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1 Pydex
The Python package Pydex is available from: https://github.com/omega-icl/pydex. Files related to the case studies
covered in this article can also be retrieved from this link.

2 DEUS
The Python package DEUS is available from: https://github.com/omega-icl/deus. Files related to the case studies
covered in this article can also be retrieved from this link.

3 More on the Response Surface Model Example
We analyze the effect of varying number of samples Ns and number of scenarios Nπ using the response-surface model
(RSM) example (cf. Section 3.4). The idea is to start with small numbers of feasible experiments Ns and model un-
certainty realizations Nπ and increasing them gradually and separately. We begin by fixing the number of uncertainty
realizations Nπ = 1000 and investigate the effects of changing Ns. The RSM example is solved six times using varying
number of samples Ns ∈ {125,250,500,1000,2000,4000}, recording the D-criterion value each time. Following this, the
number of samples is fixed at Ns = 1000 and the RSM example is solved six times using varying number of scenarios
Nπ ∈ {100,200,400,1000,2000,4000}. The recorded criterion values are presented in Figure S1, and the control plots
showing experimental samples drawn by DEUS and their D-optimal experimental efforts are given in Figure S2.

It is expected that, as the number of samples Ns is increased, the fidelity of the experimental space improves and so
does the criterion values. Rather unexpectedly, Figure S1a shows that increasing the number of drawn samples does not
guarantee an improvement in the criterion value. We identified that this is because drawing samples using the nested
sampling (NS) algorithm in DEUS separately for each case does not yield the following desirable property: When two sets
of experimental samples S 1

α and S 2
α are drawn independently, with N1

s < N2
s corresponding number of samples, an ideal

sampling method shall ensure that S 1
x ⊂S 2

x . The effect of not having this recursive property can be seen by comparing
any two subplots in Figure S2, for instance in Figures S2a & S2b. Notice how certain samples are present in Figure S2a
but not in Figure S2b. This implies that fidelity of the experimental space is not guaranteed to improve as the number of
samples is increased. Because the RSM example features a linear model in the parameters θ , increasing the number of
Monte Carlo scenarios Nπ is expected to affect the analytical restricted space R0.85, thereby affecting the drawn samples,
and ultimately the criterion value. Figure S1b shows the recorded criterion values as a function of the number of scenarios.
As the number of scenarios Nπ increases, the optimal criterion values seem to stabilize, but still fluctuate. Upon inspection
of the control plots in Figure S3, it is apparent that the issue with lacking the progressive property is still in place, and is
likely to affect the conclusion significantly.

(a) Varying number of samples Ns (b) Varying number of scenarios Nπ

Figure S1 Without merging: D-optimal criterion value for the RSM example as a function of the number of samples Ns and number of
scenarios Nπ .

There is a simple remedy that gives the NS algorithm the desired recursive property. Instead of comparing the samples
directly, the samples from the different cases are combined. To investigate the effect of varying number of samples Ns,
the set of samples presented in Figure S2a and S2b were combined to form the results in Figure S5b; the samples of
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(a) Ns = 125 samples (b) Ns = 250 samples (c) Ns = 500 samples

(d) Ns = 1000 samples (e) Ns = 2000 samples (f) Ns = 4000 samples

Figure S2 Without merging: the RSM example’s experimental samples and the D-optimal efforts at varying number of samples Ns for a
fixed number of Monte Carlo scenarios Nπ = 1000.

(a) Nπ = 100 scenarios (b) Nπ = 200 scenarios (c) Nπ = 400 scenarios

(d) Nπ = 1000 scenarios (e) Nπ = 2000 scenarios (f) Nπ = 4000 scenarios

Figure S3 Without merging: the RSM example’s experimental samples and the D-optimal efforts at varying number of Monte Carlo
scenarios Nπ for a fixed number of samples Ns = 1000.
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(a) Varying number of samples Ns (b) Varying number of scenarios Nπ

Figure S4 With merging: D-optimal criterion value for the RSM example as a function of the number of samples Ns and number of
scenarios Nπ .

Figure S2a, S2b, and S2c were combined to form the results of Figure S5c. To investigate the effect of varying number of
scenarios Nπ , samples from all scenarios (Figures S3a–S3f) are merged together and re-filtered for the given number of
scenario Nπ . The criterion values and control plots once the merging is done is given in Figures S4, S5, and S6 respectively.

