Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Effect of DMSO on the catalytical production of 2,5-bis(hydoxymethyl)furan from 5-hydroxymethylfurfural over Ni/SiO₂ catalysts

Houman Ojagh,^a Abdenour Achour,^a Hoang Phuoc Ho,^a Diana Bernin,^a Derek Creaser,^a Oleg Pajalic,^b

Johan Holmberg^b and Louise Olsson^a*

^a Competence center for Catalysis, Chemical Engineering, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden

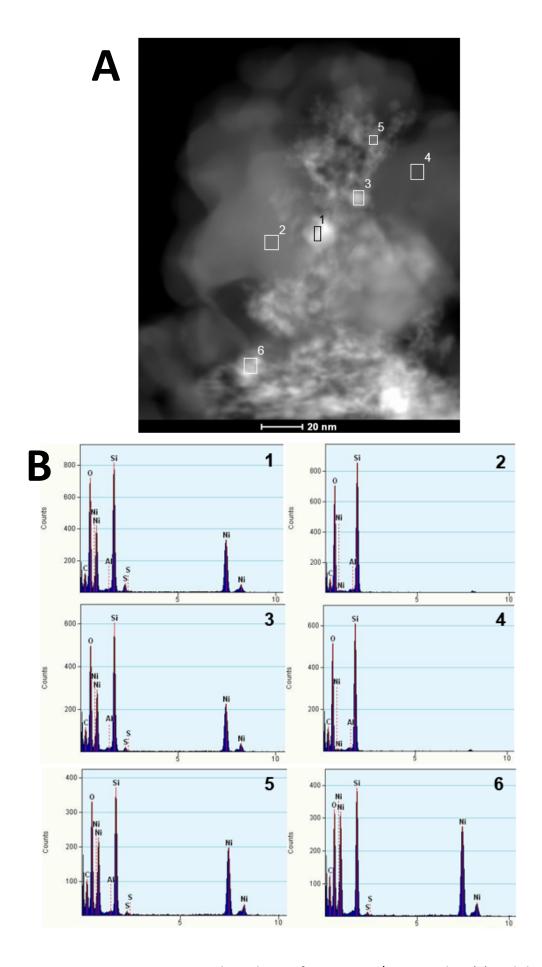
^b Perstorp AB, Industriparken, 284 80 Perstorp, Sweden

Email: louise.olsson@chalmers.se

Table of contents:

- 1. Equations for yield, conversion, selectivity and carbon recovery calculations.
- 2. **Figure 1S.** HAADF-STEM micrograph analyses of spent 15Ni/SiO2 catalyst (a) and the corresponding positions of EDX spectra (b).

1. Equations for yield, conversion, selectivity and carbon recovery calculations.


Product yield (mol. %) =
$$\frac{\text{(product moles)}}{\text{(initial moles of HMF)}} \times 100$$

Conversion (%) =
$$(1 - \frac{\text{moles of unreacted HMF}}{\text{initial moles of HMF}}) \times 100$$

Product selectivity (mol. %) =
$$\frac{\text{(yield)}}{\text{(conversion)}} \times 100$$

Product carbon (mol. %) =
$$\frac{\text{(product moles x } n_p)}{\text{(initial moles of HMF x } n_{HMF})} \times 100$$

where n_{HMF} and n_p were the numbers of carbon in the corresponding HMF and product.

Figure S1. HAADF-STEM micrograph analyses of spent 15Ni/SiO2 catalyst (a) and the corresponding positions of EDX spectra (b).