Supporting Information

α-Oxygenation of N-Aryl/Alky Heterocyclic Compounds via Ruthenium-Photocatalysis

Inder Kumar,^{a,b} Ankit Thakur, ^{a,b} Manisha ^{a,b} and Upendra Sharma^{a,b,*}

^aChemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

*E-mail: upendra@ihbt.res.in; upendraihbt@gmail.com

Web page: http://www.ihbt.res.in/php/cv/sctInfo.php?id=34049

Table of Contents

1. Gene	SI2						
2. Phote	2. Photocatalyzed benzylic C-H bond oxidation of N-aryl/alky						
tetra	hydroisoquinolines						
2.1	General procedure	SI2-SI3					
2.2	Experimental set-up	SI3					
2.3	Optimization table	SI3					
2.4	Characterization data	SI4-SI7					
3. Mecl	SI7-SI19						
4. NMR Spectra of synthesized products		SI20-SI25					
5. References		<i>SI26</i>					

1. General consideration

Reagent Information: Unless otherwise stated, all reactions were carried out under oxygen atmosphere in screw cap reaction vials. All solvents were bought from Sigma Aldrich in sure-seal bottles and used as such. Chemicals were bought from Sigma Aldrich, Alfa-aesar and TCI. For column chromatography, silica gel (230-400 mesh) from Merck was used. A gradient elution using *n*-hexane and ethyl acetate was performed based on Merck aluminium TLC sheets (silica gel $60F_{254}$).

Analytical information: The melting points were recorded on a Barnstead Electro Thermal 9100. All isolated compounds were characterized by ¹H NMR, ¹³C NMR, LC-MS. In addition, all the compounds were further characterized by HRMS. Mass spectra were recorded on Water Q-ToF-Micro Micromass. Copies of ¹H, ¹³C NMR can be found in the NMR supporting information.

Nuclear magnetic resonance spectra were recorded either on a Bruker-Avance 600 or 300MHz instrument. All ¹H NMR experiments are reported in units, parts per million (ppm) and were measured relative to the signals for residual chloroform (7.26), acetone (2.05), pyridine (7.22) and methanol (3.31) in the deuterated solvents. All ¹³C NMR spectra were reported in ppm relative to deuterated chloroform (77.16), acetone (29.84), pyridine (135.91) and methanol (49.00) and all were obtained with ¹H decoupling. Optimization studies were done by ¹H NMR and NMR yield were calculated by using tetrachloroethane as an internal standard.

2. Photocatalyzed benzylic C-H bond oxidation of N-aryl/alky tetrahydroisoquinolines

2.1. General procedure for the photocatalytic oxidation: To an oven-dried screw cap reaction vial charged with a spin vane magnetic stir-bar, 2-phenyl-1,2,3,4-tetrahydroisoquinoline (41.8 mg, 0.2 mmol), Ru(bpy)₃Cl₂.6H₂O photocatalyst (3.0 mg, 0.002 mmol) were added. To this MeCN (1.0 mL, 0.2 M) and 1,8-diazabicyclo[5.4.0]undec-7-ene (29.9 μ L, 0.2 mmol) were added. The reaction vial was closed with screw cap, purged with oxygen for one minute and kept

for stirring under 34W blue LED light at room temperature for 24 h. After completion, reaction mixture was diluted with ethyl acetate and purified by flash chromatography using silica gel (230-400 mesh size) as stationary phase and *n*-hexane: EtOAc as eluent.

2.2. Experimental setup

Experimental setup used for carrying out iridium photocatalyzed unsymmetrical coupling of 2methylquinolines is shown in figure S1. Here we used two Kessil LED Photoredox Light PR160 470 nm for photo irradiation. Figure shows only one reaction vial under irradiation, however we used six reaction vials at a time under this setup at 0.2 mmol scale.

Figure S1: Experimental setup for 0.2 mmol scale reaction.

