Electronic Supplementary Information

Developing Flow Photo-Thiol-Ene Functionalizations of Cinchona Alkaloids with an Autonomous Self-Optimizing Flow Reactor

Kouakou Eric Konan,^{a,b} Elvina Barré,^a Ehu Camille Aka,^{a,b} Abollé Dieurègne Abollé,^b Vincent Coeffard,^a and François-Xavier Felpin^{a,*}

^a Université de Nantes, CNRS, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France.

^b Université Nangui Abrogoua, Laboratoire de Thermodynamique et de Physico-Chimie du
Milieu, 02 BP 801 Abidjan 02, Côte d'Ivoire

* Corresponding author. Tel.: +33-025-112-5422; e-mail: <u>fx.felpin@univ-nantes.fr; ORCID:</u> 0000-0002-8851-246X; Website: http://felpin.univ-nantes.fr/

Table of content

1. General information	S2
2. Optimization algorithm	S2
3. Details of the experimental setup	S2
4. Optimization studies for the thiol-ene reaction	S 3
5. NMR Spectra	S4-S25
6. References	S26

1. General information

All reagents, starting materials and solvents were obtained from commercial suppliers and used as such without further purification, unless otherwise noted. High-field ¹H and ¹³C NMR spectra were recorded at 300 or 400 and 75 or 100 MHz, respectively. ¹H and ¹³C NMR spectra were referenced to the internal deuterated solvent (CDCl₃) at 7.26 and 77.16 ppm, respectively and Coupling constants were measured in Hertz. All chemical shifts were quoted in ppm, relative to TMS, using the residual solvent peak as a reference standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, br = broad. FT-IR spectra were recorded in the ATR mode. Wavelengths of maximum absorbance (v_{max}) are shown in wave numbers (cm⁻¹). High resolution mass spectrometry (HRMS) was recorded on a microTOF spectrometer equipped with orthogonal electrospray interface (ESI). Reactions were monitored by thin layer chromatography (TLC) with 0.25 mm pre-coated silica gel plates (60 F254), and visualization was accomplished with UV light at 254 nm. Flash column chromatography was performed using silica gel 60 (40–63 µm).

2. Optimization algorithm

The optimization algorithm here used has been described in our previous reports.^{1, 2}

3. Details of the experimental setup. HPLC pumps (JASCO PU2080) equipped with a RS-232 port were employed to flow the solution through the system. A sampler handler (JASCO AS 2055) equipped with a RS-232 port was used to inject reagent in the line. The reactor coil was heated with a heating plate (Heidolph, MR Hei-Connect) equipped with a RS-232 port. A 2-way 6-port valve (VICI, Cheminert C2-3006D) equipped with a RS-232 port was used to inject an aliquot of the crude mixture within the on-line HPLC unit. The HPLC column outlet was connected to a UV detector (JASCO, UV 2075) equipped with a RS-232 port. The flow outlet was connected to a programmable fraction collector (Advantec, CHF 1225C). All units equipped with a RS-232 port were autonomously controlled with MATLAB[®] through the use of communication protocols provided by the manufacturers.

4. Optimization studies thiol-ene reaction

Experiment	DMPA	Thiol	Residence time	Yield
	(equiv.)	(equiv.)	(min)	(%)
1	1.0	1.0	10.0	13
2	1.3	1.0	10.0	19
3	1.0	2.0	10.0	32
4	1.0	1.0	20.0	68
5	1.2	1.7	16.7	81
6	1.3	2.0	20.0	94
7	0.9	2.3	23.3	94
8	1.1	1.6	32.2	91
9	1.2	2.9	30.0	99

Table S1. Maximization of the yield of quinine derivative 3a

6. References

- D. Cortés-Borda, K. V. Kutonova, C. Jamet, M. E. Trusova, F. Zammattio, C. Truchet, M. Rodriguez-Zubiri and F.-X. Felpin, *Org. Process Res. Dev.*, 2016, 20, 1979-1987.
- D. Cortés-Borda, E. Wimmer, B. Gouilleux, E. Barré, N. Oger, L. Goulamaly, L. Peault, B. Charrier, C. Truchet, P. Giraudeau, M. Rodriguez-Zubiri, E. Le Grognec and F.-X. Felpin, *J. Org. Chem.*, 2018, 83, 14286-14299.