Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

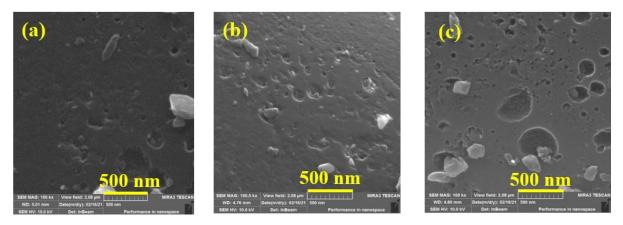
SUPPLEMENTARY DATA

Coiled Flow Inverter Mediated Synthesis of Activated Carbon Fibers-Supported Ni Nanoparticles

Amol Pophali^a, Rakshit Kajala^a, Haider Ali^a, Nishith Verma^{a,b,*}, K.D.P. Nigam^{c,*},

^aDepartment of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

^bCentre for Environmental Science and Engineering, Indian Institute of Technology Kanpur,


Kanpur 208016, India

^cDepartment of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

*Corresponding authors

Prof. Nishith Verma; email id: vermanishith@gmail.com ; nishith@iitk.ac.in

Prof. K.D.P. Nigam; email id: nigamkdp@gmail.com

Fig. S1: SEM images of NiCl₂/ACF samples synthesized at a mixed flowrate of 100 cc/min with a fixed Ni-salt concentration of 0.5 M and different ACF dosages :(a) 1.5, (b) 1.75, and (c) 2 g/100 mL

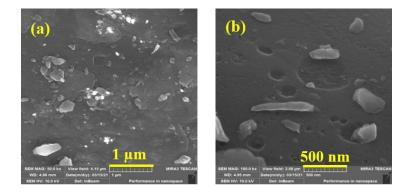


Fig. S2: SEM images of NiCl₂/ACF samples synthesized at mixed flowrate of 200 cc/min with Ni-salt concentration of 0.7 M and an ACF dose of 2 g/100 mL.

Table S1

Comparative analysis of CNFs/CNTs synthesized via the catalytic decomposition of C_2H_2 over supported Ni catalysts

S. No.	Substrate	Temperature (°C)	Time (h)	Yield (mg/g)	Average diameter of CNFs/CNTs (nm)	Ref.
1	ACF	600	1.0	240	40 - 50	Current
2	ACF	600	2.0	200	30 - 40	49
3	ACF	600	2.0	-	~ 30	53
4	Alumina	500	1.0	215	-	54
5	Silica	500	1.0	~ 0	-	54
6	Alumina	600	0.5	-	60 - 80	55
7	ACF	550 - 850	1.0	-	~15	56
8	Sputtered Ni-thin film	650	0.5	-	50 - 100	57