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S1. Reactivity of methane oxidation over monometallic sample 

   Figure S1 shows the calculation for first order rate coefficient of monometallic Pd and Pt sample in the 

manuscript. Methane pressure is positive to the reaction over both Pd and Pt monometallic sample. We see in 

Figure S1 that high methane pressure contributes to high turnover rate of methane. Oxygen pressure is important 

to the reaction because the oxygen coverage and oxidability significantly affect the reaction region and rate-

determining step. Methane pressure do not affect the catalyst structure, and in order to understand the kinetics, 

methane effect should be removed[1-3]. 
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Figure S1. Reactivity of methane oxidation as a function of O2 pressure over monometallic Pt (a) in low oxygen 

pressure, and monometallic Pd (b) in high oxygen pressure (1.0 kPa and 1.5 kPa CH4, 100 mL/min total flow 

rate, N2 balance, 300℃) 

 

 

S2. Reactivity of methane oxidation over bimetallic sample 
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   Figure S2 shows the calculation for first order rate coefficient of bimetallic 1Pt1Pd and 1Pt2Pd sample in the 

manuscript. Catalytic consequences of Pt and Pd are separated via oxygen pressure at around 1 kPa. Methane 

pressure is positive to the reaction rate.  
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Figure S2. Reactivity of methane oxidation as a function of O2 pressure over bimetallic 1Pt1Pd (a) and 1Pt2Pd 

(b) in a wide oxygen range (1.0 kPa and 1.5 kPa CH4, 100 mL/min total flow rate, N2 balance, 300℃) 

 

S3. Average particle diameter calculated by hemisphere model 

   The average particle diameter mentioned above is calculated by arithmetic mean value from randomly selected 

particles. We use chemisorption data and hemisphere model to calculate the average particle size for comparison. 

The chemisorption at room temperature measures surface atoms on particle surface. All the atoms that are loaded 

on support surface can be calculated. Employing hemisphere model to calculate particle diameter requires that the 

catalyst can be regarded as a sphere to calculate the diameter. Some published report has used sphere model to 

evaluate the average diameter of monometallic Pd catalyst supported by alumina[4, 5], herein we expand its usage 

to Pd-Pt bimetallic samples. Figure S3 shows the hemisphere model of Pd-Pt bimetallic and monometallic catalyst.  

 

 

Figure S3. Hemisphere model of Pd-Pt bimetallic and monometallic catalyst 

 

   For all the particles, whether monometallic or bimetallic Pd-Pt particles, we define its average diameter as d. 

The surface area of each catalyst particle is:  

𝑆 = 2𝜋 (
𝑑

2
)

2

                                                                                   (1) 

S represents surface area of each particle. Then we could calculate surface atoms of each particle (𝑇𝑠𝑢𝑟𝑓,𝑠𝑖𝑛𝑔𝑙𝑒) by 

using surface atoms concentration:  
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𝑇𝑠𝑢𝑟𝑓,𝑠𝑖𝑛𝑔𝑙𝑒 =
𝑆 ∙ 𝑘𝑠𝑢𝑟𝑓

𝑁𝐴
⁄                                                                        (2) 

𝑁𝐴 means Avogadro number, 𝑘𝑠𝑢𝑟𝑓 means surface atoms concentration. Herein, the surface atom concentration 

of Pd and Pt is 1.27 × 1019 𝑚−2 and 1.25 × 1019 𝑚−2, respectively, that is to say the two parameters are nearly 

the same. Therefore, in equation (2), 𝑘𝑠𝑢𝑟𝑓 choose 1.26 × 1019 𝑚−2 for bimetallic samples to do the calculation. 

