Sustainable synthesis of acetals from glycerol as potential additives for biofuels under solvent-free conditions

Gabriel Abranches Dias Castro^{*a*}, Ana Luíza Quintão Santos^{*a*}, Ángel Gabriel Sathicq^{*b*}, Valeria Palermo^{*b*}, Gustavo Pablo Romanelli^{*b,c*}, and Sergio Antonio Fernandes^{*a**}

^aGrupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.

^bCentro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" CINDECA, (CONICET-CIC-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 No 257, B1900AJK, La Plata, Argentina.

^cCátedra de Química Orgánica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calles 60 y 119 s/n, B1904AAN La Plata, Argentina

*Corresponding author: Sergio Antonio Fernandes (Tel.:+55-31-3612-6647; E-mail: santonio@ufv.br or sefernandes@gmail.com).

GENERAL TECHNIQUES

Analytical grade commercial solvents and reagents were purchased from Sigma-Aldrich, and used as received. Infrared spectra were recorded as neat using a FT-IR Varian 660 Fourier transform infrared spectrometer. Values are expressed in wavenumbers (cm⁻¹) and recorded in a range of 4000–400 cm⁻¹. NMR spectra were recorded at 25 °C in CDCl₃ on a Varian Mercury 300 spectrometer operating at 300 MHz for ¹H. All chemical shifts are reported in parts per million (ppm) and were measured relative to the solvent in which the sample was analyzed (CDCl₃ δ = 7.26). The percentage of acetals yield (%) were determined by using by $^{1}\mathrm{H}$ NMR using TMB with internal standard.

EXPERIMENTAL PROCEDURES

Fig. S1 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with benzaldehyde.

Fig. S2 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl_3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with furfural.

Fig. S3 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 2-thiophenecarboxaldehyde.

Fig. S4 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl_3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 3-methoxybenzaldehyde.

Fig. S5 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with butyraldehyde.

Fig. S6 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-cyanobenzaldehyde.

Fig. S7 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-methylbenzaldehyde.

Fig. S8 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-methoxybenzaldehyde.

Fig. S9 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 3,4,5-trimethoxybenzaldehyde.

Fig. S10 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-carboxybenzaldehyde.

Fig. S11 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-hydroxy-3-methoxybenzaldehyde.

Fig. S12 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-bromobenzaldehyde.

Fig. S13 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-chlorobenzaldehyde.

Fig. S14 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-fluorobenzaldehyde.

Fig. S15 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 2-nitrobenzaldehyde.

Fig. S16 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl_3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 3-nitrobenzaldehyde.

Fig. S17 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-nitrobenzaldehyde.

Fig. S18 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl_3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 2-hydroxybenzaldehyde.

Fig. S19 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 3-hydroxybenzaldehyde.

Fig. S20 ¹H NMR spectrum (300.069 MHz, CDCl₃, δ_{CHCl_3} 7.26, δ_{TMB} 6.09), reaction mixture of the acetalization of glycerol with 4-hydroxybenzaldehyde.