2.3. Table S1: Optimization study.	
---	--

Entry	Catalyst (2.0 mol%)	Base (1.0 equiv.)	hv (LED light)	Solvent (0.05 M)	Time (hrs)	NMR Yield ^b (%)
1	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	MeOH	24	traces
2	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	DCM	24	54
3	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	1,4- Dioxane	24	22
4	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	CHCl ₃	24	45
5	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	DCE	24	41
6	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	H_2O	24	traces
7	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	THF	24	78
8	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DBU	Blue Light	DMSO	24	74
9	Ru(bpy) ₃ Cl ₂ .6H ₂ O	Na ₂ CO ₃	Blue Light	ACN	24	18
10	Ru(bpy) ₃ Cl ₂ .6H ₂ O	NaOAc	Blue Light	ACN	24	26
11	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DABCO	Blue Light	ACN	24	91
12	Ru(bpy) ₃ Cl ₂ .6H ₂ O	-	Blue Light	ACN	24	traces

2.4. Characterization data

2-Phenyl-3,4-dihydroisoquinolin-1(2H)-one¹ (Table 2, entry **2a**), White solid (42.3 mg, 95%) melting point: 94-95°C, ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 7.8 Hz, 1H), 7.46-7.48 (m, 1H), 7.37-7.46 (m, 5H), 7.24-7.27 (m, 2H), 3.99-4.01 (m, 2H), 3.14-3.16 (m, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 164.3, 143.3, 138.4, 132.2, 129.9, 129.0, 128.9, 127.3, 127.1, 126.4, 125.5, 49.5, 28.8. HRMS (EI) m/z calculated for C₁₅H₁₄NO [M+H]⁺ 224.1070, found: 224.1075.

2-(o-Tolyl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, **2b**), Yellow liquid (35.2 mg, 74%), ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.36-7.39 (m, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.22-7.25 (m, 2H), 7.17 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 7.8 Hz, 1H), 3.97-3.99 (m, 2H), 3.14 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 164.4,

143.2, 138.9, 138.4, 132.1, 129.9, 128.9, 128.9, 127.3, 127.3, 127.1, 126.3, 122.4, 49.6, 28.8, 21.5. HRMS (EI) m/z calculated for $C_{16}H_{16}NO$ [M+H]⁺ 238.1226, found: 238.1216.

2-(m-Tolyl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, 2c), Yellow Solid (40.8 mg, 86%),

melting point: 96-98°C, ¹H NMR (600 MHz, CDCl₃) δ 8.15-8.17 (m, 1H), 7.45-7.48 (m, 1H), 7.38 (td, J = 7.8, 1.2 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.22-7.25 (m, 2H), 7.16-7.18 (m, 1H), 7.08 (d, J = 7.8 Hz, 1H), 3.96-3.98 (m, 2H), 3.13-3.15 (m, 2H), 2.38 (s, 3H). ¹³C{¹H}

NMR (151 MHz, CDCl₃) δ 164.3, 143.2, 138.9, 138.4, 132.1, 129.9, 128.9, 128.9, 127.29, 127.28, 127.0, 126.3, 49.6, 28.8, 21.5. HRMS (EI) m/z calculated for C₁₆H₁₆NO [M+H]⁺ 238.1226, found: 238.1218.

2-(p-Tolyl)-3,4-dihydroisoquinolin-1(2H)-one² (Table 2, 2d), Yellow Solid (44.1 mg, 93%) melting point: 84-84°C, ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.2 Hz, 1H), 7.45 – 7.47 (m, 1H), 7.36 – 7.38 (m, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.21 – 7.24 (m, 3H), 3.96 (t, J = 6.6 Hz, 2H), 3.12 – 3.14 (m, 2H), 2.37 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 164.3, 140.7, 138.4,

136.2, 132.0, 129.9, 129.7, 128.8, 127.3, 127.0, 125.3, 49.6, 28.8, 21.2. HRMS (EI) m/z calculated for $\rm C_{16}H_{16}NO~[M+H]^+$ 238.1226, found: 238.1211.

2-(4-Methoxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one¹ (Table 2, **2e**), Yellow solid (44.6 mg, 88%), melting point: 98-99°C, ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 7.2 Hz, 1H), 7.44-7.47 (m, 1H), 7.36-7.38 (m, 1H), 7.28-7.31 (m, 2H), 7.23 (d, J = 7.2 Hz, 1H), 6.92-6.95 (m, 2H), 3.94 (t, J = 6.6 Hz, 2H), 3.82 (s, 3H), 3.13 (t, J = 6.6 Hz, 2H). ¹³C{¹H} NMR (151 MHz,

CDCl₃) δ 164.5, 157.9, 138.4, 136.2, 132.0, 129.9, 128.8, 127.2, 127.0, 126.8, 114.3, 55.6, 49.8, 28.7. HRMS (EI) m/z calculated for C₁₆H₁₆NO₂ [M+H]⁺ 254.1176, found 254.1177.

