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1 Multi-Objective Reaction Simulator — Test Problems

1.1 VdVv1
(i)
A;=2.1x10"min?, A;=2.1x 10" min?, A3 =1.5 x 10 min?,
E,:=81.1kImol?, E;»=81.1 k) mol?, E;3=71.2 k] mol*
minimise[—In(% B),In(STY)] (1)
subject to: Residence time/min € [0.5, 10]
Temperature/°C € [25, 100]
[Al/M =1
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Figure S1. Graphical representations of the VdV1 test problem: (i) variable space; (ii) objective space. Black dots
= possible solutions, red dots = non-dominated solutions.
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1.2 SnAr1

(i)

A;=16x10°MImin? A;=1.4x10*M*min? A;=1.0x 10* M min?,
Az=3.7x 10 M min?, E; ;= 43.2 k) mol?, E;>=35.3 kl mol?,
E.3=40.8 kIl mol?, E;4=68.9 kl mol?

minimise[—In(% 3.18),1n(% 3.19) , In(% 3.20)] (2)
subject to: Residence time/min € [0.5, 20]
Temperature/°C € [60, 140]
[3.16]/M =1
[3.17]/M =3
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Figure S2. Graphical representations of the SyAr1 test problem: (i) variable space; (ii) objective space. Black dots
= possible solutions, red dots = non-dominated solutions.

1.3 SnAr2

minimise[In(% 3.19) , —In(RME) , —In(STY)] (3)
subject to: Residence time/min € [0.5, 2]
Temperature/°C € [60, 140]
[3.16]/M € [0.1, 2.0]
[3.17]/M € [2, 5]

Figure S3. Graphical representations of the objective space for the SyAr2 test problem. Black dots = possible
solutions, red dots = non-dominated solutions.
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1.4 Lactose1

(iii)

pH=11,A;=9.5x 10 min?, A;=7.0 x 10* min?, A3 = 4.0 x 10" min?,
Es:1=105.1 kI mol?, E;>=174.0 k) mol?, E;3=54.9 k] mol?

minimise[—In(% 3.22),1n(% 3.23)] (4)

subject to: Residence time/min € [0.5, 10]
Temperature/°C € [25, 100]
[3.21]/M =1
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Figure S4. Graphical representations of the Lactosel test problem: (i) variable space; (ii) objective space. Black
dots = possible solutions, red dots = non-dominated solutions.

1.5 PK1
(iv)
A;=15.4 M1 min?, A, =405.2 min, E;;=12.2 k) mol?, E;»=20.0 k) mol?
minimise[—In(STY), —In(RME)] (5)
subject to: Residence time/min € [0.5, 2]

Equivalents of 3.25 € [1, 10]
Temperature/°C =50
[3.24]/M =1
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Figure S5. Graphical representations of the PK1 test problem: (i) variable space; (ii) objective space. Black dots
= possible solutions, red dots = non-dominated solutions.
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1.6 PK2

minimise[In(% 3.26) , —In(STY)] (6)
subject to: Residence time/min € [0.5, 2]
Temperature/°C € [25, 150]
Equivalents of 3.25 € [1, 10]
[3.24)/M =1

0 20 40 60 80
Yield of 3.26/%

Figure S6. Graphical representations of the objective space for the PK2 test problem. Black dots = possible
solutions, red dots = non-dominated solutions.
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1.7 Computational Cost

Table S1. Time taken (in seconds) for each algorithm to complete each test problem with a budget of 100
experiments. Simulations were run using an Intel(R) Core(TM) i5-9400 CPU @ 2.90 GHz with 8GB RAM.