Combining sample sets affects the conclusions significantly. The criterion values consistently improve as the number
of samples Ns is increased, see Figure S4a. Their values also stabilize quite quickly as the number of uncertainty real-
izations Nπ is increased, see Figure S4b. The criterion values are consistent after just 200 scenarios, unlike in Figure S1
where criterion values still fluctuate even with Nπ = 4000. Thus we only present the control plots of the first three cases
investigated in Figure S6 because the other three are equivalent to Figures S6b and S6c.

Based on the findings, we recommend to start by determining the appropriate number of scenarios Nπ for a constant
small number of samples Ns. Like other Monte Carlo techniques a large Nπ may be required for consistency, potentially
restricting the applicability of the methodology to larger problems. Nevertheless the experimenter must also consider the
accuracy of the probability distribution π that is used to describe their beliefs on the model parameter values to guide
them. When π is constructed based on ample and informative experimental data, extra care should be taken to ensure
that the chosen Nπ is sufficient to capture π. In contrast, when π is largely constructed out of one’s prior belief (that in
itself may be highly subjective), an excessive Nπ to capture the fidelity of π may not be needed. Once an appropriate
Nπ has been determined the experimenter has the option to gradually improve the experimental campaign by increasing
the number of experimental factor samples Ns. With such a flexibility, the only parameter that the experimenter needs to
carefully decide on is Nπ because one can easily tailor Ns to each individual case depending on the trade-off between the
time needed to compute the designs and the fidelity of capturing the restricted space, thereby maximizing the information
content of the final campaign.

4 Additional Results: Esterification of Propionic Acid
In this extra subsection of the esterification case study, we present additional figures and tables alongside the other designs
referenced in the main text. We also provide further discussions on a few notable features of the figures.

4.1 Feasibility of the Restricted D-optimal Average Design
In this subsection, the trajectory of the cooling failure temperature Tcf over time is presented in Figure S7 to demonstrate
that the restricted, average design’s supports satisfy the MTSR constraint. The predicted Tcf trajectories involve groups
due to the discrete probability distribution put on α, and β . Since each can take a value of 1 or 2, there are a total of
four trajectory groups corresponding to the different permutations of these values. The groups have varying thickness
as well, with thicker lines indicating a higher probability of occurring. The thickest group trajectory corresponds to the
scenario when both α = 1, and β = 1, with the highest probability 0.752. The thinnest group trajectory corresponds to
when both α = 2, and β = 2, with probability 0.252. The other two groups with similar thickness correspond to α = 1 and
β = 2, and α = 2, β = 1, both with the same probability 0.75× 0.25 = 0.1875. The group trajectories coincide with each
other, in support 1 for instance, the thinnest group coincides with the thickest group closely between approximately the
120 minute, and 250 minute mark. Another interesting observation is that four the of five supports "touch" the MTSR
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(a) Ns = 125 samples (b) Ns = 375 samples (c) Ns = 875 samples

(d) Ns = 1875 samples (e) Ns = 3875 samples (f) Ns = 7875 samples

Figure S5 With merging: the RSM example’s experimental samples and the D-optimal efforts at varying number of samples Ns for a fixed
number of Monte Carlo scenarios Nπ = 1000.

(a) Nπ = 100 scenarios (b) Nπ = 200 scenarios (c) Nπ = 400 scenarios

Figure S6 With merging: the RSM example’s experimental samples and the D-optimal efforts at varying number of Monte Carlo scenarios
Nπ for a fixed number of samples Ns = 1000.
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Figure S7 Trajectory of the cooling failure temperature Tcf over time of the restricted, average designs supports.

constraint. Indicating that the MTSR constraint does actively constraint the amount of information that the experimental
campaign could bring. Thus, as one might expect, many of the supports does activate (or at least are close to activating)
the MTSR constraint.

4.2 Restricted D-Optimal Local Design
With the same setup, but now ignoring the effect of uncertainty on the predictions of the information content, we compute
a locally D-optimal design within the restricted space. We kept all solution parameters consistent with the restricted,
average design. The restricted locally D-optimal design is presented in Figures S8, S9, and Table S1.