2-(4-Acetylphenyl)-3,4-dihydroisoquinolin-1(2H)-one² (Table 2, **2f**), White solid (46.0 mg, 87%), melting point: 156-157°C, ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 9.0 Hz, 2H), 7.45-7.48 (m, 1H), 7.35-7.38 (m, 1H), 7.24 (d, J = 7.2 Hz, 1H), 4.00-4.02 (m, 2H), 3.14 (t, J = 6.6 Hz, 2H), 2.58 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 197.2, 164.1, 147.3, 138.3,

134.3, 132.5, 129.3, 129.1, 128.9, 127.3, 127.1, 124.6, 49.0, 28.5, 26.6. HRMS (EI) m/z calculated for $C_{17}H_{16}NO_2$ [M+H]⁺ 266.1176, found: 266.1187.

152.1, 148.2, 140.8, 135.9, 132.2, 129.5, 125.3, 122.4, 111.0, 109.3, 56.2, 56.1, 49.8, 28.3, 21.1. HRMS (EI) m/z calculated for $C_{18}H_{20}NO_3$ [M+H]⁺ 298.1438, found: 298.1440.

157.8, 152.1, 148.1, 136.4, 132.1, 126.7, 122.4, 114.3, 110.9, 109.3, 56.17, 56.16, 55.6, 50.0, 28.4. HRMS (EI) m/z calculated for $C_{18}H_{20}NO_4$ [M+H]⁺ 314.1387, found: 314.1384.

7-Bromo-2-(p-tolyl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, **2i**), White solid (52.3 mg, 83%) melting point: 108-109°C, ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 1.8 Hz, 1H), 7.55-7.56 (m, 1H), 7.21-7.25 (m, 4H), 7.12 (d, J = 8.4 Hz, 1H), 3.93-3.95 (m, 2H), 3.06-3.08 (m, 2H), 2.36 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 163.0, 140.3, 137.2, 136.4, 134.8, 131.6, 131.6, 129.7, 128.8, 125.2, 121.0, 49.4, 28.2, 21.1.

HRMS (EI) m/z calculated for C₁₆H₁₅BrNO [M+H]⁺ 316.0332, found: 316.0315.

2-(Pyrimidin-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, **2j**), Yellow liquid (34.7 mg, 77%), ¹H NMR (600 MHz, CDCl₃) δ 8.75 (d, J = 4.8 Hz, 2H), 8.25 (d, J = 7.8 Hz, 1H), 7.48 (td, J = 7.5, 1.1 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.11 (t, J = 4.8 Hz, 1H), 4.26 (m, 1H), 3.15 (t, J = 6.3 Hz, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 164.67, 160.98, 158.08, 139.24,

132.72, 129.54, 129.43, 127.28, 117.54, 46.92, 28.64. HRMS (EI) m/z calculated for C₁₃H₁₂N₃O [M+H]⁺ 226.0975, found: 226.0978.

2-(Quinolin-6-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, 2k), White solid (51 mg, 93%) melting point: 145-146°C, ¹H NMR (600 MHz, Acetone- d_6) δ 8.88 (dd, J = 4.2, 1.8 Hz, 1H), 8.30 (dd, J = 8.4, 1.2 Hz, 1H), 8.08 (dd, J =7.8, 1.2 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.92 (dd, J = 9.0, 2.4 Hz, 1H), 7.53-7.55 (m, 1H), 7.50 (dd, J = 8.4,

4.2 Hz, 1H), 7.40-7.43 (m, 1H), 7.38 (d, J = 7.2 Hz, 1H), 4.19 (t, J = 6.6 Hz, 2H), 3.25 (t, J = 6.6 Hz, 2H). ¹³C{¹H} NMR (151 MHz, Acetone- d_6) δ 164.5, 151.1, 147.4, 142.8, 140.2, 136.44, 133.0, 130.7, 130.1, 129.4, 129.3, 129.1, 128.2, 127.8, 123.1, 122.4, 50.2, 29.2. HRMS (EI) m/z calculated for C₁₈H₁₅N₂O [M+H]⁺ 275.1179, found: 275.1179.

