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The construction of a model for the prediction of a real process is naturally subject to sources
of uncertainty that can change over time. To better explore the roots of such uncertainties, we will
examine the following problem. Consider that in a production process, it is often desired to infer
the end quality of a product during processing. For example, in [1], the authors discuss the merits
of monitoring melt viscosity, temperature profile, and flow index as indicators of product quality
in the context of polymer processing. The inference of these material properties may be used to
inform process operation, optimization, and control [2], however, direct measurement often proves
operationally impractical. As a result, soft sensors may be constructed to infer these qualities from
other available process measurements (such as screw speed, die melt temperature, feed rates, and
pressures) either via first principles, data-driven, or hybrid modeling approaches.

Regardless of the model constructed, predictions will always be subject to two broad forms of
uncertainty - aleatoric and epistemic. The model construction process, therefore, is ultimately an
analysis of that uncertainty. Aleatoric elements can be thought of as that irreducible aspect of
model uncertainty, which reflects the underlying variance in the data generating process. Whereas
epistemic uncertainty can be thought of as the reducible part of model uncertainty, which arises
due to a lack of information. As we will see, the expression of both forms of uncertainties, via
a predictive distribution, is important to providing credibility to a predictive model. When the
predictive distribution is non-commital, we can conceptualize model uncertainty to be high. How-
ever, when it is more certain, model uncertainty is low. In the following, four specific forms of
(parametric) model uncertainty are considered, the expression of which provides the predictive
distribution desired. In line with this [3], these sources are detailed as follows:

1. Given that data expressive of process evolution are always corrupted by some noise, the
fundamental measurement or observation of the underlying process variables (e.g. screw
speed, die melt temperature, feed rates, and pressures) is subject to Y uncertainty.

2. The nature of mathematical model construction is inherently an approximation to the un-
derlying physics. Typically, a number of model structures exist that could well approximate
the real process, and this is denoted M uncertainty. An intuitive example of this in the
domain of data-driven modeling arises in the definition of topology (number of hidden layers,
activation functions, etc.) for an ANN, or the number of principal components for a PLS
model. In the setting of first-principles modeling, such a structural question is often present
in, for example, bioprocess prediction and optimization, where identification of the correct
semi-empirical expression (i.e. Monod, Aiba, Droop, etc.) often poses a considerable chal-
lenge [4]. This situation is however independent of system complexity, as is demonstrated by
the different models characteristic of terminal velocity in Stoke’s, Newton’s, and the transi-
tional drag regime of single-particle settling. In this sense, it is worth noting the well-known
position of George Box: ’Essentially, all models are wrong but some are useful’, which has
given rise to statistically founded model selection and validation practices.

3. Despite the proper selection of a model structure, there exists some uncertainty about the set
of parameter values that well describe the underlying process in the domain of interest. This
is otherwise known as parametric or θ uncertainty. Such uncertainty arises in identification
of parameters for both data-driven and first-principles models.
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4. If the inference is derived as the result of a computation, typically some approximation of
the solution will be introduced via spatial or temporal discretization of the model. This is
otherwise known as h uncertainty. h uncertainty is particularly prominent in computational
fluid dynamics (CFD), where interrogation of simulation results is often driven by analysis
of the effects of spatial discretization (otherwise known as mesh construction).

Despite the presence of these uncertainties, often we are able to construct models that will
capture the underlying physics of the process in the domain of interest. In relation to our product
end-quality prediction problem, [1] reports many examples of data-driven and first principle models
that were able to successfully predict the desired metric (melt viscosity, temperature profile, and
flow index). This is primarily due to well-established statistical practices, as encompassed by data
reconciliation and validation approaches, model selection and validation tools, data assimilation
practice, and the field of estimation theory. The use of numerical methods common to these fields
ultimately enables handling and expression of Y,M and θ uncertainties.