Figure S8 presents a corner plot visualization of the locally D-optimal design. It contains several similarities with the
average design (AD) of Figure 4, implying that under the prior p.d.f. used in this study, opting for a local design (LD) does
not lead to an overly different experimental campaign. This gives some re-assurance that opting for a LD does not lead to
a large increase in risk that an uninformative experiment is computed. To provide a measure of this risk, we compute the
average D-criterion values for both designs under the given prior: the AD is predicted to have an average D-criterion value
of 2.823, whilst the LD 2.806. Both have 5 supports, all of them red, indicating predicted feasibility probability of at least
95%. The temperature subplots again show that both designs are made up of high, and low temperature experiments with
no mid-range temperatures. The effort split between the high, and low temperature experiments is similar, with a total
of 65.03% allocated to the high-temperature experiments. The u1 subplots are visually similar, showing four supports at
high values of u1, and one support with lower value of u1. The u4 versus u1 subplot shows a noticeable difference, where
the value of u4 for one the supports is significantly lower than in the AD. These similarities are more easily confirmed
when comparing Figures 5, and S9. In Figure 5, support number 1, 2, 4, and 5 (top-to-bottom) of the AD are shared
by the LD, appearing as support number 1, 2, 3, and 5 in Figure S9, respectively. All shared supports, furthermore, are
allocated similar efforts except for number 5, that is allocated 11.69% in the AD, and 2.74% in the LD. This implies that
the difference between the AD, and the LD will be more pronounced in larger experimental campaigns. The supports that
are not shared do share similarities to each other. They are both low-temperature experiments, with relatively low alcohol
feed rates u for the first three time periods. The main difference between two is that the AD recommends a high alcohol
feed rate in the final time period whilst the LD recommends a low alcohol feed rate.
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Figure S8 The corner plot of the restricted locally D-optimal design. Despite ignoring the effects of uncertainty on the predicted information
content, similarities to the maximal average design are observed. Because of the similarities, it proved to be a viable option when the model
proved prohibitively expensive under the project’s constraints. Do note that the risk that locally D-optimal designs become uninformative
rises as the uncertainty in model parameter increases.

Table S1 The locally D-optimal campaign satisfying the MTSR constraint

Temperature Feed Rate Effort Total number of runs, Nt

T (K) u(t)×105 (Ls−1) p∗ (%) 2 3 4 5 10

u1 u2 u3 u4

347.67 1.23 0.91 0.54 0.66 48.27 1 1 1 1 4
348.14 1.19 0.07 0.19 1.04 5.07 0 0 1 1 1
338.34 1.16 0.63 0.27 0.16 30.35 1 1 1 1 3
340.21 0.45 0.15 0.38 0.14 13.56 0 1 1 1 1
347.85 1.24 0.19 0.09 0.17 2.74 0 0 0 1 1

Efficiency Bound (%) 0.00 0.00 0.00 41.43 73.73
Actual Efficiency (%) 87.52 93.54 91.22 86.58 99.19
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Figure S9 The dynamic experiment plot of the supports of the restricted D-optimal local design. Four supports are shared between the
local, and average designs. The similarities between the two designs imply that local design is a viable option when computational cost
becomes prohibitive.

4.3 Unrestricted D-Optimal Local Design
The unrestricted experimental space considers the whole range of experimental factors values permitted, i.e., T ∈ [338,348]
K, and u1,u2,u3,u4 ∈ [0.80,2.80]× 10−5 Ls−1. This 5-dimensional space is discretized into 4× 4× 4× 4× 5 = 1280 mesh-
centered grid of experimental candidates, with 5 temperature levels. We aim to maintain a comparable, but larger number
of candidates with the restricted designs to not under-represent the effectiveness of the unrestricted design with an overly
coarse discretization relative to the restricted space.

In the same formats as before, we report the unrestricted, local design in Figures S10, S11, and Table S2. Since the
MTSR constraint no longer restricts the experimental space, the unrestricted, local design is expected to provide more
information. As comparison, we report the average information criterion under the given prior. The unrestricted, locally
D-optimal design is predicted to provide 8.350, compared to 2.823 of the restricted, average design, and 2.806 of the
restricted, local design. This increased information content, however, comes at a hefty, and unacceptable safety risks.

The axes limits of Figure S10 are enlarged to clearly illustrated the supports of the unrestricted, local design. It has 4
experimental supports. As the corner plot illustrates, many supports are positioned at the boundaries of the unrestricted
space. Unlike the restricted designs, the supports are magenta, indicating the they have predicted feasibility probabilities
below 70%. Although some of the supports appear to be within the main cluster of res samples in some subplots, they are
located away from it in the other subplots. The T versus u1 subplot, for instance, shows a clear separation between the
experimental supports and runs with high feasibility probabilities.

