Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supplementary data

for

A novel LaFeO₃ synthesized by sodium diethylene triamine penta-methylene phosphonate for degradation of diclofenac through peroxymonosulfate activation: Degradation pathways and mechanism study

Shuaiqi Ning, Shuai Mao, Chun Liu, Mingzhu Xia*, Fengyun Wang*

School of Chemical Engineering, Nanjing University of Science & Technology,

Nanjing, 210094, China

*Corresponding authors

Email: xiamzh196808@njust.edu.cn

Contents

Figures

- Fig. S1 SEM of LFO-0.025
- **Fig. S2** SEM of LFO-0.05
- Fig. S3 SEM of LFO-0.085
- **Fig. S4** SEM of LFO-0.125
- Fig. S5 SEM of LFO-C-0.1
- Fig. S6 XPS spectra of LFO-0.1: (a) survey spectrum (b) La 3d
- Fig. S7 Adsorption equilibrium of different LFO
- Fig. S8 LC-MS of DCF
- Fig. S9 The MS² spectra of the detected transformation products of DCF during catalysis

Tables

- Table S1 Contents of Oxygen Species Determined by Fe 2p Spectra
- Table S2 Contents of Oxygen Species Determined by O 1s Spectra
- Table S1 products detected by LC-MS during DCF degradation by LFO-0.1/PMS process

Figures

Fig. S1 SEM of LFO-0.025

Fig. S2 SEM of LFO-0.05

Fig. S3 SEM of LFO-0.085

Fig. S4 SEM of LFO-0.125

Fig. S5 SEM of LFO-C-0.1

Fig. S6 XPS spectra of LFO-0.1: (a) survey spectrum (b) La 3d

Fig. S7 Adsorption equilibrium of catalysts (note: [catalyst] = 0.2 g/L, [PMS] = 0.2 g/L, [DCF]₀ = 20 mg/L,

 $pH_0 = 7.25)$

Fig. S8 LC-MS of DCF

Fig. S9. The MS^2 spectra of the detected transformation products of DCF

during catalysis.

Table

	Fe ²⁺	Fe ³⁺	F 3+/F 2+
_	Percent (%)	Percent (%)	
LFO-0.025	30.03	69.97	2.33
LFO-0.05	37.29	62.71	1.68
LFO-0.085	40.86	59.14	1.45
LFO-0.1	36.39	63.61	1.75
LFO-0.125	40.92	59.08	1.44
LFO-C-0.1	28.99	71.01	2.45

Table S1 Contents of Oxygen Species Determined by Fe 2p Spectra

Table S2 Contents of Oxygen Species Determined by O 1s Spectra

	O _{lat}		O _{ads}		O _{water}	
	BE(eV)	Percent (%)	BE(eV)	Percent (%	BE(eV)	Percent (%
LFO-0.025	528.83	14.47	531.06	85.26	-	-
LFO-0.05	528.86	16.06	531.04	83.94	-	-
LFO-0.085	528.88	17.73	530.97	80.77	533.18	1.05
LFO-0.1	529.23	20.85	531.01	46.58	532.61	32.58
LFO-0.125 528	579.96	25.15	530.32	34.26		
	320.80		531.47	40.59	-	-
LFO-C-0.1	529.10	36.37	530.97	46.54	532.12	17.09

Table S3 products detected by LC-MS during DCF degradation by LFO-0.1/PMS process

Compound	m/z	Proposed Structure	
1	296	Cl H Cl H Cl Cl	
2	278	Cl NH Cl Cl	
3	250	Cl NH • Cl	
4	215	Cl NH •	
5	180	NH	
6	254	Cl H CH ₃	
7	266	Cl H CHO Cl Cl	
8	281	Cl H CHO Cl OH	
9	254	Cl H CH ₂ OH	
10	161	Cl NH ₂	
11	260	Cl H COOH	
12	214	CI CH ₃	

13	204	Cl H N Cl CH ₃
14	337	Cl H N OSO ₃ H
15	229	Cl H CHO