Algorithm

TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO

vdvi 697.781 163.298 1.100 120.531 28.577

E, SnArl 682.188 174.922 2.809 126.039 36.069
] SnAr2 712.966 178.696 1.902 125.369 39.889
?—t Lactosel 534.146 139.165 1.514 121.459 29.523
é PK1 545.881 138.971 1.311 121.483 28.597
PK2 609.808 145.073 1.286 123.045 31.056
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2 Algorithm Performance

2.1 Simulator — How it Works

The simulation procedure for each test problem is outlined below. Firstly, the pre-exponential factors,
A, and activation energies, E,, are used to calculate the rate constants, k, for each step in the reaction
using the Arrhenius equation, where T = temperature and R = gas constant (8.314 J mol™ K2):

Eq
k = Ae RF (7)

The differential rate equations for each step are then solved using an ordinary differential equation
(ODE) solver. For example, the differential rate equations for the VdV1 test problem are:

rate = ~ 2% = ky[A] + ks [T ®)

At
AB
rate = —— = —k,[A] + k,[B] )
At
__AC _ (10)
rate = AL k,[B]
AD (11)
— 0 _ 2
rate = A ks[A]

In this case, the reactor is modelled as four CSTRs-in-series by solving simultaneously the coupled ODE
equations, which are terminated after four reactor volumes to ensure steady-state is simulated. This
provides the percentage of each species in the reaction mixture under different sets of conditions,
which are subsequently used to calculate the objectives for the given test problem. Random noise
inherent with experimental systems is also included by applying a maximum absolute error of 0.25%
and maximum relative error of 0.5% to the outputs, where Y = yield and rand = random number
between 0 and 1. If the adjusted yield, Y,q;, is less than O or greater than 100, then it is forced onto the

nearest boundary.
rand — 0.5 rand — 0.5 (12)
Yaaj =¥+ ( 2 )+Y( 100 )

To compare the performance of the algorithms, the hypervolume is calculated after each iteration,
where the hypervolume is defined as the volume between the current Pareto front and a reference
point (i.e. larger hypervolume = better Pareto front). The hypervolume is calculated using a Monte-
Carlo approximation, which determines the percentage of 100,000 random points in the objective
space which are dominated by the current Pareto front. The utopian and anti-utopian point for the
objective space of each test problem were selected by creating a superset of the
non-dominated solutions from all runs across all algorithms. The reference point for the objective
space was then defined as the anti-utopian point shifted by 0.01 of the difference between the utopian
and anti-utopian point.
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The performance of Thompson sampling efficient multi-objective optimisation (TSEMO), Pareto
efficient global optimisation (ParEGO), NSGA-Il and expected improvement matrix efficient global
optimisation (EIM-EGQO) were compared using this approach. Implementations of ParEGO, NSGA-Il and
EIM-EGO were all available in the platform for evolutionary multi-objective optimisation (PlatEMO)
toolbox in MATLAB. An implementation of TSEMO was available on GitHub, and was compared with
both one and four points (batch sequential, BS-TSEMO) per iteration. TSEMO, ParEGO and EIM-EGO
were all chosen as they represent surrogate model-based multi-objective optimisation algorithms,
whereas NSGA-Il is a commonly used genetic algorithm. The TSEMO, BS-TSEMO, ParEGO and EIM-EGO
were initialised using a LHC design of size 20. Each algorithm had a function evaluation budget of 100,
and was ran 20 times for each test problem to compare average performance. To account for the
function evaluation budget, the NSGA-II population size and total number of generations were
changed to 20 and 5 respectively.

Plots showing the average change in hypervolume throughout the optimisations, and boxplots of the
optimisation results after 60 function evaluations are displayed below. These results can be used as
benchmarks to compare against other/new multi-objective algorithms.
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2.2 Simulator — How to Use

Software requirements: MATLAB, optimisation toolbox, statistics toolbox.
To test an algorithm, it must be written in the following format as a .m file:

Inputs:

= data.x = conditions

= data.y = responses

= |owerbounds = lowerbounds of conditions

= upperbounds = upperbounds of conditions

=  Opt =algorithm options
Outputs:

= conditions = conditions for next iteration (can contain as many rows as desired)
Example:

Opt = TSEMO options();
conditions = TSEMO (data.x, data.y, lowerbounds, upperbounds, Opt);

Each test problem can be used by running the respective script:

