Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

- Supporting Information -

Synthesis of Quaternary Centres by Single Electron Reduction and Alkylation of Alkylsulfones

Masakazu Nambo*, Yasuyo Tahara, Jacky C.-H. Yim, Daisuke Yokogawa, and Cathleen M. Crudden*

Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan 464-8601 Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6

E-mail: mnambo@itbm.nagoya-u.ac.jp, cruddenc@chem.queensu.ca

Table of Contents

1.	General		S2
2.	Preparation of primary and secondary sulfones	S3-S4	
3.	Preparation of tertiary sulfones		S4–S11
4.	Typical Procedure for Zn/phen-mediated Giese reaction of terti	ary sulfon	e 1 with
	electron-deficient olefins 2		S12-S19
5.	Intermolecular Giese reaction of tertiary sulfone 11		S20-S21
6.	Orthogonal Giese reaction of tertiary sulfone 13		S21-S23
7.	Preparation of samples for EPR and UV-Vis measurement		S23
8.	Cyclic voltammetry measurement		S23-S26
9.	Computational methods		S26
10.	References		S27
11.	¹ H, ¹³ C and ¹⁹ F NMR spectra of products	S28-S85	
12.	Coordinates of calculated structures		S86-S94

1. General

Unless otherwise noted, all materials including dry solvents were obtained from commercial suppliers and used without further purification. Zn powder (particle size: $6 \sim 9 \ \mu m$) was purchased from FUJIFILM Wako Chemicals, and was activated by 1N HClaq before use.

N,N-Diphenylacrylamide $(2j)^1$, methyl 2-((phenylsulfonyl)methyl)acrylate $(2m)^2$, 1,1-dimethyl-1-(phenylsulfonyl)-3-phenylpropane $(5a)^3$, 2-((3-phenylpropylsulfonyl)benzo[d]thiazole⁴, 2-((3-phenylpropylsulfonyl)pyridine⁵, 1-phenyl-5-((3-phenylpropyl)sulfonyl)-1*H*-tetrazole⁶, 5-(Cyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole⁶, 1-Phenyl-5-((tetrahydro-2*H*-pyran-4-yl)sulfonyl)-*1H*-tetrazole⁶, 5-((2,3-Dihydro-*1H*-inden-2-yl)sulfonyl)-1-phenyl-*1H*-tetrazole⁶, 5-((3-benzyloxypropyl)sulfonyl)-1-phenyl-*1H*-tetrazole⁷, 5-((3-(*tert*-butyldimethylsilyloxy)propyl)sulfonyl)-1-phenyl-*1H*-tetrazole⁸, 1benzyloxycarbonyl-(4-(1-phenyl-1*H*-tetrazol-5-yl)sulfonyl)azetidine⁹, and Zn(phen)₃(OTf)₂¹⁰ were prepared according to procedures reported in the literature.

Unless otherwise noted, all reactions were performed with dry solvents under an atmosphere of argon in flame-dried glassware with standard vacuum-line techniques. All work-up and purification procedures were carried out with reagent-grade solvents in air.

Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F_{254} precoated plates (0.25 mm) visualizing with UV light (254 nm) and ethanolic phosphomolybdic acid. Preparative thinlayer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (0.75 mm) prepared in our laboratory. Preparative recycling HPLC was performed with a JAI LC-9204 instrument equipped with JAIGEL-1H/JAIGEL-2H columns using chloroform as an eluent.

High-resolution mass spectra (HRMS) were obtained from a Thermo Fisher Scientific Exactive (ESI) and a JMS-T100TD instrument (DART). Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL ECA600II (¹H 600 MHz, ¹³C 150 MHz), a JEOL ECA-500 (¹H 500 MHz, ¹³C 125 MHz), a JEOL ECS-400 (¹H 400 MHz, ¹³C 100 MHz) spectrometers. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to tetramethylsilane (δ 0.00 ppm). Chemical shifts for ¹³C NMR spectra are expressed in ppm relative to CDCl₃ (δ 77.0 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet), coupling constant (Hz), and integration. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) of Zn powder was performed with a Shimadzu ICPE-9800 insturment. An analytical sample was prepared by treating Zn powder with HCl*aq*. The Electron Paramagnetic Resonance (EPR) spectrum were collected in DMF at 85 K with a JEOL JES-FA200, the central field was set to 320mT and the range of scan was 20mT. UV-vis spectra were recorded with Shimadzu UV-1800 spectrometer using 1 cm quartz cuvettes.

