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Annex I  

Process understanding 

Problem definition 

The engineering team wants to quickly understand which recorded process variables (tags) 

can explain the yield variability of a column seen over the years (Figure 1a). The challenge is that 

these tags show colinearity among them (Figure 1b and c) and there is not a clear linear or 

seasonal explanation that can explain the yield obtained. As the sample data was carefully taken 

and cleaned when the process showed steady-state conditions, thus data points can be assumed 

independent from each other. This can be verified by looking at the autocorrelation of the yield 

(Figure 1d), but more importantly means that the process dynamics are, in principle, not affecting 

the results. Likewise, no major changes have occurred both in the process or the control during 

this period. 
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Figure 1. The production yield of a distillation column over the years (a), sampled every 2 to 

3 days during its steady-state regime. Scatter plot matrix (b) showing the data densities amongst 

additional sensor time measurements (tags). Colormap shows pairwise correlations (c), where 

yellow and dark blue indicates strong colinearity among these tags. The lack of autocorrelation 

(d) on the target (yield), indicates that process dynamics (delays, lags, and other seasonal 

behavior) can be disregarded for this preliminary analysis. 

 

Process data 

From process knowledge, a broad selection of process variables (tags) has been already 

extracted. The major challenge at this step is to iterate through data cleaning to perform the first 

selection of relevant variables. As the yield (target variable) does not show shutdowns or 

autocorrelation, a screening model can be directly used to ease this prior tag selection. First, a 

balanced data partition taking into account the yield distribution needs to be done (Figure 2a). 

The training data set will be used to fit the model, the validation will avoid overfitting and a third 

independent test data will be solely used to verify what would be the model performance if it 

went to production (unseen data by the model). For this first screening, simpler models can be 

used via random selection of the tags and sampled times. The different units or outliers to be 

present in the data set can be handled with partition (or decision) tree models, which split data 

to better explain the yield (on average) by looking at the tags independently in each iteration. As 
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the model grows in complexity (higher number of splits or depth), a better fit is obtained by 

combining at the end all models that, in principle, capture the features in each data set sampling. 

This technique is known as bootstrap or random forest (Figure 2c), and while being widely used 

tends to capture the noise seen in the data (i.e. overfit). To perform a simple variable selection, 

the contribution of each tag is shown in descending order (Figure 2b) with a cutoff on the known 

noise which was added into the model as an independent and additional term. 

 
Figure 2. A stratified random sample of the yield (a) maintains equally the data distributions 

of the training, validation, and test data sets. This split can be done if data is selected when steady-

state conditions are reached in the process. Synthetic noise variables as factors (shuffled, random, 

and uniform noise), the first selection of tags can be done looking at the top column contributions 

(b) of a random forest model (c). 
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Process modeling: 

With the subset of variables above the noise obtained previously, one can proceed to visualize 

and interpret the data. A single partition tree (Figure 3a) captures the strongest factors with a 

simple structure (Figure 3c). Yield nonlinearities varying the flow and temperature appear if a 

kernel density is used to smooth the response (Figure 3b). For the tree, a random k-fold validation 

split was used to better utilize all the data (5 models built using 20% of random samples for 

validation). Yet, to avoid overfitting and keep relevant tags only, the 40 times split tree model 

with higher R2 (Figure 3d) was pruned until the noise factors disappeared (Figure 3f). This tree 

model captures the nonlinearities in a robust manner and with a simple logic (Figure 3e) that can 

be shared or implemented in any control logic. 

 

At this stage, it is important to go back to the problem definition before continuing. By looking 

at the yield again (Figure 4a), one can appreciate certain drops in the yield. While these seemed 

outliers, there is one assumption that is hardly always met: the total independence between 

consecutive data samples (e.g. process dynamics). By introducing, for example, a first-order 

differentiation of the tags as new factors; the difference of pressure explains the sudden yield 

drops (Figure 4a and the model shown in 4b). Notice that local changes can be overlooked by the 

model performance indicators as models tend to find what explains the (average) correlations 

between tags over the years and not the trends (dynamics). A typical R2 curve of 

training/validation/test when increasing model complexity is shown in Figure 4c. Without 

proper cleaning of data to have only steady-state information, time-series split and model inputs 

capturing dynamic modeling will be needed (the reader is referred to in the main manuscript). 

 

Until this point, the methodology of variable selection here described can be easily 

parallelized and therefore does not limit engineers to creating all the non-linear combinations 

that can be usually seen in chemical processes. A library built to this end is called ALAMO, for 

example. Yet, the use of Neural Networks (NN) as general functions approximations can 

empirically capture higher degrees of nonlinearities among tags. To illustrate this, a fitted NN 

output is compared to the ground truth (Figure 5a). The yield was a Rosenbrock function that 

was calculated to test this methodology using the captured flow and temperature. Additional 

random and uniform noise was added as well as the effect of the identified pressure changes. A 

two-layer feed-forward NN (Figure b) can fit these complex data interactions (Figure 5c, d, and 

e), once the important tags are given as inputs. 
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Figure 3. A decision tree model is used to create partitions of data (a) in several regions that 

capture the yield nonlinearities more simply compared to a kernel density contour plot (b). The 

tree (c) provides an interpretable robust logic that captures the variability, in average (e), using a 

simple k-fold validation technique (d). While lower error can be mistakenly achieved (d) by 

increasing the number of splits, the appearance of random variables and their pruning is used to 

avoid overfitting and keep this model easy enough for interpretation. 
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Figure 4. The creation and screening of additional features in a second iteration identified 

how changes in pressure between consecutive measurements were affecting the yield in the short 

term (a). This partition tree model (b) using the training/validation/test data split (c) obtains 

better R2 scores while avoiding overfitting.  

 

As illustrated, data-driven techniques can be used to quickly capture and understand 

complex interactions amongst imperfect industrial data sets. It is important to emphasize that 

pure empirical models are well suited for data interpolation. Additional data points following a 

design of experiments technique and/or the combination with first principles are recommended 

if the variability is not enough and the optimal values are found towards an unseen interval (e.g. 

risk of extrapolation). This industrial data set can be downloaded and further adapted to test the 

robustness of the methodology here described. 
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Figure 5. Comparison between the empirical model learned by a neural network and the 

ground truth (a) which was manually conditioned by pressure changes and additional random 

and uniform noise. Two layers with five nodes each are used to build a feed-forward neural 

network with hyperbolic tangents as activation functions (b). The flow, temperature, and 

pressure non-linear effects of each variable (c) are well captured for the training/validation/test 

data (d and e). 