In the following, we briefly explore one of the core concepts to parameter estimation for demon-
stration of the concepts previously discussed. Consider the case of point estimation of model pa-
rameter values from an available dataset. The high-level framework for (a frequentist approach
to) parameter estimation practice proceeds via the following ideas. The data (i.e. offline measure-
ments of melt viscosity and corresponding values of screw speed, die melt temperature, feed rates,
and pressures, etc.) available for model construction are independently and identically distributed
(i.i.d.) according to some underlying probability density function (pdf). We would like to find a
pdf, which is parameterized by our model (i.e. resides within a parametric family), that is most
similar1 to this underlying generative pdf. The assumption as to a) the form (e.g. Gaussian)
of the pdfs concerned and b) that of i.i.d. data enable the formation of the likelihood function
as equivalent to the joint distribution of the residuals between our data and models predictions.
The likelihood function itself provides a ranking of merit over parameter values. Therefore, the
parameter setting that maximizes the likelihood function is the most probable parameter setting
for our model, given our data. Such a procedure, known as maximum likelihood estimation (MLE),
goes some way to handling Y uncertainty (which is aleatoric), but other approaches are required
to handle outliers, missing data [5], latent variable models, and for expression of θ uncertainty.

Figure 1: Maximum likelihood estimation of parameters: (a) Assumption of a Gaussian noise
model (b) Minimisation of projected distance from data to estimator.

At a high level, there are two approaches to expressing θ uncertainty. The first of those is
provided by a Frequentist approach, which typically estimates a confidence region, by considering
the model parameters jointly [6]. The confidence region can be conceptualized as the set of physical
model parameters that could describe our data with a given confidence. Parameters may then be
sampled from the confidence region and the corresponding θ uncertainty expressed via simulation
of the model under those parameter settings to provide a predictive distribution. It is generally
accepted that the greater the cardinality of the set, the larger the epistemic uncertainty associated
with the model.

Alternatively, parameter estimation may proceed via a Bayesian (or distributional) approach.
The primary idea of the Bayesian approach is encompassed by Bayes’ Rule, which (in the setting
of parameter estimation) infers a posterior probability density over parameters given our data

1In this context, similarity can be quantified via the Kullback-Liebler divergence or a valid distance metric, e.g.
the Wasserstein distance

2



(and model). At a very high level, the posterior density is obtained by conditioning a prior
belief (pdf) over parameters on the data available for model construction. The use of a prior
probability distribution enables the utilization of information known a priori within the parameter
estimation procedure. As in the frequentist procedure, the non-committedness of the posterior
distribution expresses the epistemic uncertainty of the model, and a predictive distribution may
be generated by sampling parameters and performing Monte Carlo simulation. Typically, it is
not possible to compute the posterior analytically, although estimates can be gained via various
sampling strategies [7, 8]. Despite the estimation of a probability distribution over parameters,
point estimates for parameters can be found via the maximum a posteriori (MAP) estimate, which
is the most likely parameter setting under the posterior. A nice connection between Bayesian
and Frequentist approaches is underpinned by the equivalence of the MAP estimate to L1 and L2
regularised MLE estimates, under the assumption of Laplacean and Gaussian priors, respectively
[9]. For more information on parameter estimation, we direct the interested reader to [10, 6].

Figure 2: Quantification of uncertainty in parameter estimates a) Frequentist or set-based ap-
proach, b) Bayesian or distributional approach. The plots demonstrate correlations between two
parameters within a model (plot a) and b) do not share the same range).

It is also worth explicitly stating what has been implicit in the discussion so far. The parameter
estimation procedure for a model is specific to the domain one has data in. If one was to estimate
the parameters for a given model structure in two distinct regions of the domain, it is highly likely
that the estimation procedure will return different parameters. Consider our problem of predicting
end-product quality from process data with a model of a fixed structure. If we change our process
screw speed to another operational domain, it is likely that the model predictive of our process will
require re-estimation in order to predict product end-quality accurately. This provides a warning
for use of predictive models in regions of the input domain that the model did not observe in
’training’. Some first principles models can (to an extent) handle such extrapolation demands due
to the possession of a model structure that is derived from physical understanding. However, this
poses a significant challenge for the use of data-driven models. As a result, it is important to know
when one is extrapolating. This is discussed further in the subsequent section.

