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Derivation of Equation (3)

From the de�nition of instantaneous residence time, τI , and under the assumption of plug �ow:

V =

∫ t

t−τ

V

τI(θ)
dθ (2)

By canceling the volume, V , and taking the derivative w.r.t. time (using the Leibniz rule for the derivative
of the integral):
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By rearranging one obtains the equation for the time variation of the e�ective residence time, τ :

dτ

dt
= 1− τI(t− τ)

τI(t)
(3)

Model details for the determination of Kmax
yk

In order to �nd the values of Kmax
yk

to be used in Equation (5), an extensive parametric analysis was
performed, by considering reactors similar to the one used in the experiment. The reactor can be schematised
as a series of a CSTR (mixing chamber) operating at ambient temperature (as it is isolated from the heated
part) and a tubular reactor modelled as a laminar �ow reactor (LFR) with dispersion. The model follows
the scheme reported in Figure S.1. The inlet concentration of each species, total �owrate (and consequently
the instantaneous residence time), and reactor temperature change in time according to some given pro�le.

A mass conservation equation for each chemical species describes the variation in concentration along the
reactor coordinate and during the experiment time. It is assumed that the density is constant and uniform,
while temperature changes happen instantaneously over the entire reactor length.

We de�ne the following dimensionless quantities:

t̂ =
t

τ0I
, x̂ =

x

L
, ĉi =

ci
c0tot

(S.3)
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Figure S.1: Scheme of the modelled system.

as the dimensionless time, position (in the tubular reactor), and concentration respectively, where t is the
physical time, τI the instantaneous residence time, τ0I = τI(t = 0), x the physical position, L the tubular

reactor length, ci the concentration of species i, c0tot =
∑
i c
f
i (t = 0), and cfi the feed concentration of species

i. The instantaneous residence time is referred to the tubular reactor, thus it is equal to VLFR/Q(t). The
transport equation for concentration inside the LFR are rendered dimensionless to yield:

∂ĉi
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∂ĉi
∂x̂

+
1

τ̂2LFRPe
0
mol

∂2ĉi
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αkj t̂ > 0, 0 < x̂ < 1 (S.4)

whereNC is the number of species involved, NR the number of reactions considered (modelled as power law),
τ̂LFR = τI(t)/τ

0
I the dimensionless residence time in the LFR, Pe0mol the molecular Peclet number, νij the

soichiometric coe�cient of species i in reaction j, Da0j the Damköhler number of reaction j, ε
0
j = Ea,j/RT0

the dimensionless activation energy of reaction j, T0 = T (t = 0), T̂ = T (t)/T0 the dimensionless temperature,
and αij the reaction order of species i in reaction j. The following de�nitions are used:

Pe0mol =
192Dτ0I
d2t

, Da0j = τ0I kj(T0)(c
0
tot)

∑NC
k αkj−1 (S.5)

Taylor dispersion is assumed, D is the molecular di�usivity, dt the LFR diameter, and kj the kinetic constant
of reaction j.
The PDE in Equation (S.4) has the following boundary conditions (Danckwerts):
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0
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= 0 x̂ = 1 (S.7)

The required CSTR concentration is computed from the ODE:
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The initial condition for both the LFR and CSTR is given by the solution of the steady problem at time
t = 0. The transient solution for some given functions cfi (t), τI(t), and T (t) was obtained via the �nite
di�erence method, using second-order discretisation schemes for the space derivatives in Equation (S.4) and
its boundary conditions. After running the transient simulation, the input reconstruction method described
in the manuscript was used to compute the conditions of equivalent systems at steady state and �fty random
points were chosen for the evaluation of the steady-state pro�les.

The sinusoidal functions were chosen for the three parameters. The simulations were repeated 10 000
times varying the values of Pe0mol (range 1× 101,2× 102), Da0j (range 3× 10−12,6× 106), and ε0j (range
2,32), together with the parameters describing the sinusoidal variations. The 10 000 simulations were run
in parallel and required approximately 9 hours on a 40-core (Intel Xeon Gold 6148 2.4 GHz), 187 GB
RAM computer. The kinetic schemes considered were those of the type (A + B → C,C + B → D), and
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(A+ B ↔ C +D), where in both cases C was the product of interest. All reactions were considered to be
elementary (unitary reaction order for reactants). The yield of C w.r.t. A was selected as objective function
for the comparison between dynamic and steady simulations. In all simulations the ratio between the CSTR
and LFR volumes VLFR/VCSTR was kept constant and equal to 12.3, while the CSTR temperature to a
constant vale of 298.15K. The tube diameter was 1mm and the molecular di�usivity was 10−9 m2 s−1

(typical of liquids).
In order to ensure that that the dynamic systems approximates steady-state operations, it is necessary

to satisfy the pseudo-steady-state hypothesis (PSSH):

∂ĉi

∂t̂
≈ 0 (S.9)

This time derivative can be expanded by taking into account the variations of ĉi w.r.t. time, space, and
design parameters (ŷk), which are only time dependent and in this case are represented by ĉfi , τ̂LFR, and

T̂ :
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+
∂ĉi
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The �rst term on the right hand side is null because of the PSSH and the second is also null because position
and time are independent variables. As one wants the PSSH to be valid for any variation of ŷk, it follows
that

dŷk

dt̂
≈ 0 ∀k (S.11)

Alternatively, by considering the maximum value of the time variation

Kyk
def

= max
t̂

(
dŷk

dt̂

)
< Kmax

yk
(5)

Experimental implementation details

The experiments were run on an automated platform controlled via an in-house software written in
Python. The software allows to set the variations of the parameters of interest. In particular it can control
the variations of temperature, residence time, and concentration (expressed as a ratio between the inlet

concentration, cfi (t), to the system and the concentration in the reagents stack, csi ). Given this information,
the software computes the �owrates needed for each species and sets the pump set-points to the correct
value over time. As of now the variations for parameters allowed are constant, linear, and sinusoidal. Via
parallelised routines, the software controls the switch of the HPLC valve for analysis and checks continuously
for pressure spikes for safety reasons (e.g., clogging).

The volumetric �owrates of each species, Qi, are computed by solving a system of algebraic equations,
starting from residence time, τI , and concentration ratios, cRi (t) = cfi (t)/c

s
i . It should be noted that only

NC − 1 concentration ratios can be given. This issue is solved by letting the software solve for the required
solvent (i = NC) �owrate. Therefore one has:∑

i

Qi(t) =
VLFR
τI(t)

Qi(t) =
VLFR
τI(t)

cRi (t) (S.12)

which leads to the following �owrate for the solvent:

QNC(t) =
VLFR
τI(t)

(
1−

NC−1∑
i=1

cRi (t)

)
(S.13)
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FTIR and HPLC details
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Figure S.2: FTIR calibration curve for product 3.
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Figure S.3: HPLC calibration curve.
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Figure S.4: Example of IR processed spectrum.

Figure S.5: Example of HPLC spectrum.
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