Although significantly different to the restricted designs, there are two similarities we were able to discern. Like
others, the supports of the unrestricted design comprise experiments at low, and high temperatures without mid-range
temperatures. Only this time, only a total of 49.04% of the effort is allocated to high-temperature experiments. The
alcohol feed rate in the first quarter u1 of all the supports take relatively high values, indicating that introducing as much
alcohol early is informative. Notice, though, that the u1 values of the unrestricted, local design are significantly higher
than those of the restricted ones.

5 Additional Case Study: Increasing Throughput of a Jacketed Stirred-Tank
Reactor

Consider the production of a chemical species B in a helical-finned jacketed stirred-tank reactor (for enhanced heat
transfer) hosting an exothermic reaction A+C −−→ νB and designed to operate in continuous mode. The following
mechanistic model posits that species C is always in excess and makes other basic assumptions like perfect mixing and
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Figure S10 Corner plot of the unrestricted locally D-optimal design. Unlike previous designs, the supports are magenta coloured, having
feasibility probabilities lower than 70%. Although some supports appear to be located within the main cluster of red samples, note that
they are located outside in the other subplots/projections. The axes limits are slightly enlarged from previous corner plots for clarity as
many supports lie on the boundaries of the subplots.

Table S2 The locally D-optimal campaign ignoring the MTSR constraint

Temperature Feed Rate Effort Total number of runs, Nt

T (K) u(t)×105 (Ls−1) p∗ (%) 2 3 4 5 10

u1 u2 u3 u4

338.15 18.70 0.00 0.00 9.30 16.79 0 1 1 1 2
338.15 28.00 28.00 28.00 28.00 34.17 1 1 1 2 3
348.15 28.00 0.00 9.30 0.00 14.98 0 0 1 1 2
348.15 28.00 28.00 0.00 0.00 34.06 1 1 1 1 3

Efficiency Bound (%) 0.00 0.00 73.16 58.72 87.79
Actual Efficiency (%) 86.75 95.05 97.51 98.56 99.51
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Figure S11 The dynamic experiment plot of the supports of the unrestricted D-optimal local design.

constant reaction mixture volume,

dcA

dt
=

q
V
(cA,in− cA)− kcγ

A (S1)

dcB

dt
=− q

V
(cB)+νkcγ

A (S2)

dcC

dt
=

q
V
(cC,in− cC)− kcγ

A (S3)

k = exp
(

θ0 +θ1

(
T −Tre f

T

))
(S4)

dH
dt

= q(hin−hout)−Q j (S5)

H = Mthout (S6)

Mt = ∑
i∈{A,B,C}

ciV (S7)

hin = ∑
i∈{A,B,C}

ci,in
(
hF,i + cP,i(Tin−Tre f )

)
(S8)

hout = ∑
i∈{A,B,C}

ci
(
hF,i + cP,i(T −Tre f )

)
(S9)

dH j

dt
= qw(hw,in−hw,out)+Q j (S10)

H j = Mwhw,out (S11)

Mw = ρwVj (S12)

hw,in = hF,w + cP,w
(
Tw,in−Tre f

)
(S13)

hw,out = hF,w + cP,w
(
Tj−Tre f

)
(S14)

Q j =UA(T −Tj) (S15)

where ci (molL−1) is the concentration of species i, t (min) the time, V (L) the volume of reaction mixture, k (min−1) the
reaction constant, H (J) the enthalpy of the reaction mixture, hin (Jmol−1) the molar enthalpy of the inlet, hout (Jmol−1)
the molar enthalpy of the outlet, T (K) the reactor temperature, Q j (Jmin−1) the heat transferred between the reaction
mixture and the jacket, MT (mol) the total molar holdup of reaction mixture, H j (J) the jacket enthalpy, hw,in (Jmol−1)
the molar enthalpy of cooling water into the jacket, hw,out (Jmol−1) the molar enthalpy of cooling water out of the jacket,
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Table S3 Model parameters, experimental factors, and default start-up strategy for the jacketed stirred-tank reactor case study.

