (1.5 mL) was added through the side-arm by syringe. The reaction was stirred under nitrogen at 100 °C for 4 h. After reaction, the mixture was cooled to room temperature. It was extracted with EtOAc and the solvent was then removed by rotary evaporation and the residue was submitted to ¹H NMR, no product **3a** was detected.

Procedures:

1-chloro-4-(1-chloro-2-tosylethyl)benzene **3j** (0.2 mmol, 65.9 mg, 1.0 equiv.), KBr (0.4 mmol, 47.6 mg, 2.0 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then MeCN (1.5 mL) was added through the side-arm by syringe. The reaction was stirred under nitrogen at 100 °C for 4 h. After reaction, the mixture was cooled to room temperature. It was extracted with EtOAc and the solvent was then removed by rotary evaporation and the residue was submitted to ¹H NMR, no product **3j'** was detected.

LLX-KBr LLX-KBr-H

References

- (1) Wan, C.; Song, R. -J.; Li, J. -H. Org Lett. **2019**, *21*, 2800–2803.
- (2) Menon, S.; Ongungal, R. M.; Das, S. Macromol. Chem. Phys. 2014, 215, 2365–2373.
- (3) Liu, Z. -S., Hua, Y.; Gao, Q.; Ma, Y.; Tang, H.; Shang, Y.; Cheng, H.-G.; Zhou, Q. *Nat. Catal.* **2020**, *3*, 727–733.
- (4) Tang, M.; Han, S.; Huang, S.; Huang, S.; Xie, L.-G. Org Lett. 2020, 22, 9729–9734.
- (5) Alkan-Zambada, M.; Hu, X. J. Org. Chem. 2019, 84, 4525–4533.
- (6) Hossain, A.; Engl, S.; Lutsker, E.; Reiser, O. ACS Catalysis. 2018, 9, 1103–1109.
- (7) Zeng, K.; Chen, L.; Chen, Y.; Liu, Y.; Zhou, Y.; Au, C. -T.; Yin, S. -F. Adv. Synth. Catal. 2017, 359, 841–847.
- (8) Engl, S.; Reiser, O. Eur. J. Org. Chem. 2020, 1523–1533.
- (9) Niu, T. -f.; Lin, D.; Xue, L. -s.; Jiang, D. -y.; Ni, B. -q. Synlett 2018, 29, 364–368.
- Wang, L.-J.; Chen, J.-M.; Dong, W.; Hou, C.-Y.; Pang, M.; Jin, W.-B.; Dong, F.-G.;
 Xu, Z.-D.; Li, W. J. Org. Chem. 2019, 84, 8691–8701.

NMR Spectra Images of Products

LLX-I-123-1 19F AGAIN

LLX-I-150-2-F

-135.7765 -135.8509 -136.0584 -136.1328

138.0127 134.8571 133.5525 132.6026 132.4759 129.4759 129.0109 124.9670

LLX-I-143-5-F

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

LLX-II-6-2