= VdV1=VdV1l Test Problem

= SnArl=SnArl _Test Problem

=  SnAr2 =SnAr2_Test_Problem

= lactosel = Lactosel Test Problem

=  PK1=PK1l_Test_Problem

= PK2 =PK2_Test _Problem
When the script is run, the user is prompted to select the .m file containing the algorithm they
want to test.
The TSEMO algorithm has been included as an example, and can be run by selecting the
“TSEMO_example.m” file when prompted.
The hypervolume is calculated after each experiment, and will be plotted in real-time.
By default, each test problem will initiate with 20 LHC experiments, and will terminate after
an additional 80 experiments have been run by the algorithm (total experiments = 100). These
can be adjusted within the test problem scripts by changing the size of the
“initial_sample_size” variable and “total_expts” while loop respectively.
The following optimisation data is stored in the “data” structure:

Data structure:

data.x = all conditions

data.y = all natural log transformed responses

data.z = all untransformed responses

data.idxs = index of the conditions which have Pareto-optimal solutions
data.optconds = conditions which have Pareto-optimal solutions
data.opt = number of Pareto-optimal solutions per iteration

data.front = Pareto-optimal solutions

data.hv = hypervolume per iteration
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3 Experimental Comparison

3.1 Reactor Setup

Figure S7. Photo of automated flow reactor. Thioanisol being methyl phenyl sulfide.

3.2 Optimisation Procedure

The optimisation procedure is shown algorithmically in Figure S8. An optimisation program was
written in Matlab that controlled the pump flow rates and reactor temperature, determined steady
state, calculated the responses and controlled the inputs and outputs to and from the TSEMO and
EIMEGO algorithm (TSEMO repository: https://github.com/Eric-Bradford/TS-EMO; EIMEGO available
in the PlatEMO toolbox: https://github.com/BIMK/PlatEMOQ). The automated reaction and analysis
procedure were designed to consume a minimum amount of material during the optimisations. Firstly,
reactant flow rates were reduced to a minimum during heating/cooling of the reactor. Once the
reactor reached the desired operating temperature, the reactant flow rates were set to their desired
values, and left for 1.7 reactor volumes to reach steady state. Secondly, the initial LHC experiments
and the experiments in each iteration were sorted in order of increasing temperature. This avoided
unnecessary switches between hot and cold reactions. Finally, sequential experiments were started
whilst analysis of the previous experiment was running, except during analysis of the final experiment
in the iteration. Hence, the amount of time waiting for analysis was minimized. Optimisations were
conducted overnight and manually terminated in the morning under the criterion that a dense front
of at least 15 experimental Pareto data points were collected.
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Build initial data set from space-filling design

Execute inital experiments automatically &
analyze results

:

Build surrogate models of the
objectives using the current data set

:

Identification of new sampling points Add new points to
using TS-EMO algorithm current data set

l A

Execute experiments automatically &
analyze results

Maximum number of experiments reached?

Terminate

Figure S8. A flowchart of the optimisation procedure.

The responses of each objective were calculated from the GC chromatograms (using the mass
spectrum detector) at the end of each iteration, and the results used to update the surrogate models
and generate the next set of operating conditions. The objectives were natural log-transformed to
enhance the response-surface-based optimisation. As the TSEMO algorithm is a minimizing algorithm,
any objectives to be maximized were set to maximize the negative value. The conversion, selectivity
and STY were defined as in Equation (13), Equation (14) and Equation (15) respectively, where 7product
is the molar stream of m-ph-sulfoxide (product), V is the volume of the reactor, t.s is the residence
time and is the mass of waste.

Covi .

. thioanisol
Conversion = 1 — —5——— (13)

Cthioanisol

o Cproduct 1
Selectivity = — - (14)
thioanisol Conversion
STY = flproduct (15)
V X tres
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3.3 Characterisation

The section lists flow chemical characterisations and explains why common assumptions could be
made in the study.

Residence Time: Is the time a fluid element needs to travel through the capillary. Usually plug flow is
assumed, meaning an equal concentration of reagents over the whole tube diameter and no axial back
mixing. This enables us to assume that a sample has spent a specific time, x, in the reactor. To prove
this assumption a residence time study was performed to show how close to plug flow the system is.
Figure S9 shows such a study which was carried out by alternating the concentration of the UV active
compound in a step response. The medium time is the average time the fluids element needs to pass
the reactor. The change in absorption would be a vertical line if we had an ideal plug flow. In the case
of our system deviation from this theoretical line is small enough (Bodenstein numbers were
calculated to be above >100 or around 70 tanks-in series). The RTD characterisation experiments were
performed for a flow range from 0.5 to 2 ml/min for the given reactor. The residence time distributions
were measured by step response. Following Fogler ideal plug flow can be assumed for this high
numbers.