Model Parameters Experimental Controls

Symbol Name Value Symbol Name Range

θ0 (–) Pre-exponential constant −3.896 q (Lmin−1) Throughput [0.50,2.50]
θ1 (–) Activation energy 44.03 τd (min) Duration [1.0,20.0]
ν (molmol−1) Stoichiometric ratio 1.0 qw (Lmin−1) Cooling flow [0.0,5.0]

γ (–) Order of reaction 1.0 Default Start-up

Tre f (K) Reference temperature 273.15 Symbol Name Value

UA (WK−1) Thermal conductance 2000 q (Lmin−1) Throughput 1.00
V j (L) Jacket volume 2.00 qw (Lmin−1) Cooling flow 1.1
V (L) Reaction volume 2.00 cA,0 (molL−1) Initial A concentration 0.03
ρw (molL−1) Molar density of water 55.56 cB,0 (molL−1) Initial B concentration 0.00
cP,A (Jmol−1 K−1) Heat capacity of A 112.4 cC,0 (molL−1) Initial C concentration 24.66
cP,B (Jmol−1 K−1) Heat capacity of B 120.0 cA,in (molL−1) Inlet A concentration 0.50
cP,C (Jmol−1 K−1) Heat capacity of C 130.0 cB,in (molL−1) Inlet B concentration 0.00
hF,A (JL−1) Heat of formation of A -80,000 cC,in (molL−1) Inlet C concentration 24.66
hF,B (JL−1) Heat of formation of B -180,000 Tin (K) Inlet temperature 298.15
hF,C (JL−1) Heat of formation of C 0 T0 (K) Initial reaction temperature 298.15

Tj,0 (K) Initial jacket temperature 273.15
Tw,in (K) Inlet water temperature 273.15

and Mw (mol) the total molar holdup in the jacket. The rest of the model parameters are collected in the left section of
Table S3. The experimental controls are specified in the right section.

The default initial conditions and start-up procedure to achieve steady-state operation is also provided in the right
section of Table S3. As shown in Figure S12, the model with nominal parameter estimates predicts that steady-state can
be established within 30 minutes. The green dashed lines in the left and right plots of Figure S12 indicate the minimum
product concentration cmin

B = 0.24 to be suitable for downstream separations and the maximum temperature T max = 30 °C
for a safe operation, respectively.

To address changing market demand, the throughput needs to be doubled to q = 2.00 Lmin−1. Although the process
was designed with the flexibility to accommodate throughput increases, there is a concern that the actual process behavior
has drifted due to aging. This drift could either be attributed to a decrease in UA due to fouling on the reactor-jacket
interface, or to a change in θ0 because of a significant buildup of undetected inhibitor(s) inside the reactor. The process,
therefore, may no longer be able to accommodate the throughput doubling without leading to dangerously high reaction
temperatures exceeding T max or off-spec product concentrations below cmin

B .
It was estimated that θ0 ∈ [−4.101,−3.896] and UA ∈ [1750,2000]. With such a belief, the range of predictions under

a doubling of the throughput flow from 100 minutes onward is presented in Figure S13. A total of Nπ = 100 Monte
Carlo scenarios are drawn from the uniform distribution of the two uncertain parameters UA and θ0, chosen from gradual
increase of Nπ until there is no significant differences in the shaded curves in Figure S13. A significant portion (56 out of
100 scenarios) of the cB trajectories on the left plot fall below the green dashed line representing cmin

B after the set-point
change. By contrast, all of the reaction temperature profiles on the right plot are predicted to remain below the green
dashed line representing T max after the same change.

To mitigate this large uncertainty, an experimental campaign is designed to support the recalibration of UA and θ0. The
experiments are planned with smaller and revertible set-point changes to test the reactor’s capacity to cope with the target
throughput increase. Since the experiments are conducted on the process plant itself, the feasibility of the process during
the experiment is critical. Three control variables are chosen as experimental controls (Table S3): the modified throughput
flow q, imposed 100 minutes after startup time to ensure that the process is initially at steady state and for a duration τd
before reverting to the default throughput; and the coolant flowrate qw taken constant throughout the experiment.

The process allows monitoring of cA and cB offline through manual sampling of the reaction mixture. Both the
reaction mixture temperature T and the jacket temperature Tw are also recorded at the sampling time. A small quantity of
an inhibiting agent is added to the samples for quenching any ongoing reactions; small enough to have negligible effect
on temperature of the drawn sample. The sample is then sent to the lab to measure the concentrations cA and cB. As
long as the feasibility constraints are met, sampling the reactor outlet directly is considered safe. Nevertheless, because
sampling is done manually, only one sample can be drawn per experimental run. Thus, the time at which to sample is
another important aspect for experimental design.
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Figure S12 Response trajectories predicted by the process model with nominal parameter values during a default start-up. The green
dashed lines in the left and right plots illustrate the minimum concentration cmin

B and maximum reaction temperature T max, respectively.

