Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2021

Supporting information for:

Microplasma synthesized gold nanoparticles for surface enhanced Raman spectroscopic detection of methylene blue

Xuanhe Li,^a Liangliang Lin, ^{*a, b} Wei-Hung Chiang, ^c Kuan Chang ^a and Hujun Xu ^a

^a The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical

and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China.

^b Key Laboratory of Nanodevices of Jiangsu Province, Suzhou 215123, People's Republic of China.

^c Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

10007, Taiwaii.

E-mail: linliangliang@jiangnan.edu.cn (+86-13735820390)

Fig. S1 (a) Representative SDFM images of the SERS substrates after different times of usage; (b) The photographs

of the SERS substrates after different treatments.

Fig. S2 Raman spectra of the MB molecules detected using the SERS substrates after various recycle times.

Fig. S3 (a-b) SDFM images of the AuNPs-based SERS substrates dried for 2h: (a) at room temperature, (b) at 80 °C; (c-d)

The corresponding SEM images of the SERS substrates dried for 2h: (c) at room temperature, (d) at 80 °C.

Fig. S4 SERS spectra of the MB molecules absorbed on substrates dried at room temperature as well as at 80 °C.

Species	System	Transition	Wavelength	
ОН	3064 Å system	A ${}^{2}\Sigma^{+} \rightarrow X {}^{2}\Pi$	309.2 nm	
Ν	Second positive system	$C {}^{3}\prod_{u} \rightarrow B {}^{3}\prod_{g}$	335.9 nm (0,0), 357.1 nm (0,1)	
			380.2 nm (0, 2)	
Au	Au I		397.7 nm, 405.4 nm	
			472.1 nm, 516.9 nm	
Н	Balmer series	n→2s,2p	493.6 nm (H _{β}), 655.9 nm (H _{α})	
Ο		3p ⁵ P→3s ⁵ S	778.1 nm	
N_2			592.6 nm	
H ₂ O			618.76 nm	
Ar	Ar I	4p→4s	696.8 nm (1s ₅ -2p ₂), 707.1 nm (1s ₅ -2p ₃)	
			738.6 nm ($1s_4$ - $2p_3$), 750.3 nm ($1s_5$ - $2p_1$)	
			763.7 nm (1s ₅ -2p ₆), 772.3 nm (1s ₃ -2p ₂)	
			794.5 nm (1s ₃ -2p ₄), 826.9 nm (1s ₂ -2p ₂)	
			843.4 nm (1s ₄ -2p ₈)	

 Table S1 Summary of emission lines from the OES spectrum

Materials	Methods	Particle size	Detection limit	EFs	Advantages	Drawbacks	Reference
			(M)				
AuNPs	Microplasma	4~12 nm	10-11	1.06×10^{8}	Simple, efficient, and green process	Low throughput	This work
					High purity products		
Au-Cu alloy	Chemical reduction	~8 nm	~	3.2×10^{2}	Products with narrow size distribution and	Chemical contaminations	1
					good reproducibility	Poor composition control	
Au-Ag alloy	Laser ablation	4~11 nm	10-9	$\sim \! 10^{7}$	Simple, facile, and efficient process	Costly and complex setup	2
					High purity products	Energy consuming process	
Polymer encapsulated	Chemical reduction	~1.7 nm	10-5	5.18×10^{2}	Effective, low-cost, flexible process	Toxic reducing agent	3
rhenium nanoparticles					Stable products	Seriously aggregated products	
MoS_2/TiO_2 nanoflowers	Hydrothermal	2~3 µm	10-13	2.09×10^{6}	Simple and flexible process	Complex operation Time/energy	4
					Controlled product properties	consuming process	
Silver nanoparticles	Chemical reduction	~300 nm	~	4.2×10^{7}	Simple process	High temperature and time	5
	with physical				Stable products with good reproducibility	consuming process	
	evaporation					Products with impurities	
Ag-Au NPs	Laser ablation	11~23 nm	10-10	~	Efficient and flexible process	Costly and complex setup	6
					High purity products	Energy consuming process	
						Non-uniform aggregated NPs	
Core/shell Ag-Au alloys	Chemical reduction	2.8~24.1 nm	10-7	1.2×10^{7}	Simple and low-cost process	Time consuming process	7
	and seed mediated				Controlled product properties	Products with impurities and	
	growth					broad size distribution	

Table S2 An overview of methods regarding Raman detection of MB molecules using the SERS method.

References

- 1. M. K. Singh, P. Chettri, J. Basu, A. Tripathi, B. Mukherjee, A. Tiwari and R. K. Mandal, *Mater. Res. Express.*, 2020, 7, 015052.
- 2. C. Byram, V. R. Soma, Nano-Structures & Nano-Objects, 2017, 12, 121–129.
- 3. S. Kundu, L. Ma, W. Dai, Y. Chen, A. M. Sinyukov, H. Liang, ACS Sustainable Chem. Eng., 2017, 5, 10186–10198.
- 4. Y. N. Quan, R. Su, S. Yang, L. Chen, M. B. Wei, H. L. Liu, J. H. Yang, M. Gao and B. Z. Li, J. Hazard. Mater., 2021, 412, 125209.
- 5. G. N. Xiao, S. Q. Man, Chem. Phys. Lett., 2014, 45, 1025–1030.
- 6. O. O. Mejía, M. F. Mondragón, G. R. Concha, M. C. López, Appl. Surf. Sci., 2015, 348, 66-70.
- 7. T. T. H. Pham, X. H. Vu, N. D. Dien, T. T. Trang, N. Y. Troung, T. D. Thanh, P. M. Tan and N. X. Ca, RSC Adv., 2020, 10, 24577–2459.