25 Flow Thioanisol Flow Isopropanol Absorption - 3
£ - 25
€ 5 — 2
o -2
)
Q15 —> S 15
o -
£ 1 tM -1 ®
= - 05 3
Q05 9
o F 0 w
<o L .05
125 130 135 140 145 150 155 160
Ve = Viot *tu Time [min]  volume before UV/VIS=7.5 ml

Figure S9. Experimental study of residence time distribution by following the absorption at 280 nm,
which is representing methyl phenyl sulfide. While one pump is left on constant flow rate the other is
varied to change concentrations and keep the flow stable.

Steady State

This state is reached when there is no change of concentration, temperature or other parameters over
time. Both the temperature and the reaction need to have reached steady state conditions before a
sample is taken. For an ideal plug flow system the time taken for the reaction to reach steady state is
one residence time, but for real flow systems we use a safety margin of 1.5 was taken into account.

Heating & cooling

The reactor is heated using heat cartridges, this takes approximately 20 minutes for a change from 20
to 120 °C. The Eurotherm approaches the set value asymptotically or by overshooting and oscillation
(PT1 or PT2 control element). Cooling was achieved by adding a fan for additional air circulation. As
the heating element is inside the aluminium block and certain heat losses towards the reaction mix
inside the capillary are not avoidable a linear correlation was found from set to actual, measured
reaction temperature at the capillary (fit 99.6% accurate over 7 measured evenly spaced points).

Toetuar = 0.83 * Tspy + 8.38 (16)
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It is important to incorporate this time in the experimental planning for an optimisation algorithm as
clearly both processes add significant time to the experiments.

Reproducibility

For an optimisation to be viable it is essential that the data collected for individual reactions is
reproducible, e.g. on three different experimental days experiments performed using the same
conditions lead to the same results. Therefore, a study to gauge the reproducibility was performed.
Initially, errors in the GC syringe and the reactivity of hydrogen peroxide solution over time were
observed. By correcting these flows, by exchanging the syringe and producing fresh solutions daily,
the model system achieved reproducibility with less than 10% deviation, see Figure S10.

1 |
= o8 ==
ch e
STE 06
o 2= B Conversion
>3S0o
EZ g 04
89 ¢ e M Selectivity
c‘,‘)’ 0.2 O
0

Figure S10. Reproducibility of one experiment with 32% conversion in 6 independent experiments. Parameter
are conversion [-], selectivity [-] and space time yield of m-ph-sulfoxide [mmol/L/min].

3.4 Experimental procedures

O: =0

@ /OH s @ #© + Hzo

............

1

Figure S11. Reaction scheme for methyl phenyl sulfide 1 oxidation to m-ph-sulfoxide 2 and successively m-ph-
sulfone 3.

methyl phenyl sulfide 1 (99%, Fluorochem), Hydrogen peroxide (>30% w/v in H20, Fischer Chemical),
Acetonitrile (99.9%, VWR) and a,a,a-Trifluorotoluene anhydrous (99.%, Alfa Aesar) were purchased
from suppliers and used without further purification. Standards of methyl-phenyl-sulfoxide 2 (97%,
Sigma-Aldrich) and methyl-phenyl-sulfone 3 (98%, Alfa Aesar) were additionally purchased for
calibrations.

Reservoir solutions were prepared by dissolving the desired reagents in solvent under stirring at
ambient conditions. Reagent 1 pump: methyl phenyl sulfide (12.4 g, 0.1 mol, 0.4 mol L?) and
trifluorotoluene (3.65 g, 25 mmol) in acetonitrile (235 mL); Reagent 2 pump H,0,: hydrogen peroxide
(20.4 g, 0.2 mol) in acetonitrile (229.6 mL); Solvent pump for dilution: acetonitrile. The automated
reactor was set up according to the schematic shown in Figure 4 in the manuscript, where the reactor
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volume =4 mL and the fixed back pressure = 100 psi, the total experimental volume including the flow
cell was 8.5 ml, used for steady state calculations only.