Figure S13 Range of response trajectories predicted by the process model during a default start-up followed by a doubling of the throughput
after 100 minutes. The filled regions enclose the minimal and maximal trajectories among all sampled scenarios of the uncertain parameters
(UA,θ0)∈ [−4.101,−3.896]× [350,400] with the rest of the parameters at their nominal values, and the dotted curves are the mean profiles.
The green dashed lines in the left and right plots illustrate the minimum concentration cmin

B and maximum reaction temperature T max,
respectively.
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Table S4 Unrestricted, locally D-optimal campaign for the the jacketed stirred-tank reactor. The experimental supports together with
their continuous efforts are reported in the left section. The right section reports the rounded experimental efforts using the efficient and
greatest effort rounding procedures for varying number of runs in the experimental campaign. The bottom two rows report the minimum
likelihood ratio of the rounded designs and the actual efficiency to indicate rounding quality for different experimental campaigns.

Number of Experimental Runs Nt

UID q qw τd tsp p (%) 5 6 7 8 9 10 20

295 2.06 0.00 1.0 102.0 7.3 – 1 1 1 1 1 2
325 2.06 0.00 16.8 117.0 14.3 1 1 1 1 1 2 3
344 2.28 1.00 4.2 105.0 14.1 1 1 1 1 1 1 3
392 2.50 1.00 7.3 108.0 18.3 1 1 1 1 2 2 3
398 2.50 1.00 10.5 111.0 18.4 1 1 1 2 2 2 4
409 2.50 0.00 16.8 117.0 27.6 1 1 2 2 2 2 5

Efficiency Bound (%) 0.00 60.33 77.49 68.47 77.95 70.87 82.17
Actual Efficiency (%) 98.01 96.33 98.52 98.37 99.08 98.49 99.62

5.1 Unrestricted Locally D-optimal Design
Although the task is to recalibrate UA and θ0 only, measuring cA, cB, T , and Tw provides information for other model
parameters to be reestimated as well. The experiments, therefore, are designed to be maximally informative for the
precise estimation of five model parameters, namely UA, θ0, θ1, ν and γ. The problem addressed in this subsection is a
classical local D-optimal experiment using the current estimates (Table S3) and ignoring the feasibility constraints on cmin

B
and T max initially. The ranges of the controls q, τd and qw (Table S3) are discretized on a 10×7×6 grid, in combination
with 31 sampling time choices—one every minute following the set-point change (excluded) up to the 30 minutes mark
(included). This is considering that 20 minutes is the upper bound for τd , thus allowing an extra 10 minutes to take
measurements when the process is reverting to the original set point.

For this unconstrained locally-optimal design, sensitivity analysis (Step 2.1) and optimization (Step 2.2) was com-
pleted using a single core of Intel Xeon E5-2667 V4 @3.2GHz and 128GB of RAM within 6 minutes and 12 minutes of
computational time in Pydex, respectively. The maximal D-information criterion is 39.2. The corresponding campaign is
reported in Table S4, where each experiment is assigned a unique identification number (UID). The experimental supports
all have a sampling time after 100+τd , the time at which the system starts reverting. The locally-optimal campaign, there-
fore, exclusively takes measurements during the reverting phase. Moreover, none of the experimental supports involve a
reduction in throughput q, and that the experimental effort is split about equally between cooling flows qw = 0 (49.2%)
and qw = 1 (50.8%). Notice finally that the effort apportionment based on the efficient rounding method is effective at
preserving a majority of the D-information content—96% and above—for campaigns having between 5–20 runs.

In the rest of the case study, we shall assume a reliability value of α = 0.95, such that any experiment predicted to
violate either of the constraints in more than 5 realizations of the (UA,θ0) uncertainty is considered infeasible. Remarkably,
none of the experimental supports of the unrestricted local design are feasible at this reliability level, with a ratio of
uncertainty realizations violating one or both constraints ranging between 40% to 100%. Another observation is that,
although the supports 295 and 325 only differ in their duration τd and sampling time tsp, the former obeys T max under all
uncertainty realizations, while the latter violates T max in every realization. This confirms that imposing a shorter set-point
change can effectively prevent violation of T max.