2. Preparation of primary and secondary sulfones

A) Preparation of 3,5-bis(trifluoromethyl)phenyl 1-(3-phenylpropyl) sulfone

A 100-mL flask containing a magnetic stirring bar was flame-dried under vacuum and filled with argon after cooling to room temperature. To the flask were added 3,5-bis(trifluoromethyl)benzenethiol (760 µL, 5 mmol), and 3-phenylpropyl bromide (840 µL, 5.25 mmol), and dry THF (30 mL) under argon. DBU (825 µL, 5.5 mmol) was added, and the mixture was stirred at room temperature for 16 h. The mixture was guenched with sat. NH₄Clag and extracted with EtOAc (3 times). The combined extracts were dried over NaSO₄, filtered and evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ (5 mL). mCPBA (>77%, 2.8 g, 12.5 mmol) in CH₂Cl₂ (15 mL) was slowly added to this solution at 0 °C and the mixture was stirred at room temperature for 12 h. The mixture was quenched with sat. Na₂SO₃ solution (~3 mL) and was washed with sat. NaHCO₃aq (3 times). The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (EtOAc/hexane = 1:20) to afford 3,5bis(trifluoromethyl)phenyl 1-(3-phenylpropyl) sulfone as a white solid (1.77 g, 89% yield, 2 steps). ¹H NMR (600 MHz, CDCl₃) δ 2.09-2.14 (m, 2H), 2.75 (t, *J* = 7.2 Hz, 2H), 3.12-3.14 (m, 2H), 7.10 (d, *J* = 7.2 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.28 (t, J = 7.2 Hz, 2H), 8.15 (s, 1H), 8.33 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 23.8, 33.8, 55.2, 122.3 (q, *J* = 272 Hz), 126.7, 127.4 (t, *J* = 4.2 Hz), 128.3, 128.5, 128.7, 133.3 (q, *J* = 35 Hz), 139.2, 142.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8. IR (ATR): 3066, 2945, 1559, 1457, 1284, 753 cm⁻¹. HRMS (ESI) m/z calcd for C₁₇H₁₃O₂F₆S [M-H]⁻: 395.0535, found 395.0544.

B) Preparation of 5-((4-phenylbutan-2-yl)sulfonyl)-1-phenyl-1H-tetrazole

To a 100-mL two-neck flask containing a magnetic stirring bar were added 1-phenyl-5-(4-phenylbutan-2-ylthio)-1*H*-tetrazole (1.93 g, 6.4 mmol), EtOH (15 mL), and ammonium molybdate tetrahydrate (207 mg, 0.17 mmol). 30% H₂O₂ in H₂O (6.2 ml, 30 mmol) was slowly added to this solution at 0 °C and the mixture was stirred at room temperature for 16 h. The mixture was quenched with sat. Na₂SO₃ solution at 0 °C, and was extracted with CH₂Cl₂. (3 times). The organic layer was dried over Na₂₄SO₄ , filtered and evaporated under reduced pressure. The residue was purified by column chromatography (EtOAc/hexane = 1:8 to 1:6) to afford 5-((4-phenylbutan-2-yl)sulfonyl)-1-phenyl-1*H*-tetrazole as a pale yellow oil (1.83 g, 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 1.53 (d, *J* = 6.6 Hz, 3H), 1.96-2.02 (m, 1H), 2.41-2.47 (m, 1H), 2.69-2.74 (m, 1H), 2.88-2.92 (m, 1H), 3.77-3.81 (m, 1H), 7.17 (d, *J* = 7.2 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.55-7.62

(m, 5H). ¹³C NMR (150 MHz, CDCl₃) & 12.7, 30.1, 32.2, 60.5, 125.4, 126.6, 128.3, 128.7, 129.5, 131.4, 133.0, 139.5, 152.7. IR (ATR): 3026, 2944, 1559, 1453, 1332, 1148, 713 cm⁻¹. HRMS (ESI) m/z calcd for C₁₇H₁₉N₄O₂S [M+Na]⁺: 343.1223, found 343.1225.

3. Preparation of tertiary sulfones

A) Typical procedure for preparation of tertiary sulfones from primary sulfones

A two-neck Schlenk flask containing a magnetic stirring bar was flame-dried under vacuum and filled with argon after cooling to room temperature. To the flask were added primary sulfone (1 equiv) and dry THF (5 mL per mmol of sulfone). A solution of LiHMDS (1.3 M in THF, 3 equiv) was added drop wise to the reaction mixture at -78 °C under argon. After stirring for 30 min, alkyl iodide (4 equiv) was added, the mixture was stirred at rt for 16 h. Sat. NH₄Claq was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with EtOAc (3 times), and the combined organic layer was washed with sat. NaHCO₃*aq* and brine. The organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography to afford the corresponding tertiary sulfone.

Me Me N-N, S N, O_2 Ph 5-((1',1'-Dimethyl-3'-phenylpropyl)sulfonyl)-1-phenyl-1H-tetrazole 1a Purification by column chromatography (DCM/hexane = 1:2).

4% isolated yield (7 mmol scale); white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.59 (s, 6H), 2.15-2.18 (m, 2H), 2.69-2.72 (m, 2H), 7.14 (d, J = 7.2 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.2 Hz, 2H), 7.53-7.56 (m, 4H), 7.60-7.62 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 20.4, 30.0, 36.8, 67.7, 126.2, 126.4, 128.3, 128.6, 129.3, 131.4, 133.3, 140.3, 152.0. IR (ATR): 3067, 2872, 1495, 1461, 1335, 1169, 1113, 767 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₂₀N₄O₂SNa [M+Na]⁺: 379.1199, found 379.1199.