1y

Intensit

|
7
Analysis time [min]
100 F T T ]
—MS
80~ —— 124 -+
B 146 m-ph-sulfoxide m-ph-sulfone
@ 109
@ 40 ——156
= 40 3FB Thioanisol
20 1
0 | 1
L I 1 1 ! 1 I |
0 1 2 3 4 5 6 T

Analysis time [min]

Figure S12. Analytical results adopted from Shimadzu software showing the FID and MS signals in parallel for
on experiment (122 °C, 0.1 ml/min Thio, 0.4 ml/min H202), thioanisol = methyl phenyl sulfide.

The MS follows each mass during the program, allowing for deconvolution of overlapping signals.
Samples were calibrated for methyl phenyl sulfide and reactants with a minimum value of 99.9
obtained for the calibration factor.

Table S2. GC method descriptive parameter used for methyl phenyl sulfide oxidation system. Hydrogen peroxide
could not be measured.

Oven Ramp ion source temperature 200 °C
Rate Temp. | hold time
°C/min °C [min] interface temperature 250 °C
- 80 0 | injection temperature 250 °C
20 215 0 | oven temperature 80 °C
MS injection volume 0.5 ul
Mode
selective 140 146 | split 100
124 156 109 | total program time 6.75 min

The self-optimisation was conducted with respect to three-parameters: temperature, pump 1 flow
rate thioanisole, pump 2 flow rate hydrogen peroxide. For data analysis the parameters were
translated to actual temperature using equation (16), H,O, equivalents and residence time. The
parameter limits are shown in Table S3. The objective of the optimisation was to simultaneously
maximize Conversion, Selectivity and STY (Equation (17)).
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Table S3. Parameter limits for the three-parameter self-optimisation.

Limits TrC Pump Flow 1/ | Pump Flow 2/
ml/min mi/min

Lower 80 0.05 0.05

Upper 150 0.5 0.7
Limits for Tactuall°C H20: Residence

optimisation equivalent time/ min

analytics

Lower 77 0.5 4

Upper 133 12 40

minimize [-In(Conversion), -In(Selectivity), -In(STY)]

S19
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4 Self-Optimisation Results

41 TSEMO

Table S4. Experimental results from the TSEMO optimisation.

Entry | tres/min | H202:1 | Conc | Temp/°C | Conversion | Selectivity | STY/mmol
1M L min”