In view of the discussion of both Y and θ uncertainties, we now turn our attention toM and
h uncertainties. M uncertainty is typically handled via model selection and validation processes.
This can be conducted in one of two ways. The first proceeds via bias-variance analysis in the form
of K-fold model validation. K-fold validation evaluates the model predictive performance by using
k different splits of the available data for parameter estimation and validation. More information
can be found in [11]. The alternative approach is provided by the Akaike (AIC) and Bayesian
(BIC) information criteria. Both metrics evaluate model complexity and predictive performance
with the best model corresponding to the minimizer of the criterion. The derivation of the two
metrics is based on some fundamental assumptions. These assumptions may be used to select the
criteria most suitable for the modeling problem at hand [12]. This leaves us with the presence of h
uncertainty. Ultimately, minimization of h uncertainties is guided by the selection of appropriate
numerical methods and discretization practice, with selection choice validated by interrogation of
the solution.

So far, we have considered the expression of uncertainties specific to our model. In the following,
we shall discuss the use of models for the propagation of uncertainties in the process variables and
the use that can be found in such analysis with respect to product end-quality. Typically, process
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variables (flow rates, pressures, etc.) are likely to observe some form of variation. This may arise
from the presence of unquantified disturbance, sub-optimal control, variability in an upstream
process, etc. This can be captured computationally by assuming process variables (screw speed
etc.) are random variables distributed according to a distribution of choice, and subsequently
performing Monte Carlo simulations to provide a hypothesis about the resultant effects of their
variation on end-product quality. Appropriate analysis can help determine the variables with the
strongest correlation to end-quality variation, which may ultimately guide process operation. This
is shown in Fig. ref.

Figure 3: Propagation of input-output uncertainties

0.0.1 Uncertainty aware data-driven modeling

Despite the discussion in the previous section, the expression of uncertainty (via a predictive
distribution) in the paradigm of parametric, data-driven modeling is no easy task. This is primarily
because the conventional approaches for estimation of θ uncertainty become intractable as the
dimensionality of the parameter space becomes large. This causes issues for the identification of
θ uncertainties and has ultimately led to the development of innovative training approaches and
foundation for the use of a variety of models.

With a focus on the paradigm of parametric (deep) learning, the first example of this is the use
of an ensemble of models to provide a bootstrap approximation of the model uncertainty. This has
been demonstrated in ANN [13], hybrid models [14], and in random forest [13]. Another approach
to training ANNs that considers θ uncertainty is provided by the Bayesian learning paradigm.
Bayesian neural networks (BNN) share the same topology as conventional neural networks, but
instead of having point estimates for parameters, they instead have a (posterior) distribution over
parameters. Given the dimensionality of the parameter space, the learning of such θ uncertainty is
generally facilitated via approximate methods such as variational inference [15] and the use of the
evidence lower bound (ELBO) [16, 17]. Similarly, Bayesian extensions to other models such as e.g.
support vector machines (SVMs) [18] exist, which facilitate the expression of associated aleatoric
and epistemic uncertainties.

One eloquent approach for expressing † (aleatoric) uncertainty leverages the likelihood function
[13, 17]. Here, the authors proceed under the assumption of a heteroscedastic Gaussian noise model
of the residuals. The use of a heteroscedastic model means the variance of the Gaussian distribution
descriptive of the model residuals is conditional to the model input, (i.e. the description of the
error in melt viscosity prediction changes with the values of screw speed, die melt temperature,
feed rates and pressures in our end-quality prediction problem). The authors leverage this to
identify a predictive model that expresses both a nominal and uncertainty prediction in closed
form. Although such an approach does not account for θ uncertainty (epistemic), the uncertainty
prediction is beneficial and the use of a heteroscedastic noise model provides greater flexibility over
conventional homoscedastic approaches (where the variance of the noise distribution is considered
constant and finite over the input space).

