Supporting Information

Naphtha catalytic cracking to olefins over zirconia-titania catalyst

Emad N. Shafei *(1), Mohammed Z. Albahar (1), Mohammad F. Aljishi (1), Ali N. Aljishi (1), Ali S.

Alnasir⁽¹⁾, Hameed H. Al-Badairy ⁽¹⁾ and Mohammed A Sanhoob ⁽²⁾

⁽¹⁾ Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia.

⁽²⁾ Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

*Corresponding author: shafeien@aramco.com, emadnaji@gmail.com

Contents

Table 1S.	The textural properties of synthesized Zr-Ti oxide catalyst after reaction
Table 2S.	The Lewis and Brønsted acid sites concentrations from the adsorption of pyridine- FTIR of Zr-Ti oxide catalyst
Figure 1S.	FTIR-pyridine spectrum of Zr-Ti oxide catalyst
Figure 2S.	Conversion and selectivity of light olefin and other products from dodecane conversion using Zr-Ti oxide catalysts compared with thermal cracking vs. reactor temperature (without steam), LHSV 0.5 h ⁻¹
Figure 3S.	Steam vs. no steam catalytic cracking of dodecane conversion and selectivity of light olefin and other product using Zr-Ti oxide catalysts compared with thermal cracking vs. reactor temperature (cracking temperature 625 °C, LHSV 0.5 h ⁻¹)
Figure 4S.	Steam vs. no steam of time-on-stream catalytic cracking: yield of olefin, ethylene, propylene and butenes of 50% Zr-Ti oxide (catalytic cracking temperature 625 °C, LHSV 0.5 h^{-1})
Figure 5S.	Steam vs. no steam of time-on-stream catalytic cracking: yield of olefin, ethylene, propylene and butenes of 10% Zr-Ti oxide (catalytic cracking temperature 625 °C, LHSV 0.5 h^{-1})
Figure 6S.	Schematic diagram of dodecane cracking via Zr-Ti oxide catalyst

3. Results and Discussion

Catalyst	Surface area,	Pore volume
	m ² g ⁻¹	cm ³ g ⁻¹
10% Zr-Ti oxide	15.7	0.15
10% Zr-Ti oxide after reaction	12.9	0.05
50% Zr-Ti oxide	48.7	0.33
50% Zr-Ti oxide after reaction	26.0	0.24

Table 1S. The textural properties of synthesized Zr-Ti oxide catalyst after reaction

Table 2S. The Lewis and Brønsted acid sites concentrations from the adsorption of pyridine-FTIR of Zr-Ti oxide catalyst

Catalyst	Temperature (°C)	*C _L (mmolg ⁻¹)	**C _B (mmolg ⁻¹)	Total acidity (mmolg ⁻¹)	L/B**
TiO ₂	150	0.019	0.004	0.023	4.9
10% Zr-Ti oxide	150	0.060	0.009	0.069	6.8
50% Zr-Ti oxide	150	0.137	0.019	0.156	7.2

*C_L: concentration of Lewis acid sites, **C_B: concentration of Brønsted acid sites, ***L/B: Lewis/ Brønsted acid ratio

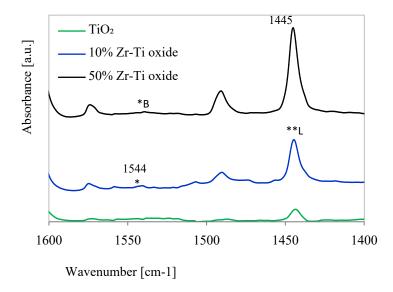


Figure 1S. FTIR-pyridine spectrum of Zr-Ti oxide catalyst (*Brønsted acid sits **Lewis acid sites)

