Supporting information

N-doped Carbon Nanotube Encapsulated Cobalt for Efficient Oxidative Esterification of 5-Hydroxymethylfurfural

Linhao Yu,^b Saravanan Kasipandi,^c Hong Chen,^{*a} Yingying Li,^a Xueli Ma,^a Zhe Wen^b

and Yongdan Li^{b,c}

^a School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

^b School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China

^c Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo 02150, Finland

*Corresponding authors: E-mail: chenhong_0405@tju.edu.cn (H. Chen).

Reycle No.	Cat.	Co leaching content (ppm)
1	Co/GCN-800	15.2
2	Co/GCN-800	4.3

Table S1 The Co leaching concentration detected by ICP-MS

Reaction conditions: 1 mmol HMF, 20 mL methanol, 1 MPa $\rm O_2,$ reaction time 16 h, temperature 130 °C.

Table S2 The previous reported for the oxidative esterification of HMF to FDMC

Entry	Cat.	HMF Conv. (%)	FDMC yield. (%)	Ref.
1	PdCoBi/C	99	96	1
2	Au-CeO ₂	99	99	2
3	CoxOy-N@C+Ru@C	100	99	3
4	Au/TiO ₂	>99	98	4
5	Co@C-N(800)	99	91	5
6	Co@CN	100	95	6

Table S3 The oxidative esterification of HMF in different solvent

Entry	Solvent	HMF Conv. (%)	Esterification product yield (%)
1	ethnaol	91.8	42.7
2	n-propanol	65.4	13.2

Reaction conditions: 1 mmol HMF, 0.05 g catalyst, 20 mL solvent, 1 MPa O_2 , reaction time 16 h, temperature 130 °C.

Characterization

The FT-IR spectrums of catalysts was measured with IRAffinity-1S instrument. The CO₂ temperature-programmed desorption (CO₂-TPD) experiments were carried out on Tianjin Xianquan Chemisorption analyzer instrument. The NH₃-TPD was performed on a Micromeritics 2920 Autochem II Chemisorption Analyzer. The ICP-MS was carried out on Thermo fisher iCAP-7000 series instrument.

Fig. S1 Raman spectra of fresh and reused the Co/GCN-800 samples.

Fig. S2 XRD pattern of Co/GCN-800 before and after the reaction

Fig. S3 Co $2p_{2/3}$ spectra of Co/GCN-800 before and after the reaction

Fig. S4 FT-IR spectra of Co/GCN-800 and Co/GCN-precursor

Fig. S5 The TEM mapping of Co/GCN-800

Fig. S6 CO₂-TPD of Co/GCN-800

Fig. S7 NH₃-TPD of Co/GCN-800

Reference

- 1. F. Li, X. L. Li, C. Li, J. Shi and Y. Fu, Green Chem., 2018, 20, 3050-3058.
- 2. O. Casanova, S. Iborra and A. Corma, J. Catal., 2009, 265, 109-116.
- 3. A. Salazar, P. Hunemorder, J. Rabeah, A. Quade, R. V. Jagadeesh and E. Mejia, *ACS Sustainable Chem. Eng.*, 2019, **7**, 12061-12068.
- 4. E. Taarning, I. S. Nielsen, K. Egeblad, R. Madsen and C. H. Christensen, *ChemSusChem*, 2008, **1**, 75-78.
- 5. Y. C. Fen, W. L. Jia, G. H. Yan, X. H. Zeng, J. Sperry, B. B. Xu, Y. Sun, T. Z. Lei and L. Lin, *J. Catal.*, 2020, **381**, 570-578.
- K. K. Sun, S. J. Chen, Z. L. Li, G. P. Lu and C. Cai, *Green Chem.*, 2019, 21, 1602-1608.