ARTICLE

Autocatalyzed and heterogeneously catalysed esterification kinetics of glycolic acid with ethanol

Laura Reyes*^a, Clémence Nikitine^a, Léa Vilcocq^a and Pascal Fongarland^a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Supplementary Information

HPLC quantification

Plots of area and concentration correlations for compounds quantified by HPLC

Carbon balance

Table S1. Example of the carbon balance, conversion and yield for a reaction Conditions: Acid/Alcohol 1/4 [mol/mol], 1400 rpm. ,75°C.

Reaction time	Carbon		
(min)	balance (%)	Conversion (%)	Yield (%)
0	0.00	0.00	0.00
10	-0.56	2.59	2.59
20	-2.44	6.61	4.98
30	0.99	8.48	7.36
40	-5.22	10.38	10.31
50	-2.52	12.59	11.52
60	-4.93	14.47	13.82
120	-2.51	23.23	23.40
180	0.67	28.69	28.35
240	-3.36	33.97	34.23
300	-4.89	40.69	41.87
360	-3.49	44.82	45.34

Univ Lyon, CNRS, Université Claude-Bernard Lyon 1, CPE-Lyon, CP2M (Catalyse, Polymérisation, Procédés et Matériaux), F-69616, VILLEURBANNE, France.

* corresponding author: Laura REYES (lrv@lgpc.cpe.fr)

Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Figure S2. Example representation of glycolic acid conversion and ethyl glycolate yield Conditions: Acid/Alcohol 1/4 [mol/mol], 1400 rpm, 75°C. Yield (\bullet); Conversion (\blacksquare).

Reproducibility of experiments

Figure S3 Test of glycolic acid esterification with ethanol. Conditions: 60° C, Acid/Alcohol 1/3 [mol/mol]. (•) test 1; (=) test2

Reproducibility of experiments

Figure S4 Test of glycolic acid esterification with ethanol. Conditions: 70°C, Acid/Alcohol 1/4 [mol/mol] , Amberlyst 2 wt%. (•) test 1; (•) test2.

Experimental thermodynamic equilibrium

It was considered that the equilibrium was reached for all temperatures after a period of 3h of reaction

Figure S5. Experimental profiles of glycolic acid conversion in presence of sulfuric acid Conditions: Acid/Alcohol 1/4 [mol/mol], 1400 rpm, H₂SO₄ 0.3 w%.

Experimental fitting for autocatalyzed reactions

Table S2. Correlation coefficients matrix for pseudo homogeneous, autocatalysis promoted by solvated protons and molecular glycolic acid respectively

1	0.277		
0.277	1		
1	-0.394		
-0.394	1		
1	-0.558		
-0.558	1		

Table S3. Main properties of the commercial heterogeneous catalysts tested

Heterogeneously catalysts

	Si/Al Mole Ratio	Surface Area [m ² .g ⁻ ¹]	Main pore opening [Å]	Membered rings
Faujasite ¹	40.0 ¹	780 ¹	7.4 × 7.4 ¹	12 ¹
Faujasite ²	2.5 ²	730 ²	7.4 × 7.4 ²	12 ²
ZSM-5 ³	40.0 ³	425 ³	5.1 × 5.5 ³	10 ³
ZSM-5 ⁴	11.5 ⁴	425 ⁴	5.1 × 5.5⁴	104
Mordenite ⁵	10.0 5	500 ⁵	6.5 × 7 ⁵	12 ⁵

	Physical form	Surface Area [m ² .g ⁻¹]	Ave Pore diameter	Total pore vol
			[Å]	[mL.g ¹]
Amberlyst 15 6	Beads	53 ⁶	300 ⁶	0.4 ⁶
Amberlyst 36 7	Beads	33 ⁷	240 ⁷	0.27
Amberlyst 70 8	Beads	36 ⁸	220 ⁸	0.15 ⁸
Dowex 50XW8-100 ⁹	Powder		100-200 ⁹	0.33 ⁹
Nafion NR50 10	Beads			
	Crystalline phase	Surface Area [m ² .g ⁻¹]	Av Pore diameter [Å]	Total pore volume [mL.g- ¹]
TiO ₂ ¹¹	Anatase	150 ¹¹	140 11	0.38811

This journal is © The Royal Society of Chemistry 20xx

Journal Name

Table S4. Acid sites for the acid solids tested in the catalyst screening

					Bibliograp
	Strong	Medium	Weak	Total	referen
FAU 2.51	0	449	1149	1598	1900 ¹²
MOR 10.1	616	245	159	1020	950 ¹²
MFI 11.5	797	180	158	1134	1320 ¹
MFI 40.1	143	117	380	640	610 ¹³
FAU 40.1	348	69	122	540	530 ¹²
Amberlyst15	3995	0	0	3995	4700 ⁶
Amberlyst36	4890	0	0	4890	5400 ⁷
Amberlyst70	2615	0	0	2615	2650 ⁸
100	4218	0	0	4218	4700 ⁹
Nafion NR50	880	0	0	880	900 ¹⁰
TiO ₂	163	89	171	423	430 ¹⁴

Internal diffusion limitations

Procedure and equations employed for the by the Weisz-Prater graphic criterion erence

$$\varphi = \frac{r_{0cat} \cdot \rho_{Cat} \cdot (d_P/6)^2}{D_{Eff} \cdot C_{GA}}$$
(I)

With r_{0cat} the observed reaction rate for the heterogeneously ² catalyzed reaction, ρ_{Cat} and d_P the density and particle of diameter of the catalyst, D_{Eff} the effective diffusivity of glycolic ¹³ acid in the particle and C_{GA} the glycolic acid molar concentration in the solution. The first term r_{0cat} was ¹³ calculated as

$$_{2} r_{0cat} = \frac{r_{0}}{w_{cat}.\rho_{sln}} (II)$$

⁶ In which r_0 is the reaction rate by unit of volume of the reacting media, $w_{cat.}$ the catalyst loading by mass of reacting media and ρ_{sln} the density of the reacting media.