5.2 Restricted Locally D-optimal Design
Since the experimental supports of the unrestricted design are infeasible, the experimental space is now reassessed to
ensure that the support points will meet the safety constraints. The number of scenarios is set to Nπ = 100 as earlier
(cf. Section 5). A total of Ns = 424 samples are drawn from the probabilistic restricted feasible space R0.95 using the
nested sampling algorithm implemented in DEUS, which takes about 790 minutes of computational time. The sampled
probabilistic restricted space for (q,qw,τd) is illustrated in Figure S14 as a 2D scatter plot with the marker sizes proportional
to the duration τd; an alternative 3D scatter plot is presented in the ESI (Figure S7).

The general pattern is that a large fraction of the restricted space at 95% reliability level lies within the bottom left
corner (q ∈ [0.5,1.75], qw ∈ [0,1.5]). The abrupt decrease in the density of feasible samples (red markers) for either large
throughput q ≥ 1.75 or reduced cooling capacity qw ≤ 0.5 is due to a rise in the reaction mixture temperature T , which
quickly exceeds T max but for the shortest of set-point change τd . A similar decrease is observed at large cooling capacity
qw ≥ 1.5 due to over-cooling in the reactor, which reduces the reaction rate drastically and prevents the concentration cB
from reaching cmin

B . The presence of feasible samples outside of the main population that correspond to aggressive changes
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Figure S14 Probabilistic restricted feasible space for the the jacketed stirred-tank reactor. The 3-dimensional data points are scattered in
a 2-dimensional space with the marker sizes proportional to the duration τd . Red samples satisfy the 95% reliability threshold. The yellow,
blue, and purple colored samples are byproducts with feasibility probabilities between [0.8,0.95), [0.5,0.8), and [0,0.5), respectively.

in q and qw may seem surprising. But these are all runs with short set-point change τd , thereby mitigating violations of
T max (cf. Section 5.1).

Next, the locally D-optimal design is computed within the restricted space. Using Pydex, the sensitivity analysis
(step 2.1) and optimization (step 2.2) on a single core of Intel Xeon E5-2697 V2@2.7GHz and 48GB of RAM take about
4 minutes and 8 minutes of computational time, respectively. Because the experimental space is now restricted, the
predicted D-information criterion drops to 29.6 from 39.2 without restrictions (cf. Section 5.1). The corresponding
campaign is illustrated on the plots and table embedded in Figure S15. All support points are located at or near the
boundary of the main population of feasible samples. Unlike the unrestricted local design, all experimental supports
furthermore increase the throughput q significantly, between 1.6–2.3. Other than the support 406, all the experimental
supports involve short set-point changes, with τd < 3. All the measurements are furthermore taken during the reverting
phase. It is also noticeable that only the support 190 increases the cooling flow qw to above 2.5, while the others decrease
qw to below 0.5. Lastly, the effort apportionment based on the efficient rounding method is again effective at retaining
above 95% of the D-information content for campaigns comprising between 5–20 runs.

5.3 Restricted Average D-Optimal Design
Because the information content may be inaccurately predicted through a local design, the experimental campaign is
now designed to maximize the average information content by directly taking the uncertainty of UA and θ0 into account.
The same samples from the restricted space are reused for the average D-optimal design (Figure S14), and the same 100
realizations of UA and θ0 as for the restricted space sampling are also used to compute the average D-optimal criterion.
Since the number of atomic matrices is now 100 times larger, these computations were conducted in parallel using Python’s
multiprocessing library to utilize 4 CPU cores of a workstation with Intel Xeon E5-2697 V2 @2.7GHz and 48GB of RAM,
taking 115 minutes of computational time. After that, the optimization was run on a single core of Intel Xeon E5-2667 V4
@3.2GHz and 128GB of RAM, taking a total of 690 minutes of computational time. Note that CVXPY spends 15% of the
total time (over 100 minutes) compiling the optimization problem and the solver MOSEK uses the rest, indicating that
problem compilation and solution could be significant impediments to computational tractability in practice.