Chemisorption result has measured total surface atoms of all the catalyst particles, thus we could obtain the total 

particle number on support surface:  

𝑁 =
𝑛𝑠𝑢𝑟𝑓,𝑡𝑜𝑡𝑎𝑙

𝑆 ∙ 𝑘𝑠𝑢𝑟𝑓
𝑁𝐴

⁄  
                                                                               (3) 

N means total particle number, 𝑛𝑠𝑢𝑟𝑓,𝑡𝑜𝑡𝑎𝑙 means all the surface atoms. Chemisorption experiment use oxygen as 

the probe molecule that can absorb on Pd or Pt species in the form of one to one. Pd and Pt species distribution on 

alloy surface does not affect the result measured from chemisorption.  

   Next, we establish the equation by using the equality of volume to calculate the average diameter. The total 

particle number has been calculated, thus employing the hemisphere model can write the total volume:  

𝑉 =
2

3
∙ 𝜋 ∙ (

𝑑

2
)

3

∙ 𝑁                                                                             (4) 

In the meantime, we know the loading percentage of Pd and Pt species, therefore we can calculate the volume by 

density:  

𝑉 =  
𝑛𝑃𝑡,𝑡𝑜𝑡𝑎𝑙𝑀𝑃𝑡

𝜌𝑃𝑡
+

𝑛𝑃𝑑,𝑡𝑜𝑡𝑎𝑙𝑀𝑃𝑑

𝜌𝑃𝑑
                                                              (5) 

If the sample is monometallic Pd or Pt catalyst, cancel the useless part in equation (5). 𝑛𝑃𝑡,𝑡𝑜𝑡𝑎𝑙 and 𝑛𝑃𝑑,𝑡𝑜𝑡𝑎𝑙 are 

molar mass for Pt and Pd, 𝑀𝑃𝑡 and 𝑀𝑃𝑑 are atomic weight of Pt and Pd, 𝜌𝑃𝑡 and 𝜌𝑃𝑑 are the density of bulk 

Pt and Pd. Combining with the equation (4) and (5), the average diameter (d) can be obtained.  

 

 

S4. Lattice spacing, free energy of Pd and Pt species 

Table S1 shows the parameters of lattice spacing, free energy of Pd and Pt species. It can be seen that oxidized 

Pd species has the lowest free energy in alloy catalyst[6, 7]. Compared with the surface free energy, oxidized Pd 

species still has the lowest value.  

Generally, there is a migration force between two metal species in the process of crystal formation, which is 

caused by thermodynamic instability in alloy particle. Compared with Pd (100) and Pt (100) plane, surface free 

energy of Pt species is 2.48 J/m2, which is higher than that of Pd species of 1.90 J/m2. After oxidation, surface free 

energy of oxidized Pd further decreases to 0.53 J/m2. Therefore, to maintain the stability of Pt-Pd binary metal 

system, Pd species will migrate to the surface as PdO, to reduce surface free energy of bimetal catalyst particle.[8, 

9]  

 

Table S1 Lattice spacing, surface free energy and bulk free energy for Pd and Pt species 

Reduced Sample Oxidized Sample 

Lattice 

fringe 

Pt (111)  2.265 Å 
Bulk free 

energy 

PtO  7.73 kJ/mol 
Surface 

free energy 

Pt (100)  2.48 J/m2 

Pd (111)  2.246 Å PtO2  28.09 kJ/mol Pd (100)  1.90 J/m2 

Pt-Pd (111)  2.25 Å PdO  -36.3 kJ/mol PdO (100)  0.53 J/m2 
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S5. Representative image for Pd-Pt core-shell structure 

   In Figure S4, we select 3 representative core-shell structural particles, which shows a bright inner core (red 

circle) and outer shell (green circle). The brightness in the image, represents a higher atomic number (Pt species) 

in alloy particle. Therefore, Pt-Pd core-shell structural particles is displayed in these images. However, it should 

be point out that, not all Pd-Pt particles are core-shell structural particles. The formation of core shell structure 

needs a procedure of oxygen titration[10, 11]. 

 

 

Figure S4. HAADF-STEM image for several representative core-shell structural Pd-Pt particles 
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