1 7.80 7.33 0.05 122.31 0.37 0.95 0.26
2 7.67 1.50 0.19 130.63 0.19 1.00 0.38
3 591 1.89 0.08 128.15 0.60 0.83 1.98
4 6.37 7.46 0.00 122.33 1.00 0.89 1.15
5 17.33 5.55 0.01 119.90 0.89 0.90 0.07
6 10.51 0.80 0.11 116.70 0.60 0.96 0.57
7 12.70 3.32 0.09 113.58 0.43 1.00 0.13
8 8.95 10.71 0.06 108.40 0.00 0.28 0.00
9 15.12 0.68 0.24 104.06 0.20 0.91 0.06
10 5.14 2.88 0.13 98.86 0.20 1.00 0.99
11 6.73 4.33 0.10 95.37 0.19 0.91 0.29
12 6.16 4.15 0.10 92.09 0.24 0.48 0.25
13 10.24 5.11 0.10 89.91 0.13 1.00 0.05
14 7.22 2.39 0.14 86.37 0.25 0.78 0.38
15 9.80 3.44 0.15 79.22 0.00 0.00 0.00
16 11.64 0.97 0.27 76.89 0.00 0.00 0.00
17 7.84 7.53 0.06 122.31 0.32 0.97 0.21
18 6.80 1.50 0.05 133.30 0.77 0.96 2.15
19 7.50 5.58 0.11 75.00 0.00 0.00 0.00
20 7.29 8.69 0.00 128.14 0.98 0.91 0.69
21 7.02 4.55 0.11 82.32 0.12 0.89 0.15
22 6.52 8.79 0.06 82.36 0.14 0.46 0.07
23 9.25 7.28 0.05 97.11 0.47 0.91 0.19
24 8.05 1.00 0.26 85.70 0.02 0.89 0.04
25 7.57 1.56 0.17 116.04 0.24 0.98 0.48
26 38.25 1.83 0.15 79.94 0.26 0.98 0.00
27 9.10 0.51 0.15 107.51 0.52 0.92 0.81
28 9.18 0.91 0.11 125.19 0.58 0.74 0.61
29 7.84 0.53 0.20 122.31 0.36 0.98 0.93
30 5.60 1.61 0.18 126.48 0.19 0.66 0.64
31 5.40 2.28 0.18 85.65 0.01 0.91 0.06
32 9.83 0.35 0.34 119.69 0.00 0.28 0.00
33 7.40 7.69 0.04 110.64 0.47 0.90 0.35
34 5.54 3.43 0.10 122.53 0.31 0.97 1.03
35 5.57 2.61 0.17 128.40 0.00 0.28 0.00
36 6.99 13.76 0.05 93.18 0.00 0.00 0.00
37 12.10 0.66 0.30 77.22 0.00 0.00 0.00
38 8.24 1.35 0.21 121.65 0.12 0.86 0.18
39 5.57 3.29 0.12 103.10 0.23 0.98 0.80
40 7.51 1.85 0.20 125.36 0.04 0.92 0.07
41 6.82 2.47 0.14 89.93 0.21 0.97 0.46
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42 7.73 2.28 0.17 115.36 0.08 0.94 0.12
43 7.66 2.97 0.07 93.07 0.54 0.97 0.74
44 10.55 13.16 0.01 109.83 0.87 0.73 0.11
45 16.47 1.80 0.21 126.21 0.00 0.00 0.00
46 6.19 4.73 0.07 103.66 0.38 0.98 0.75
47 15.13 1.33 0.23 114.36 0.02 1.00 0.01
48 6.24 6.72 0.09 90.93 0.01 0.94 0.01
49 19.85 2.59 0.06 119.67 0.66 0.76 0.04
50 13.53 1.75 0.20 129.39 0.08 0.69 0.02
51 13.45 2.22 0.09 132.79 0.53 0.98 0.16
4.2 EIMEGO
Table S5. Experimental results from the EIMEGO optimisation.
Entry | tres/min | H202:1 | Conc | Temp/°C | Conversion | Selectivity | STY/mmol
1/M L min”

