Supplementary information

Production of aromatics from butanol over Ga-promoted HZSM5 catalysts: Tuning of benzene-toluene-xylene and ethylbenzene (BTEX) selectivity

Tatinaidu Kella, Debaprasad Shee*

Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi – 502 284, Sangareddy, Telangana, India

^{*}Corresponding author at: Department of Chemical Engineering, Indian Institute of Technology

Hyderabad, Kandi 502284, Sangareddy, Telangana, India.

Tel.: +914023016210; fax: +914023016000.

E-mail address: dshee@che.iith.ac.in (Dr. Debaprasad Shee)

		Se	electivity, % ^a			
C ₁ -C ₂	C ₃ -C ₄	C ₅ -C ₁₂	Aromatics	BTEX	Higher aromatics	 Carbon balance (% error)
2.55	51.97	0.53	44.86	37.79	7.07	4.53
2.63	53.76	0.55	43.07	36.59	6.47	5.26
2.50	51.95	0.56	44.99	38.04	6.95	5.18
itions: Ten	nperature	= 673 K; V	WHSV = 0.75	h ⁻¹ ; Pressu	re = 1 bar.	
C ₁ -C ₂	C ₃ -C ₄	C ₅ -C ₁₂	Aromatics	BTEX	Higher	Carbon balance
					aromatics	(% error)
27.48	13.02	0.09	58.05	43.00	15.05	34.85
	$ \begin{array}{c} C_1 - C_2 \\ 2.55 \\ 2.63 \\ 2.50 \\ itions: Ten \end{array} $ $ \begin{array}{c} C_1 - C_2 \\ 27.48 \end{array} $	C_1 - C_2 C_3 - C_4 2.55 51.97 2.63 53.76 2.50 51.95 itions: Temperature C_1 - C_2 C_3 - C_4 27.48 13.02	Set C_1-C_2 C_3-C_4 C_5-C_{12} 2.55 51.97 0.53 2.63 53.76 0.55 2.50 51.95 0.56 itions: Temperature = 673 K; V Set Set 27.48 13.02 0.09	Selectivity, %* C_1-C_2 C_3-C_4 C_5-C_{12} Aromatics2.5551.970.5344.862.6353.760.5543.072.5051.950.5644.99itions: Temperature = 673 K; WHSV = 0.75Selectivity, %*C1-C2C3-C4C5-C12Aromatics27.4813.020.0958.05	Selectivity, %* C_1-C_2 C_3-C_4 C_5-C_{12} AromaticsBTEX2.5551.970.5344.8637.792.6353.760.5543.0736.592.5051.950.5644.9938.04itions: Temperature = 673 K; WHSV = 0.75 h ⁻¹ ; PressuSelectivity, %bC1-C2C3-C4C5-C12AromaticsBTEX27.4813.020.0958.0543.00	Selectivity, %a C_1-C_2 C_3-C_4 C_5-C_{12} AromaticsBTEXHigher aromatics2.5251.970.5344.8637.797.072.6353.760.5543.0736.596.472.5051.950.5644.9938.046.95itions: Temperature = 673 K; WHSV = 0.75 h ⁻¹ ; Pressure = 1 bar.Selectivity, %bC1-C2C3-C4C5-C12AromaticsBTEXHigher aromatics27.4813.020.0958.0543.0015.05

Table S1 Reproducibility of experimental runs over 5Ga-HZSM5 catalysts for the conversion of butanol to aromatics.

^bReaction conditions: Temperature = 823 K; WHSV = 0.75 h^{-1} ; Pressure = 20 bar.

	Selectivity, %						
Reaction Pressure (bar)	C9	C ₁₀	C ₁₁	C ₁₂	C ₁₃	Total Higher aromatics	 Carbon balance (% error)
1	1.58	2.79	1.48	1.09	0.13	7.07	4.53
5	2.86	3.46	3.25	1.03	0.37	10.96	8.41
10	3.06	4.01	3.65	1.15	0.78	12.65	11.52
20	3.74	4.71	4.58	1.55	0.47	15.05	34.85
30	3.69	5.37	5.11	1.62	0.57	16.36	47.08

Table S2 Selectivity of C₉-C₁₃ aromatics over 5Ga-HZSM5 catalyst for the conversion of butanol to aromatics, Reaction conditions: Temperature = 823 K; WHSV = 0.75 h^{-1} .

Catalyst	SA _{BET} ^a	A _E ^b	V _T °	V _m ^d	A _m e
	(m²/g)	(m²/g)	(cm ³ /g)	(cm.³/g)	(m²/g)
Fresh 5Ga-HZSM5	350	143	0.25	0.10	207
5Ga-HZSM5_1 bar	282	155	0.23	0.06	127
5Ga-HZSM5_5 bar	270	125	0.23	0.07	145
5Ga-HZSM5_10 bar	258	112	0.22	0.07	146
5Ga-HZSM5_20 bar	281	172	0.22	0.06	108
5Ga-HZSM5_30 bar	239	79	0.20	0.08	159

Table S3 Textural properties of spent 5Ga-HZSM5 catalysts.

^aBET surface area, ^bexternal surface area derived from t-Plot method, ^ctotal pore volume derived from BJH method, ^dmicropore volume derived from t-Plot method, ^emicropore surface area derived from t-Plot method

Fig. S1 GC chromatograms for A) liquid sample analysis by FID, B) gas sample analysis by FID, C) permanent gas analysis by TCD. Reaction conditions: Temperature = 823 K; WHSV = 0.75 h^{-1} ; Pressure = 1 atm, 5Ga-HZSM5 catalyst.

