The interplay between ternary molten carbonate and biomaterials

during pressurized slow pyrolysis

Electronic Supplementary Information

Figure-S1 The Schematic of High Pressure TGA used in this device (Ref: the picture is taken from apparatus screen)

		Prox	Ultimate Analysis								
	Moisture	Volatile	Fixed	Ash	С	Н	N	S	0		
	(%)	(%)	Carbon (%)	(%)	(%)	(%)	(%)	(%)	(%)		
Blackbutt	4.3	79.7	18.7	1.6	48.9	6.6	0.0	0.3	44.2		

Table-S1: Proximate and Ultimate Analysis of Samples (wt%)

Ref: <u>https://doi.org/10.1021/acs.energyfuels.7b03221</u> https://doi.org/10.1021/acs.energyfuels.9b02865

		Prox	Ultimate Analysis						
	Moisture	Volatile	Fixed	Ash	С	Н	N	S	0
	(%)	(%)	Carbon (%)	(%)	(%)	(%)	(%)	(%)	(%)
Kraft Lignin	10	48.6	33	18.4	52.3	4.7	38.1	4.8	0.1

Ref: <u>10.1016/j.jaap.2018.04.006</u>

Figure S2- TGA curves of molten carbonate stability in standard pressure and 5bar during slow pyrolysis at 600 °C under N₂ with yellow line as an indication for carbonate melting point (~ 400 °C)

Figure S3- SEM images of raw biomass (A, B) and Bio-600-StP (C, D) from slow pyrolysis at 600 $^\circ\text{C}$ under N_2

Width = 60.3 yr W0 = 8.4 mm W0 = 8.4 mm Figure-S4 SEM images of water washedBio50-600-5b from pyrolysis at 600°C under N2 with cracks on the wall

Figure S6- TGA curve of Lignin devolatization in standard pressure during slow pyrolysis at 800 $^\circ\text{C}$ under N $_2$ with highlight isothermal area

Figure S7- SEM images of Lig50-350-StP produced at 350 $^{\rm o}\text{C}$ under N_2

Figure S8- SEM images of raw Lignin (A, B) and Lig-600-StP (C, D) from slow pyrolysis at 600 under $N_{\rm 2}$

Figure S9- TEM images of biochar from slow pyrolysis in standard pressure at 600 under $\ensuremath{\mathsf{N}}_2$

Figure S10- TEM images of different edges and particles of water washed Bio50-800-StP from pyrolysis at 800 under $N_{\rm 2}$

Figure S11- TEM images of different edges and particles of water washed Bio50-800-5b from pyrolysis at 800 under N_2

Figure S12- TEM images of ligchar from slow pyrolysis in standard pressure at 600 under N_2

Figure S13- TEM images of different edges and particles of water washed Lig50-800-StP from pyrolysis at 800 under N_2

Figure S14- TEM images of different edges and particles of water washed Lig50-800-5b from pyrolysis at 800 under N_2