Considering that in the liquid phase the catalyst presents an homogeneous swelling, the particle swelled dimeter was calculated by equation (III) in which d_{Pdry} , V_{Pdry} are the dry diameter and volume and V_{Pdry} the swollen volume.

$$d_P = d_{Pdry} \sqrt[3]{rac{Vpswollen}{Vpdry}}$$
(III)

For Amberlyst 70 the swelling ratio (Vpswollen/Vpdry) had 430^{14} been reported to be between $2^{43}-2.34^{15}$ for short chain alcohols

(C1-C4). The resin employed in this study presents an average dry diameter of 300 μm and so the calculated swelled dimeter is 398 $\mu m.$

The effective diffusivity of glycolic the value was obtained from the expression (IV), which requires the diffusion coefficient (D_{GA}) , for glycolic acid, the porosity (\mathcal{E}) and tortuosity (τ) of the corresponding catalyst.

$$D_{Eff} = D_{GA}\left(\frac{\varepsilon}{\tau}\right)$$
 (IV)

(**(**)

Different correlations had been proposed for the evaluation of the diffusion coefficient, however the most widely employed is the Wilke-Chang equation (V).¹⁶

$$D_m = \frac{7.4 \times 10^8 T \sqrt{a_s M_s}}{\mu_s V_a^{0.6}} \,(\mathrm{V})$$

In which (T) represents the temperature, (M_s) (a_s) (μ_s) the molecular weigth, association coefficient and viscosity of the solvent, ethanol in this case, and V_a the molar volume at the normal boiling point. The molar volume at normal boiling point of glycolic acid in this case was calculated by group/atom contribution Le bas Method¹⁷

The estimated value for the diffusion coefficient was later multiplied by the correlation of porosity (\mathcal{E}) and tortuosity (τ) extracted from the literature for a similar resin (Amberlyst 15) considering than latter can be approximated to the inverse of the former.^{18,19}

$$D_{Eff} = D_{GA} \mathcal{E}^2 (VI)$$

Impact of acid concentration in heterogeneous tests

Figure S7 Influence of the concentration of glycolic acid in the initial solution over the reaction catalyzed by Amberlyst 70. Conditions: 70° C, Catalyst 2 wt%. Acid/Alcohol 1/3 [mol/mol] (•) Acid/Alcohol 1/4 [mol/mol], (•) Acid/Alcohol 1/6 [mol/mol](\blacktriangle).

Experimental fitting for reactions in presence of Amberlyst 70

Table S5. Correlation coefficients matrix for PH, ER and LH molecular glycolic acid respectively

1		-0.762				
-0.762		1				
1		-0.627	0.4	139	0.0697	
-0.6	27	1	-0.	753	-0.253	
0.43	39	-0.753	:	1	0.207	
0.06	97	-0.253	0.207		1	
1	-0.712	-0.306	0.102	0.512	-0.170	
-0.712	1	0.467	0.067	-0.675	0.131	
-0.306	0.467	1	-0.316	-0.651	-0.081	
0.102	0.067	-0.316	1	0.010	0.502	
0.512	-0.675	-0.651	0.010	1	-0.018	
-0.170	0.131	-0.081	0.502	-0.018	1	

References

- 1 International Zeolyst, 2014, 1–5.
- 2 ThermoFischer, *Product specification Zeolite Y hydrogen SiO2:Al2O3 mole ratio 5.1:1*, 2020.
- 3 Zeolyst International, 2015, 1–6.
- 4 Zeolyst International, *Zeolite Ammonium ZSM-5 Data sheet*, 2014.
- 5 ThermoFischer, Alfa Aesar Mordenite-Amonnioum SiO2:Al2O3 mole ratio 20:1, 1993, vol. 21.
- 6 Dupont, Product Data Sheet AMBERLYST [™], 2019.
- 7 Dupont, Product Data Sheet AMBERLYST [™] 36, 2019.
- 8 Rohm & Haas, Amberlyst 70 product data sheet, 2005.
- 9 C. DOW, Dowex-50-WX8-50-100-resin, 1990, vol. 117-

01509-.

- 10 FuelCellStore, Nafion NR-40 and NR-50, 2016, vol. 10608.
- 11 A. A. by T. F. Scientific, 44429 Titanium(IV) oxide, catalyst support, https://www.alfa.com/fr/catalog/044429/, (accessed 11 August 2020).
- 12 S. Pariente, N. Tanchoux and F. Fajula, *Green Chem.*, 2009, **11**, 1256–1261.
- C. Engtrakul, C. Mukarakate, A. K. Starace, K. A. Magrini, A.
 K. Rogers and M. M. Yung, *Catal. Today*, 2016, 269, 175– 181.
- 14 C. Mutschler, Université Claude Bernard Lyon 1, 2020.
- M. Á. Pérez-Maciá, R. Bringué, M. Iborra, J. Tejero and F. Cunill, *AIChE J.*, 2016, **62**, 180–194.
- 16 K. Miyabe and R. Isogai, *J. Chromatogr. A*, 2011, **1218**, 6639–6645.
- 17 A. H. A. Al-Rubaiee, College of Engineering of Nahrain University, 2009.
- T. Dogu, E. Aydin, N. Boz, K. Murtezaoglu and G. Dogu, *Int. J. Chem. React. Eng.*, DOI:10.2202/1542-6580.1012.
- A. Orjuela, A. J. Yanez, A. Santhanakrishnan, C. T. Lira and D. J. Miller, *Chem. Eng. J.*, 2012, **188**, 98–107.