Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Global opportunities and challenges on net-zero CO₂ emissions towards a sustainable future

A. Joseph Nathanael¹, Kumaran Kannaiyan^{2*}, Aruna K. Kunhiraman³, Seeram Ramakrishna⁴, Vignesh Kumaravel^{5,6*}

Supporting Information

Table S1. A summary of the performance of various materials/methods (SACs, Plasma, MOFs, COFs) for the CO₂ conversion

S. No	Catalyst	Method/	Efficiency/Performance	Reference
		Reaction		
		Condition		
1	Ni-SAC	CO ₂	Faradaic efficiency: 92.0 %~98.0 %	S1
		electroreduction.		
		Potential range:		
		$-0.53 V^{\sim} - 1.03$		
		V		
2	FePc@NiNC	Potential range:	Faradaic efficiency: 72–86%	S2
		$-0.5 V^{-}-0.9 V$		
3	PcCu-O8-Zn	Hydrothermal	Faradaic efficiency: 88%	S3
	(MOF)	method	turnover frequency: 0.39 s ⁻¹	
4	CoPc@Fe-N-C	Potential range:	>90%	S4
		0.71 V		
5	Ni/Fe–N–C	Potential	>90%	S5
		<i>range</i> : -0.5 and		
		-0.9 V		
6	Cu–CN-x	Carboxylation of	Cu−CN-8.0 \rightarrow turnover frequency	S6
	$x \rightarrow up \text{ to } 26.6$	terminal alkynes	(TOF) of 9.7 h^{-1}	
	wt %	with CO ₂	Yield: 97%	
7	CuSAs/TCNFs	CO ₂ reduction to	Faradaic efficiency: 44 %	S7
		methanol in liquid		
		form		
8	Pd-SAC	CO ₂ reduction	Mass activity -373.0 mA mg^{-1}_{Pd} at	S8

		reaction	-0.8 V	
			Faradaic efficiency: 55%	
9	DBD	CO ₂ splitting.	Energy efficiency: 7%	S9
		Outer electrode	CO ₂ conversion rate 12.2 %	
		temperature		
		<170°C		
10	DBD with ZrO ₂	CO ₂ splitting.	Energy efficiency: 8.76 % CO ₂	S9
	and CeO ₂ as	outer electrode	conversion rate: 64.38 %	
	packing	temperature		
	materials	<170°C		
11	co-axial DBD	Direct activation	Energy efficiency:1.597 mmol/kJ	S10
	reactor with	of undiluted CO ₂	CO ₂ conversion rate:15.7 %	
	15 % of CuO/γ-			
	Al ₂ O ₃			
12	DBD reactor	CO ₂ dissociation.	CO ₂ conversion rate: 27.4 %	S11
	with BaTiO ₃ -	Specific Energy		
	coated PU foam	Input: 60 kJ/L		
13	DBD reactor	Direct conversion	product selectivity	S12
	with Co and Fe	of CO_2 and CH_4	40 %	
	solid catalysts			
14	CTU/TiO ₂	Chemically	CO evolution amount: 31.32 µmol	S13
		immobilize	g ⁻¹ h ⁻¹	
		(CuTCPP) into	(7 times higher than pure TiO_2)	
		UiO-66		
		$(\mathrm{Zr}_6\mathrm{O}_4(\mathrm{OH})_4),$		
		MOF structure		
		(CTU)		
15	(Co/Ru)n-UiO-	CO ₂ reduction	Yield: 13,600 μ mol \cdot g ⁻¹	S14
	67(bpydc)	using a		
		phosphorescent		
		$(H_2: CO = 2:1)$		

16	Core-shell	Hydrothermal	high selectivity was acheived	S15
	HKUST-1	method; reduction		
	@TiO ₂	of CO ₂ to CH ₄		
17	CsPbBr ₃ @	Photocatalytic	higher moisture stability	S16
	zinc/cobalt-	CO ₂ reduction	excellent charge separation	
	based ZIF		efficiency	
18	Ni and Fe MOFs	Photoconversion	Efficient element separation, low	S17
		of anthropogenic	concentration of CO ₂ to produce	
		CO ₂ -to-syngas	tuneable syngas	
19	Triazine-based	298 / 273 K	CO ₂ uptake efficiency: 65.65 /	S18
	aniline (1,3,5-		92.38 mg g ⁻¹	
	tris-(4-amino			
	phenyl) triazine			
	and 1,3,5-tris-(4-			
	amino phenoxy)			
	benzene)			
20	TPA-COFs &	One-pot	CO ₂ uptake efficiencies: up to	S19
	TPT-COFs	polycondensation	65.65 and $92.38~mg~g^{\text{-1}}$ at 298 and	
		s of tris(4-	273 K, respectively.	
		aminophenyl)		
		amine (TPA-		
		3NH ₂) & 2,4,6-		
		tris(4-		
		aminophenyl)		
		triazine		
		(TPT-3NH2)		
21	Fully bonded	Different solvent	CO ₂ adsorption: 23.2 wt %, 118.8	S20
	tetraphenylethan	system with	$cm^3 g^{-1}$ at 1 atm, 273 K	
	e TPE-COF-I;	different		
	frustrated	polarities		
	bonding			
	structure TPE-			
	COF-II			