2-(Pyridin-2-yl)-3,4-dihydroisoquinolin-1(2H)-one¹ (Table 2, entry **2l**), Yellow solid (40.8 mg, 91%) melting point: $62-63^{\circ}$ C,¹H NMR (600 MHz, CDCl₃) δ 8.43-8.44 (m, 1H), 8.18 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.69-7.72 (m, 1H), 7.45-7.49 (m, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.24 (d, J = 7.2 Hz, 1H), 7.07-7.09 (m, 1H), 4.29 (t, J = 6.6 Hz, 1H), 3.10 (t, J = 6.6 Hz, 1H). ¹³C{¹H}

NMR (151 MHz, CDCl₃) δ 164.8, 154.2, 147.7, 139.2, 137.0, 132.5, 129.8, 129.0, 127.2, 127.1, 120.3, 45.8, 28.6. HRMS (EI) m/z calculated for C₁₄H₁₃N₂O [M+H]⁺ 225.1022, found: 225.1004.

Tert-butyl 3-(1-oxo-3,4-dihydroisoquinolin-2(1H)-yl)propanoate (Table 2, entry 2m), Colourless

liquid (33.7 mg, 61%), ¹H NMR (600 MHz, CDCl₃) δ 8.04-8.05 (m, 1H), 7.38-7.41 (m, 1H), 7.30-7.33 (m, 1H), 7.15 (d, *J* = 7.2 Hz, 1H), 3.78 (t, *J* = 6.6 Hz, 2H), 3.62-3.64 (m, 2H), 2.96 (t, *J* = 6.6 Hz, 2H), 2.62 (t, *J* = 6.6 Hz, 2H), 1.42 (s, 9H). ¹³C{¹H} NMR (151 MHz, 151 MHz)

CDCl₃) δ 171.6, 164.6, 138.3, 131.7, 129.6, 128.2, 127.1, 127.0, 80.9, 47.4, 44.4, 34.5, 28.4, 28.2. HRMS (EI) m/z calculated for C₁₆H₂₂NO₃ [M+H]⁺ 276.1594, found: 276.1595.

Benzyl 3-(1-oxo-3,4-dihydroisoquinolin-2(1H)-yl)propanoate (Table 2, entry **2n**), Colourless liquid (52.5 mg, 85%), ¹H NMR (600 MHz, CDCl₃) δ 8.04-8.06 (m, 1H), 7.37-7.41 (m, 1H), 7.29-7.33 (m, 6H), 7.14 (d, J = 7.8 Hz, 1H), 5.12 (s, 1H), 3.83 (t, J = 6.6 Hz, 1H), 3.57 (t, J = 6.6 Hz, 2H), 2.88 (t, J = 6.6 Hz, 2H), 2.78 (t, J = 6.6 Hz, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 172.1, 164.7, 138.3, 135.8, 131.8, 129.4, 128.6, 128.41, 128.38, 128.2, 127.1, 127.0, 66.9, 47.5, 44.5, 33.3, 28.3. HRMS (EI) m/z calculated for C₁₉H₂₀NO₃ [M+H]⁺ 310.1438, found: 310.1440.

2-Isopropyl-3,4-dihydroisoquinolin-1(2H)-one⁴ (Table 2, entry **20**), Yellow resin (31 mg, 82%), ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 7.8 Hz, 1H), 7.38 (td, J = 7.2, 1.2 Hz, 1H), 7.30-7.33 (m, 1H), 7.15 (d, J = 7.2 Hz, 1H), 5.05-5.12 (m, 1H), 3.42 (t, J = 6.6 Hz, 2H), 2.91-2.93 (m, 2H), 1.19 (s, 3H), 1.18 (s, 3H). ¹C{¹H} NMR (151 MHz, CDCl₃) δ 163.8, 137.8, 131.4, 130.1, 128.4,

127.0, 126.7, 43.7, 38.8, 28.5, 19.8. HRMS (EI) m/z calculated for C₁₂H₁₆NO [M+H]⁺ 190.1226, found: 190.1221.