1 7.80 7.33 0.05 122.31 0.37 0.95 0.26
2 7.67 1.50 0.19 130.63 0.19 1.00 0.38
3 5.91 1.89 0.08 128.15 0.60 0.83 1.98
4 6.37 7.46 0.00 122.33 1.00 0.89 1.15
5 17.33 5.55 0.01 119.90 0.89 0.90 0.07
6 10.51 0.80 0.11 116.70 0.60 0.96 0.57
7 12.70 3.32 0.09 113.58 0.43 1.00 0.13
8 8.95 10.71 0.06 108.40 0.00 0.28 0.00
9 15.12 0.68 0.24 104.06 0.20 0.91 0.06
10 5.14 2.88 0.13 98.86 0.20 1.00 0.99
11 6.73 4.33 0.10 95.37 0.19 0.91 0.29
12 6.16 4.15 0.10 92.09 0.24 0.48 0.25
13 10.24 5.11 0.10 89.91 0.13 1.00 0.05
14 7.22 2.39 0.14 86.37 0.25 0.78 0.38
15 9.80 3.44 0.15 79.22 0.00 0.00 0.00
16 11.64 0.97 0.27 76.89 0.00 0.00 0.00
17 9.92 1.04 0.06 122.31 0.32 0.97 0.21
18 8.87 5.61 0.49 114.72 0.00 0.00 0.00
19 6.47 7.62 0.04 127.86 0.74 0.97 0.43
20 7.24 2.29 0.09 118.67 0.19 0.93 0.22
21 7.73 7.59 0.30 109.88 0.00 0.28 0.00
22 8.11 1.56 0.05 120.10 0.56 0.81 0.33
23 8.12 3.43 0.08 129.39 0.79 0.93 1.23
24 6.98 5.02 0.16 88.70 0.30 0.82 0.27
25 13.20 3.05 0.00 131.10 0.98 0.90 1.19
26 7.52 2.97 0.00 113.33 1.00 0.87 0.24
27 17.35 241 0.22 85.78 0.13 1.00 0.19
28 9.88 1.67 0.00 112.08 0.99 0.91 0.12
29 8.54 1.07 0.15 122.43 0.61 0.97 0.53
30 14.03 2.29 0.43 117.59 0.11 0.98 0.17
31 7.64 12.74 0.00 132.60 1.00 0.79 0.21
32 6.04 1.93 0.00 130.53 0.99 0.87 0.42
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33 9.63 0.96 0.34 77.11 0.02 0.92 0.06
34 9.64 1.83 0.38 128.67 0.26 0.99 0.32
35 7.82 8.00 0.15 132.50 0.57 0.98 0.52
36 9.22 9.60 0.10 78.19 0.08 0.96 0.05
37 4.80 2.90 0.04 129.89 0.58 0.91 0.18
38 7.47 4.48 0.25 84.12 0.01 1.00 0.08
39 15.16 8.03 0.11 124.30 0.39 0.97 0.45
40 5.44 4.03 0.04 95.99 0.67 0.97 0.06
41 9.97 0.50 0.20 132.55 0.01 0.95 0.03
42 16.37 1.65 0.49 89.04 0.26 0.98 0.33
43 10.31 8.27 0.28 112.28 0.26 0.99 0.05
44 12.12 1.83 0.10 100.75 0.09 0.99 0.02
45 11.79 1.06 0.31 124.61 0.13 0.99 0.06
46 21.47 2.83 0.14 122.64 0.72 0.96 0.44
47 6.35 1.97 0.25 129.53 0.05 0.96 0.00
48 5.83 3.11 0.28 79.19 0.18 0.99 0.56
49 6.28 2.02 0.14 128.84 0.42 0.98 1.30
50 10.91 1.14 0.30 132.64 0.08 0.99 0.26
51 8.85 0.94 0.43 105.95 0.07 0.99 0.05
52 7.66 6.17 0.37 117.73 0.28 0.98 0.43
53 9.92 1.04 0.09 112.60 0.39 0.99 0.33
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Figure S13. Experimental overview for all interaction between input and optimisation parameter.
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Figure S14. Approximated 3-dimensional Pareto front and experimental data near it.

Conversion, Selectivity and STY of 2 were optimised against each other. As a 3-dimensional system
the visualizations cannot represent the freedom in one of the three optimisation criteria. Pareto
front was estimated via polynomial fitting using the non-dominated solutions using an x?y* model for
f = STY(Conversion, Selectivity).

4.3 Hyperparameters, GP Surrogate Models and Simulation

Hyperparameters

The hyperparameters can be extracted from the surrogate models built during the optimisation to
reveal important process information. For the hyperparameters of the input variables (®;) a lower
value indicates a greater contribution to the output. The

02 hyperparameter corresponds to the noise of the system, which is medium low for the objectives
in both algorithm studies. This indicates high quality and consistent data.

Table S6. Overview Hyperparameters for TSEMO and EIMEGO.

TSEMO
Variable GP 1 (Conversion) GP 2 (Selectivity) GP 3 (STY)
Otemperature 1.27 1.83 1.15
Oresidence time 3.23 0.11 1.87
Onz0ze eq. -2.75 0.79 -2.74
o? 3.77x102 1.62x10 2.43x102
EIMEGO
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Variable GP 1 (STY) GP 2 (% impurity)
®temperature -2.90 -2.51 -2.78
E')residerlce time -1.69 -1.91 -1.64
Ouz0ze eq. 1.48 3.30 3.29
o? 6.54x10° 1.07x10 7.09x102
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