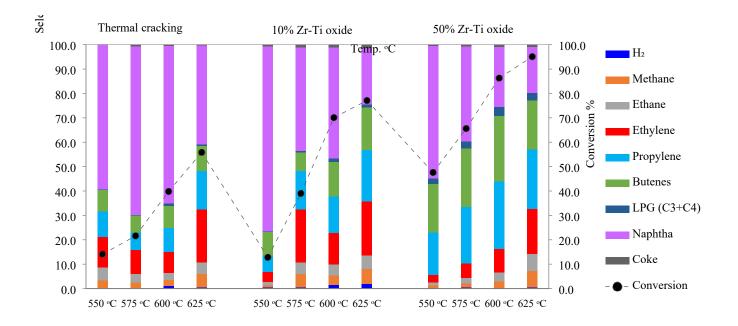


Figure 2S. Conversion and selectivity of light olefin and other products from dodecane conversion using Zr-Ti oxide catalysts compared with thermal cracking vs. reactor temperature

(without steam), LHSV 0.5 h⁻¹

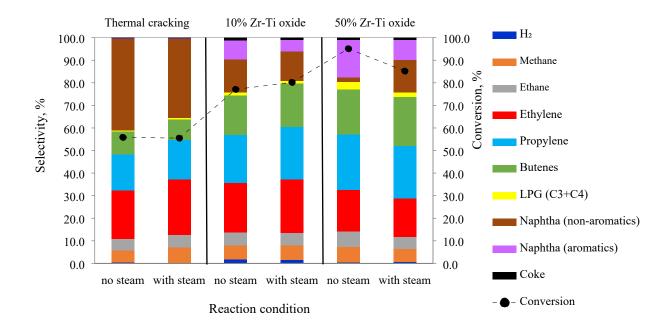


Figure 3S. Steam vs. no steam catalytic cracking of dodecane conversion and selectivity of light olefin and other product using Zr-Ti oxide catalysts compared with thermal cracking vs. reactor temperature (cracking temperature 625 °C, LHSV 0.5 h⁻¹)

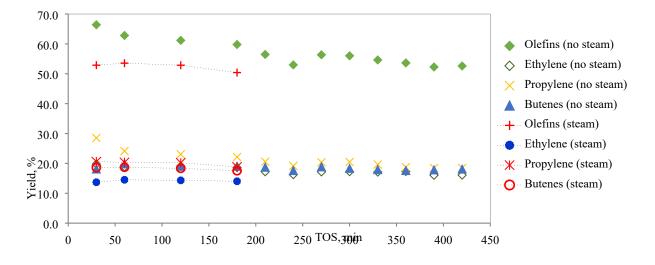


Figure 4S. Steam vs. no steam of time-on-stream catalytic cracking: yield of olefin, ethylene, propylene and butenes of 50% Zr-Ti oxide (catalytic cracking temperature 625 °C, LHSV 0.5 h⁻¹)

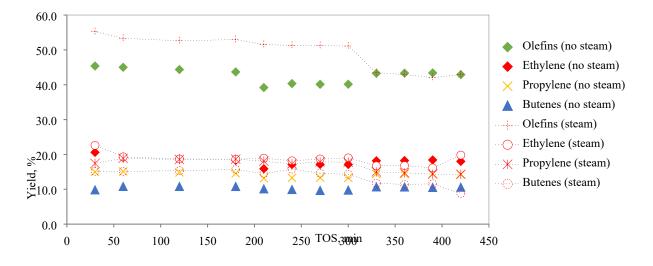


Figure 5S. Steam vs. no steam of time-on-stream catalytic cracking: yield of olefin, ethylene, propylene and butenes of 10% Zr-Ti oxide (catalytic cracking temperature 625 °C, LHSV 0.5 h⁻¹)

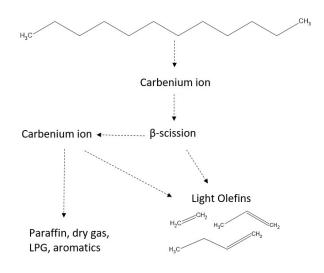


Figure 6S. Schematic diagram of dodecane cracking via Zr-Ti oxide catalyst