2-Butvl-3,4-dihvdroisoquinolin-1(2H)-one⁵ (Table 2, entry 2p), Yellow liquid (40 mg, 91%), ¹H

NMR (600 MHz, CDCl₃) δ 8.04-8.06 (m, 1H), 7.37 (td, J = 7.2, 1.2 Hz, 1H), 7.28-7.31 (m, 1H), 7.13 (d, J = 7.2 Hz, 1H), 3.50-3.55 (m, 4H), 2.93-2.96 (m, 2H), 1.56-1.61 (m, 2H), 1.33-1.39 (m, 2H), 0.92-0.94 (m, 3H).¹³C{¹H} NMR (151 MHz, CDCl₃) δ 164.3, 138.0, 131.4, 129.8,

128.2, 127.0, 126.8, 77.2, 47.2, 46.1, 29.9, 28.2, 20.2, 13.9. HRMS (EI) m/z calculated for C13H18NO [M+H]⁺ 204.1383, found: 204.1386. HRMS (EI) m/z calculated for C13H18NO [M+H]⁺ 204.1383, found: 204.1386.

2-Benzyl-3,4-dihydroisoquinolin-1(2H)-one¹ (Table 2, entry 2q), Yellow resin (40.8 mg, 86%),

¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.39-7.42 (m, 1H), 7.31-7.36 (m, 5H), 7.27 (t, J = 7.2 Hz, 1H), 7.15 (d, J = 7.8 Hz, 1H), 4.80 (s, 2H), 3.46-3.48 (m, 2H), 2.91-2.93 (m, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃) & 164.6, 138.1, 137.5, 131.7, 129.4, 128.6, 128.4,

128.0, 127.4, 127.0, 126.9, 50.4, 45.4, 28.1. HRMS (EI) m/z calculated for $C_{16}H_{16}NO [M+H]^+$ 238.1226, found: 238.1210.

N,N-dimethyl-4-((trifluoromethyl)thio)benzamide (Table 2, entry 2r) Colourless resin (26.8 mg,

54% yield),1H NMR (600 MHz, CDCl3) δ 7.69 (d, J = 7.8 Hz, 2H),

N-Me 7.46 (d, J = 7.8 Hz, 2H), 3.12 (s, 3H), 2.97 (s, 3H). 13C{1H} NMR $(151 \text{ MHz, CDCl}_3) \delta 170.4, 138.9, 136.3, 130.6, 128.5, 128.2, 128.0,$ 126.0, 124.8, 39.6, 35.5. HRMS (EI) m/z calculated for C₁₀H₁₁F₃NOS

[M+H]⁺ 250.0508, found: 250.0496.

3. **Mechanistic Study**

3.1 Radical Quenching Experiments

To three oven-dried screw cap reaction vials charged with a spin vane magnetic stir-bar, 2phenyl-1,2,3,4-tetrahydroisoquinoline (20.9 mg, 0.1 mmol), Ru(bpy)₃Cl₂.6H₂O photocatalyst (1.5 mg, 0.002 mmol) were added. To this MeCN (0.5 mL, 0.2 M) and 1,8diazabicyclo[5.4.0]undec-7-ene (14.9 µL, 0.1 mmol) were added. After this, TEMPO (2, 2, 6, 6tetramethylpiperidine N-oxide), BHT (bultylated hydroxytoluene) and benzoquinone (2.0 equivalents of each) were added to these reaction vials separately. The reaction vial was closed with screw cap, purged with oxygen for one minute and kept for stirring under 34W blue LED light at room temperature for 24 h. After completion, the reactions were dried over rotary evaporator and crude reactions were analyzed with the help of NMR using tetrachloroethane as an internal standard.

Figure S2. Radical quenching experiment with TEMPO (2,2,6,6-tetramethylpiperidine N-oxide)

Figure S3. Radical quenching experiment with BHT (butylated hydroxy toluene)

Figure S4. Radical quenching experiment with benzoquinone

3.2 ¹⁸O-Labelling Experiment

To an oven-dried screw cap reaction vial charged with a spin vane magnetic stir-bar, 2-phenyl-1,2,3,4-tetrahydroisoquinoline (20.9 mg, 0.1 mmol), Ru(bpy)₃Cl₂.6H₂O photocatalyst (1.5 mg, 0.002 mmol) were added. To this MeCN (0.5 mL, 0.2 M) and 1,8-diazabicyclo[5.4.0]undec-7ene (14.9 μ L, 0.1 mmol) were added. The reaction vial was closed with screw cap, purged with ¹⁸O-oxygen three times using freeze-thaw technique and kept for stirring under 34W blue LED light at room temperature for 24 h. After completion, the crude reaction was analyzed with the LC-MS.