Fig. S2 Pore size distribution of xGa-HZSM5 (x = 0 to 10 wt%) catalysts.

Fig. S3 FTIR spectra of xGa-HZSM5 (x = 0 to 10 wt%) catalysts.

Fig. S4 FTIR spectra of xGa-HZSM5 (x = 0 to 10 wt%) catalysts in the hydroxyl region.

Fig. S5 Molar ratios of $H_2/(H_2+Propane+Butanes)$ and L/B ratio as a function of Ga loading, Reaction conditions: Temperature = 673 K; WHSV = 0.75 h⁻¹; Pressure = 1 atm.

Fig. S6 Effect of Ga loading on selectivity of $C_3 - C_4$ hydrocarbons, Reaction conditions: Temperature = 673 K; WHSV = 0.75 h⁻¹; Pressure = 1 atm.

Fig. S7 Effect of Ga loading on selectivity of C_8 hydrocarbons, Reaction conditions: Temperature = 673 K; WHSV = 0.75 h⁻¹; Pressure = 1 atm.

Fig. S8 Effect of Ga loading on selectivity of higher aromatics, Reaction conditions: Temperature = 673 K; WHSV = 0.75 h^{-1} ; Pressure = 1 atm.

Fig. S9 Effect of Ga loading on selectivity of $C_1 - C_2$ hydrocarbons, Reaction conditions: Temperature = 673 K; WHSV = 0.75 h⁻¹; Pressure = 1 atm.

Fig. S10 Reproducibility of BTEX hydrocarbons, Reaction conditions: Temperature = 673 K; WHSV = 0.75 h^{-1} ; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S11 Selectivity for BTEX hydrocarbons over HZSM5, 5Ga-HZSM5, and reduced 5Ga-HZSM5 catalysts, Reaction conditions: Temperature = 673 K; WHSV = 0.75 h^{-1} ; Pressure = 1 atm.

Fig. S12 Effect of temperature on the selectivity of higher aromatics, Reaction conditions: WHSV = 0.75 h^{-1} ; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S13 Effect of temperature on selectivity of xylene isomers, Reaction conditions: $WHSV = 0.75 h^{-1}$; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S14 Effect of temperature on selectivity of C_1 - C_2 hydrocarbons, Reaction conditions: WHSV = 0.75 h⁻¹; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S15 Effect of temperature on selectivity of C_3 - C_4 hydrocarbons, Reaction conditions: WHSV = 0.75 h⁻¹; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S16 Effect of temperature on the selectivity of CO, Reaction conditions: $WHSV = 0.75 h^{-1}$; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S17 Effect of temperature on molar ratios of $H_2/(H_2+Propane+Butanes)$ and C_3-C_4 paraffins, Reaction conditions: WHSV = 0.75 h⁻¹; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S18 Effect of WHSV on selectivity of C_3 - C_4 hydrocarbons, Reaction conditions: Temperature = 823 K; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S19 Effect of WHSV on selectivity of xylene isomers, Reaction conditions: Temperature = 823 K; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S20 Effect of WHSV on molar ratios of $H_2/(H_2+Propane+Butanes)$ and C_3-C_4 hydrocarbons selectivity, Reaction conditions: Temperature = 823 K; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S21 Effect of WHSV on selectivity of C_1 - C_2 hydrocarbons, Reaction conditions: Temperature = 823 K; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S22 Effect of WHSV on selectivity of CO, Reaction conditions: Temperature = 823 K; Pressure = 1 atm; 5Ga-HZSM5 catalyst.

Fig. S23 Effect of pressure on higher aromatics selectivity over 6 h TOS, Reaction conditions: Temperature = 823 K; WHSV = 0.75 h^{-1} ; 5Ga-HZSM5 catalyst.

Fig. S24 Effect of pressure on selectivity of C_3 - C_4 hydrocarbons, Reaction conditions: Temperature = 823 K; WHSV = 0.75 h⁻¹; 5Ga-HZSM5 catalyst.

Fig. S25 Effect of pressure on molar ratios of $H_2/(H_2+Propane+Butanes)$ and C_3-C_4 paraffins selectivity, Reaction conditions: Temperature = 823 K; WHSV = 0.75 h⁻¹; 5Ga-HZSM5 catalyst.

Fig. S26 Effect of pressure on selectivity of C_1 - C_2 hydrocarbons, Reaction conditions: Temperature = 823 K; WHSV = 0.75 h⁻¹; 5Ga-HZSM5 catalyst.

Fig. S27 Molar ratios of $H_2/(H_2+Propane+Butanes)$ and C_3-C_4 paraffins selectivity over HZSM5 and 5Ga-HZSM5 catalyst, Reaction conditions: Temperature = 823 K; WHSV = 0.75 h⁻¹; Pressure = 1atm.

Fig. S28 Effect of pressure on BTEX selectivity over 6 h TOS, Reaction conditions: Temperature = 823 K; WHSV = $0.75 h^{-1}$; 5Ga-HZSM5 catalyst.

Fig. S29 FTIR spectra of spent HZSM5 and 5Ga-HZSM5 catalysts at different reaction pressure.

Fig. S30 FTIR spectra of spent HZSM5 and 5Ga-HZSM5 catalysts at different reaction pressure.

Fig. S31 DTGA analysis of spent HZSM5 and 5Ga-HZSM5 catalysts.