The ultimate contribution of all of these approaches is a probabilistic model, for which a
predictive distribution (i.e. a distribution over predictions of melt viscosity given values of screw
speed, die melt temperature, feed rates, and pressures) can be generated. This is either constructed
in closed form or approximated via Monte Carlo. For example, in the case of BNNs, the predictive
distribution is generated via Monte Carlo whereas in the heteroscedastic ANN model of [13] it is
expressed in closed form. Clearly, Monte Carlo is less computationally convenient than an explicit
uncertainty prediction. However, in BNN, this is a compromise for arguably greater expressivity
of model uncertainties as well as robustness to overfitting as naturally inherited via the Bayesian
framework [19].
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Figure 4: Description of explicit approaches to handle uncertainty in neural networks. a) Het-
eroscedastic ANN, b) Bayesian Neural Networks

The high-level idea of parametric modeling is the identification of some finite set of parameters
(subject to a model structure) to provide a mapping between a set of inputs and outputs. The
assumption asserts a constraint on the flexibility of the ultimate model one can construct. There
also exists a nonparametric modeling paradigm, where instead of assuming a finite-dimensional
parameter vector for model construction, one can instead assume an infinite-dimensional vector
i.e. (a function). This provides greater flexibility in model construction and enables the informa-
tion expressed by the model to grow as more data is acquired. One popular class of (bayesian)
nonparametric models is the stochastic process (SP). Formally, SPs define a probability model over
an infinite collection of random variables (i.e. functions), any finite subset of which have a joint
distribution. This often leads to the interpretation of SPs as a probability distribution over func-
tions, such that a realization of an SP is equivalent to obtaining a sample from a function space.
When the distribution over the function space is assumed Gaussian, one obtains a Gaussian pro-
cess (GP). GPs are a particularly appealing form of SP, primarily due to the fact that multivariate
Gaussians are closed under both marginalization and conditioning. This means that given a model
input (a value of screw speed, die melt temperature, feed rates, and pressures in our end-product
quality prediction problem) one can construct a predictive distribution (i.e. a distribution over
melt viscosity) analytically via Bayesian inference. This is particularly convenient for computation.
Further convenience lies in the fact that being nonparametric models, hyperparameter selection
need only consider the selection of an appropriate mean and covariance function (and its associated
parameters), as this selection is primarily responsible for the properties of the distribution over
the function space. For more detailed information on the mathematics underlying GPs, we direct
to [20], and for the introductory tutorial, we recommend [21].
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Figure 5: Expression of Gaussian process uncertainty in different data regimes. a) low-data regime,
high epistemic uncertainty, b) medium-data regime, reduced epistemic uncertainty, c) high data
regime, low epistemic uncertainty

To summarise the potential contribution to the process industries, GPs provide a class of highly
flexible models that, through operation within a Bayesian nonparametric framework for inference,
express both epistemic and aleatoric model uncertainties. This is particularly useful for quantifying
when one is extrapolating and when one is interpolating. Typically, additional, data-dependent
mechanisms are required to quantify when this is happening [22], however, in GPs this is expressed
automatically. Further, the information expressed by GP models can grow as more data becomes
available for model construction (leading to a reduction in epistemic uncertainty). However, for
practical use it should be noted:

• The computational complexity of GPs grows cubically with the number of data points, pro-
viding either a computational barrier or basis for the use of approximate methods for GP
modeling with large datasets.

• The assumption of a homoscedastic Gaussian noise model is computationally convenient, but
given that GPs are interpolation models, this can be restrictive in some physical processes
where only a small amount of data is available. More robust noise models can be used, (such
as Student’s T and Laplace distributions) but this typically implies the use of approximate
methods for the generation of the predictive distribution.

For more information and insight into the high-level mathematical basis of all the methods
described in this section, we refer the reader to provided references.
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