Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Lithium cuprate, a multifunctional material for NO selective catalytic reduction by

CO, with subsequent carbon oxides capture at moderate temperatures

Ana Yañez-Aulestia,¹ Yuhua Duan², Qiang Wang³ and Heriberto Pfeiffer^{1,*}

¹Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán C.P. 04510, Ciudad de México, Mexico.

²National Energy Technology Laboratory, United States Department of Energy, 626 Cochrans Mill Road, Pittsburgh, PA 15236, United States.

³College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R.

China.

*Corresponding author. Phone +52 (55) 5622 4627 and E-mail: pfeiffer@materiales.unam.mx

Figure S1. Evolution of NO consumption and CO2 downstream obtained during the isothermal

processes for three hours (A), XRD patterns (B) and ATR-FTIR spectra (C) performed on Li_2CuO_2 at different temperatures. The NO:CO ratio used for these isotherms was 1:2. The pristine Li_2CuO_2 pattern, Li_2CO_3 and $LiNO_3$ spectra are included for comparison purposes.

Figure S2. Evolution of NO consumption and CO_2 downstream obtained during the isothermal processes for three hours (A), XRD patterns (B) and ATR-FTIR spectra (C) performed on Li₂CuO₂ at different temperatures. The NO:CO ratio used for these isotherms was 2:1. The pristine Li₂CuO₂, pattern Li₂CO₃ and LiNO₃ spectra are included for comparison purposes.