22	Cz-COF	273 K/298 K	CO_2 uptake: 2.5/1.5 mmol g ⁻¹	S21
			selectivity: 36/28	
			CO ₂ uptake: 3.5/2.3	
	Tz-COF		selectivity: 20/12	
23	PA-TCIF(DMF),	Reflux and	CO ₂ capture capacity: 77.3/50.2 mg	S22
	TPA-TCIF(DM),	solvothermal	g ⁻¹ at 1 bar CO ₂ selectivity:	
	TPA-TCIF(BD)	conditions using	51.6/61.8	
		different solvents;		
		273/298 K,		

References:

- S1. X.-L. Lu, X. Rong, C. Zhang and T.-B. Lu, *Journal of Materials Chemistry A*, 2020, **8**, 10695-10708.
- S2. X. Yang, T. Tat, A. Libanori, J. Cheng, X. Xuan, N. Liu, X. Yang, J. Zhou, A. Nashalian and J. Chen, *Materials Today*, 2021, 45, 54-61
- S3. H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, D. Makarov, E. Zschech, E. Brunner, and I.M. Weidinger, *Nature communications*, 2020, 11(1) 1409.
- S4. L. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang, and X. Bao, Advanced Materials, 2019, 31(41), 1903470.
- S5. W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, and C. Zhao, *Angewandte Chemie International Edition*, 2019, *58*(21), 6972-6976.
- S6. P. Yang, S. Zuo, F. Zhang, B. Yu, S. Guo, X. Yu, Y. Zhao, J. Zhang and Z. Liu, *Industrial & Engineering Chemistry Research*, 2020, 59, 7327-7335.
- S7. H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu and C. He, Journal of the American Chemical Society, 2019, 141, 12717-12723.
- S8. Q. He, J. H. Lee, D. Liu, Y. Liu, Z. Lin, Z. Xie, S. Hwang, S. Kattel, L. Song and J. G. Chen, *Advanced Functional Materials*, 2020, **30**, 2000407.
- S9. M. R. Jahanbakhsh, H. Taghvaei, O. Khalifeh, M. Ghanbari and M. R. Rahimpour, *Energy & Fuels*, 2020, **34**, 14321-14332.
- S10.D. Ray, P. Chawdhury, K. V. S. S. Bhargavi, S. Thatikonda, N. Lingaiah and C. Subrahmanyam, *Journal of CO2 Utilization*, 2021, **44**, 101400.
- S11.H. Taghvaei, E. Pirzadeh, M. Jahanbakhsh, O. Khalifeh and M. R. Rahimpour, *Journal* of CO2 Utilization, 2021, 44, 101398.
- S12.D. Li, V. Rohani, F. Fabry, A. Parakkulam Ramaswamy, M. Sennour and L. Fulcheri, *Applied Catalysis B: Environmental*, 2020, **261**, 118228.
- S13.L. Wang, P. Jin, S. Duan, H. She, J. Huang and Q. Wang, *Science Bulletin*, 2019, **64**, 926-933.
- S14.M. Liu, Y.-F. Mu, S. Yao, S. Guo, X.-W. Guo, Z.-M. Zhang and T.-B. Lu, *Applied Catalysis B: Environmental*, 2019, **245**, 496-501.
- S15.R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, J. Jiang, Q. Zhang, Y. Xie and Y. Xiong, *Advanced Materials*, 2014, **26**, 4783-4788.
- S16.Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang and C.-Y. Su, *ACS Energy Letters*, 2018, **3**, 2656-2662.

- S17.B. Han, X. Ou, Z. Zhong, S. Liang, X. Yan, H. Deng and Z. Lin, *Applied Catalysis B: Environmental*, 2021, **283**, 119594.
- S18.Y. Zhi, P. Shao, X. Feng, H. Xia, Y. Zhang, Z. Shi, Y. Mu and X. Liu, *Journal of Materials Chemistry A*, 2018, **6**, 374-382.
- S19. A. F. M. El-Mahdy, C.-H. Kuo, A. Alshehri, C. Young, Y. Yamauchi, J. Kim and S.-W. Kuo, *Journal of Materials Chemistry A*, 2018, **6**, 19532-19541.
- S20.Q. Gao, X. Li, G.-H. Ning, H.-S. Xu, C. Liu, B. Tian, W. Tang and K. P. Loh, *Chemistry* of *Materials*, 2018, **30**, 1762-1768.
- S21.S. An, T. Xu, C. Peng, J. Hu and H. Liu, RSC Advances, 2019, 9, 21438-21443.
- S22.P. Puthiaraj, H. S. Kim, K. Yu and W.-S. Ahn, *Microporous and Mesoporous Materials*, 2020, **297**, 110011.