The average D-optimal campaign is represented on the plots and table in Figure S16. There are notable similari-
ties between the local and average designs. Like the local design, all the experimental supports involve increasing the
throughput q. Both designs share 4 common supports (168, 194, 256, 325). Furthermore, the supports 269 and 164
of the maximal average design resemble the supports 190 and 406 of the local design (Figure S15), respectively. The
former pair (269 from local and 190 from average) corresponds to a short set-point change τd along with a drastic change
in both throughput q and cooling flow qw; the latter pair (164 from local and 406 from average) corresponds to a long
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Number of Experimental Runs Nt

UID q qw τd tsp p (%) 5 6 7 8 9 10 20

168 1.63 0.24 2.5 103.0 20.1 1 1 1 1 1 2 4
190 1.91 2.56 1.4 102.0 12.1 1 1 1 1 1 1 2
194 1.94 0.11 2.8 103.0 1.6 – – 1 1 1 1 1
215 2.31 0.08 1.1 102.0 11.8 1 1 1 1 1 1 2
256 1.76 0.19 2.4 103.0 24.7 1 1 1 2 2 2 5
325 2.08 0.16 1.0 102.0 21.9 1 1 1 1 2 2 4
406 1.68 0.45 11.2 112.0 7.8 – 1 1 1 1 1 2

Efficiency Bound (%) – – 57.77 57.16 55.28 80.88 82.54
Actual Efficiency (%) 98.33 96.78 94.97 96.54 97.36 98.69 99.68

Figure S15 Locally D-optimal campaign within the restricted experimental space at 95% reliability for the the jacketed stirred-tank reactor.
Left plot: Translucent markers corresponding to the samples drawn for the restricted experimental space, with experimental supports shown
as opaque markers. The size of the red octagons around the experimental supports are proportional to the optimal efforts. Right plot:
Heatmap representing the optimal efforts associated with the experimental supports, only showing the optimal time choices for clarity.
Table: The left section shows the experimental supports and their associated experimental efforts. The right section reports the rounded
experimental efforts using the efficient and greatest effort rounding procedures for varying number of runs in the experimental campaign.
The bottom two rows report the minimum likelihood ratio of the rounded designs and the actual efficiency to indicate rounding quality
for different experimental campaigns.

S15



Number of Experimental Runs Nt

UID q qw τd tsp p (%) 5 6 7 8 9 10 20

164 1.68 0.41 4.4 105.0 13.2 1 1 1 1 1 1 3
168 1.63 0.24 2.5 103.0 6.0 – – 1 1 1 1 1
194 1.94 0.11 2.8 103.0 2.9 – – – 1 1 1 1
235 1.63 0.78 1.3 102.0 6.3 – 1 1 1 1 1 2
256 1.76 0.19 2.4 103.0 23.7 1 1 1 1 2 2 4
269 1.99 2.15 1.3 102.0 18.3 1 1 1 1 1 1 3
325 2.08 0.16 1.0 102.0 8.5 1 1 1 1 1 1 2
335 1.81 0.21 2.7 103.0 21.1 1 1 1 1 1 2 4

Efficiency Bound (%) – – 0.00 52.73 52.61 54.61 81.92
Actual Efficiency (%) 96.57 95.46 93.61 93.96 96.68 97.16 99.23

Figure S16 Average D-optimal campaign within the restricted experimental space at 95% reliability for the the jacketed stirred-tank
reactor. Left plot: Translucent markers corresponding to the samples drawn for the restricted experimental space, with experimental
supports shown as opaque markers. The size of the red octagons around the experimental supports are proportional to the optimal efforts.
Right plot: Heatmap representing the optimal efforts associated with the experimental supports, only showing the optimal time choices
for clarity. Table: The left section shows the experimental supports and their associated experimental efforts. The right section reports
the rounded experimental efforts using the efficient and greatest effort rounding procedures for varying number of runs in the experimental
campaign. The bottom two rows report the minimum likelihood ratio of the rounded designs and the actual efficiency to indicate rounding
quality for different experimental campaigns.
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set-point change with rather mild changes in q and qw. The main difference between the two designs is that the maximal
average design comprises one additional support point that has no resemblance with the local design. The extra support
235 is located around the main population of yellow samples but with a short duration, making it feasible under the given
uncertainty. The experimental efforts are reported on the table and illustrated on the left plot in Figure S16. Both the local
and maximal average designs assign about two-third of the total experimental effort to three supports only. And similarly
to the local designs (cf. Table S4 & Figure S15), the applied rounding scheme is effective at maintaining a majority of the
information content in various experimental campaigns having from 5 up to 20 runs.

5.4 Alternative Plots
An alternative 3D plot of the drawn samples of the restricted experimental space is presented in Figure S17 of this
document. The 3D scatter plot shows the uniformity of the drawn samples over the restricted space which may not be
obvious in the 2D scatter plot of Figure 5 of the main article.

Figure S17 3D scatter plot of samples from the restricted experimental space at 95% reliability drawn using nested sampling.
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