Pyrolytic activation of cellulose: Energetics and condensed phase effects

Arul Mozhi Devan Padmanathan^a and Samir H Mushrif^{a*}

*Email: mushrif@ualberta.ca

^a Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street Northwest, Edmonton, Alberta T6G 1H9, Canada.

Supporting Information

Content

Table S1. Computational methods and System configurations

Figure S1: DFT calculated transition states in condensed phase for (A) Transglycosylation (B) Ring contraction.

Figure S2: DFT calculated transition state in crystal structure for (A) Transglycosylation (B) Ring contraction

Table S2: Comparison of finite temperature barriers calculated with and without dispersion corrections

Figure S3: Schematic showing the calculation of condensed phase corrections to gas phase free energy barriers.

Figure S4: Cellobiose – Atom type nomenclature

Table S3: Non-bonding force-field parameters for cellobiose and its transitions states

Two novel computational strategies are employed in this work to capture the finite temperature condensed phase and entropic effects in cellulose decomposition. System size is limited by the tools used in each strategy. Table S1 provides details on the two strategies, tools and corresponding system configurations.

Computational	Tools	Purpose	System (no. of molecules)	
Strategy			Solvent	Solute
ConTS	Gromacs v 2018.7	Finite temperature configuration	7 cellobiose	1 cellobiose
	VASP 5.4.1	TS search (enthalpic barrier)	7 cellobiose	1 reacting cellobiose
Free-energy barrier correction	Gaussian 09 code	TS search (gas phase free-energy barrier)		1 reacting cellobiose
	Gromacs v 2018.7 (Thermodynamic Integration)	Finite temperature condensed phase interactions	59 cellobiose	1 Transition State

Table S1. Computational methods and System configurations

Condensed phase TS-Search method

Transition states for cellobiose breakdown via transglycosylation and ring contraction are calculated in finite temperature melt-phase environment. Images of the TS are provided in Figure S1. Unlike the finite temperature condensed phase calculations reported in this paper, the enthalpic barriers in the crystal structure (Figure S2) shows a minimum difference in the barriers of only 12.62 kJ/mol between the two mechanisms.

Figure S1: DFT calculated transition states in condensed phase for (A) Transglycosylation (B) Ring contraction.

Figure S2: DFT calculated transition state in crystal structure for (A) Transglycosylation (B) Ring contraction

Dispersion Correction

DFT calculations in the study were performed using PBE exchange correlation functional. Dispersion corrections were accounted for by performing DFT-D3 calculations using the Grimme method. As shown in Table S2, the corrections to the functional lead to negligible deviations from the original finite temperature barriers suggesting that the medium range non-covalent interactions have minimum effect of cellulose thermochemistry.

Table S2: Comparison of finite temperature barriers calculated with and without dispersion corrections

Mechanism	Temperature (K)	Enthalpic barrier (ΔH) (kJ/mol)	ΔH with VdW corrections (kJ/mol)
Transglycosylation	500	299.30	293.70
	1200	164.66	156.78
Ring contraction	500	399.73	394.56
	1200	294.22	288.50

Condensed phase free-energy barrier corrections

Interaction energy calculations (Thermodynamic Integration)

The interaction energy of the reactive solute molecule (reactant, TS, product) in the condensed phase is captured by calculating the relative solvation free energy using TI implementation in Gromacs 2018.7. The difference in the interaction between the reactant and TS ($\Delta G_R^{int} - \Delta G_{TS}^{int}$) gives the free energy correction to the gas phase barrier, as illustrated in Figure S3.

Figure S3: Schematic showing the calculation of condensed phase corrections to gas phase free energy barriers.

The non-bonded parameters of the reactant and transition state species used for the calculation of ΔG_{R}^{int} and ΔG_{TS}^{int} in Gromacs is provided in Table S3.

Molecule		Atom name		σ (nm)	٤ (kJ	
						mol)
		C1/C2/C3/C4/C5/C6/C7/C8/C9/C10/C11		0.350	0.276	
			H11/H12/H21/H31/H41/H51/H61/H71/H		0.250	0.126
$\begin{array}{c} & \begin{array}{c} & & \\ & & $		72/H81/H91/H101/H111/H121				
		HO2/HO3/HO4/HO6/HO7/HO8/HO9/H		0.000	0.000	
		O11				
		02/03/04/06/07/08/09/011		0.312	0.711	
		01/05/010		0.290	0.586	
Atom nomo			Charge			
Atom name	Cellobiose		TS - ring contraction	TS - transglycosyl		lation
C1	0.1132		0.081		0.1132	

C10	0.1545	0.1545	0.1545
C11	0.151	0.151	0.151
C12	0.1961	0.1961	0.1961
C2	0.0795	0.0619	0.0795
C3	0.1108	0.1557	0.1108
C4	0.1343	-0.1532	0.1343
C5	0.1675	0.2375	0.1675
C6	0.1978	0.191	0.0778
C7	0.1148	0.1148	0.1148
C8	0.0742	0.0742	0.0742
C9	0.0079	0.0079	0.0079
H101	0.1144	0.1144	0.1144
H11	0.0921	0.1027	0.0921
H111	0.1274	0.1274	0.1274
H12	0.0921	0.1027	0.0921
H121	0.0988	0.0988	0.0988
H21	0.1264	0.1805	0.1264
H31	0.1161	0.1362	0.1161
H41	0.1126	0.105	0.1126
H51	0.1324	0.136	0.1324
H61	0.1046	0.2126	0.1046
H71	0.0992	0.0992	0.0992
H72	0.0992	0.0992	0.0992
H81	0.124	0.124	0.124
H91	0.1205	0.1205	0.1205
HO1	0.4153	0.4399	0.4153
H011	0.4296	0.4296	0.4296
HO2	0.4143	0.452	0.4143
HO3	0.4147	0.4232	0.4047
HO4	0.449	0.4047	0.449
HO7	0.4402	0.4402	0.4402
HO8	0.4246	0.4246	0.4246
HO9	0.4246	0.4246	0.4246
01	-0.6633	-0.6936	-0.6633
O10	-0.4105	-0.4105	-0.4105
011	-0.5634	-0.5634	-0.5634
02	-0.6679	-0.5404	-0.6679
03	-0.6669	-0.6693	-0.5169
04	-0.6802	-0.6756	-0.6802
05	-0.4359	-0.2858	-0.4359
O6	-0.3606	-0.6068	-0.3806

07	-0.6741	-0.6741	-0.6741
08	-0.6942	-0.6942	-0.6942
09	-0.6567	-0.6567	-0.6567