Figure S5. LC-MS chromatogram of crude reaction performed under labeled oxygen i.e. ¹⁸O₂.

3.3 Light On-Off Experiments.

To four oven-dried screw cap reaction vials charged with a spin vane magnetic stir-bar, 2phenyl-1,2,3,4-tetrahydroisoquinoline (20.9 mg, 0.1 mmol), Ru(bpy)₃Cl₂.6H₂O photocatalyst (1.5 mg, 0.002 mmol) were added. To this MeCN (0.5 mL, 0.2 M) and 1,8diazabicyclo[5.4.0]undec-7-ene (14.9 μ L, 0.1 mmol) were added. The reaction vials were closed with screw cap, purged with oxygen for one minute and kept for stirring under 34W blue LED light. Firstly the reactions were irradiated for two hours, LED light was turned off, and NMR yield of one reaction was calculated. Second reaction was analyzed after four hours and light was turned on. Again light was turned off after six hours and third reaction was analyzed with NMR. Fourth raction was analyzed after eight hours.

4. NMR Spectra of synthesized compounds

2-(o-Tolyl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, **2b**) ¹**H NMR** (600 MHz, CDCl₃)

2-(*m*-Tolyl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, 2c) ¹H NMR (600 MHz, CDCl₃)

2)-p-tolyl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry 2d) ¹H NMR (600 MHz, CDCl₃)

2)-4-methoxyphenyl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry 2e) ¹H NMR (600 MHz, CDCl₃)

2)-4-acetylphenyl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry **2f**) ¹**H NMR** (600 MHz, CDCl₃)

6,7-dimethoxy-2)-p-tolyl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry **2g**) ¹**H NMR** (600 MHz, CDCl₃)

6,7-dimethoxy-2)-4-methoxyphenyl-(3,4-dihydroisoquinolin-1)2H-(one)(*Table 2, entry 2h*) ¹H NMR (600 MHz, CDCl₃)

7-bromo-2)-p-tolyl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry 2i) ¹H NMR (600 MHz, CDCl₃)

2)-pyrimidin-2-yl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry 2j) ¹H NMR (600 MHz, CDCl₃)

2)-quinolin-6-yl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry 2k) ¹H NMR (600 MHz, Acetone-d₆)

2)-pyridin-2-yl-(3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry 2l) ¹H NMR (600 MHz, CDCl₃)

tert-butyl 3)-1-oxo-3,4-dihydroisoquinolin-2)1H-(yl(propanoate) (Table 2, entry 2m) ¹H NMR (600 MHz, CDCl₃)

benzyl 3)-1-oxo-3,4-dihydroisoquinolin-2)1H-(yl(propanoate) (Table 2, entry 2n) ¹H NMR (600 MHz, CDCl₃)

2-butyl-3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry 20) ¹H NMR (600 MHz, CDCl₃)

2-isopropyl-3,4-dihydroisoquinolin-1)2H-(one) (Table 2, entry **2p**) ¹**H NMR** (600 MHz, CDCl₃)

2-Benzyl-3,4-dihydroisoquinolin-1(2H)-one (Table 2, entry 2q) ¹H NMR (600 MHz, CDCl₃)

N,*N*-dimethyl-4-((trifluoromethyl)thio)benzamide (Table 2, entry **2r**) ¹**H NMR** (600 MHz, CDCl₃)

5. References

- 1 K. C. C. Aganda, B. Hong and A. Lee, Adv. Synth. Catal., 2019, 361, 1124-1129.
- 2 T. Thatikonda, S. K. Deepake and U. Das, Org. Lett., 2019, 21, 2532-2535.
- 3 Y. Liu, C. Wang, D. Xue, M. Xiao, J. Liu, C. Li and J. Xiao, *Chem. Eur. J.*, 2017, **23**, 3062-3066.
- 4 H. Kurouchi, A. Sumita, Y. Otani, and T. Ohwada, Chem. Eur. J., 2014, 20, 8682-8690.
- 5 W. Xie, B. Gong, S. Ning, N. Liu, Z. Zhang, X. Che, L. Zheng and J. Xiang, *Synlett*, 2019, **30**, 2077-2080