 $\begin{array}{c} Me & Me & N-N \\ BnO & & & \\ & & & & \\ & & & &$ 614 mg, 82% isolated yield (1.9 mmol scale); white solid

¹H NMR (600 MHz, CDCl₃) δ 1.56 (s, 6H), 2.26 (t, *J* = 6.0 Hz, 2H), 3.64 (t, *J* = 6.0 Hz, 2H), 4.45 (s, 2H), 7.27-7.30 (m, 3H), 7.34 (t, J = 7.2 Hz, 2H), 7.54-7.63 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 20.7, 34.2, 65.6, 67.3, 73.1, 126.1, 127.6, 127.7, 128.4, 129.3, 131.4, 133.4, 137.7, 151.9. IR (ATR): 3028, 2870, 1495, 1454, 1335, 1115, 760 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₉H₂₂N₄O₃SNa [M+Na]⁺: 409.1305, found 409.1305.

TBSO

5-((3'-tert-Butyldimethylsilyl)oxy-1',1'-dimethylpropyl)sulfonyl)-1-phenyl-1Htetrazole 1e

Purification by column chromatography (EtOAc/hexane = 1:10).

3.08 g, 85% isolated yield (8.8 mmol scale); white solid.

¹H NMR (600 MHz, CDCl₃) δ 0.04 (s, 6H), 0.87 (s, 9H), 1.57 (s, 6H), 2.14 (t, J = 6.0 Hz, 2H), 3.80 (t, J = 6.0 Hz, Hz, 2H), 7.57-7.63 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ -5.5, 18.1, 20.6, 25.8, 36.6, 58.7, 67.5, 126.2, 129.3, 131.4, 133.4, 151.9. IR (ATR): 3070, 2958, 1498, 1462, 1339, 1255, 1094, 839 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₃₀N₄O₃SiSNa [M+Na]⁺: 433.1700, found 433.1698.

297 mg, 77% isolated yield (1 mmol scale); white solid

¹H NMR (600 MHz, CDCl₃) δ 1.59 (s, 6H), 2.03 (g, J = 7.2 Hz, 4H), 2.15-2.18 (m, 2H), 2.69-2.72 (m, 2H), 7.14 (d, J = 7.2 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.2 Hz, 2H), 7.53-7.56 (m, 4H), 7.60-7.62 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 8.2, 25.0, 29.9, 34.0, 74.0, 126.3, 126.4, 128.2, 128.6, 129.2, 131.4, 133.4, 140.9, 152.7. IR (ATR): 3067, 2872, 1495, 1461, 1335, 1169, 1113, 767 cm⁻¹. HRMS (ESI) m/z calcd for C₂₀H₂₄N₄O₂SNa [M+Na]⁺: 407.1512, found 407.1508.

2-((1,1-Dimethyl-3-phenylpropyl)sulfonyl)benzothiazole 4a

Purification by column chromatography (EtOAc/hexane = 1:10). 407 mg, 59% isolated yield (2 mmol scale); white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.60 (s, 6H), 2.18-2.21 (m, 2H), 2.76-2.79 (m, 2H), 7.18-7.20 (m, 3H), 7.28 (t, J = 7.8 Hz, 2H), 7.59 (t, J = 8.4 Hz, 1H), 7.63 (t, J = 8.4 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H) 1H). ¹³C NMR (150 MHz, CDCl₃) δ 21.1, 30.2, 37.3, 65.2, 122.1, 125.7, 126.2, 127.5, 127.9, 128.3, 128.5, 137.3, 140.9, 153.1, 164.0. IR (ATR): 3062, 2939, 1499, 1469, 1314, 1116, 763 cm⁻¹. HRMS (ESI) m/z calcd for C₁₈H₁₉NO₂S₂Na [M+Na]⁺: 368.0749, found 368.0749.

3,5-Bis(trifluoromethyl)phenyl 1-(1,1-dimethyl-3-phenylpropyl) sulfone 6a Purification by column chromatography (EtOAc/hexane CF₃ 632 mg, 75% isolated yield (2 mmol scale); white solid. Purification by column chromatography (EtOAc/hexane = 1:20).

¹H NMR (600 MHz, CDCl₃) δ 1.41 (s, 6H), 2.01-2.04 (m, 2H), 2.73-2.76 (m, 2H), 7.15 (d, J = 7.8 Hz, 2H), 7.21 (t, J = 7.8 Hz, 1H), 7.29 (t, J = 7.8 Hz, 2H), 8.16 (s, 1H), 8.34 (s, 2H). ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3) \delta 21.1, 30.2, 37.0, 63.9, 122.3 (q, J = 272 \text{ Hz}), 126.4, 127.3 (t, J = 17 \text{ Hz}), 128.1, 128.6,$ 130.7, 132.8 (q, J = 35 Hz), 138.7, 140.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8. IR (ATR): 3062, 2978, 1455, 1278, 1127, 1095, 909 cm⁻¹. HRMS (DART) m/z calcd for C₁₁H₁₅ [M-C₈H₃SO₂F₆]⁺: 147.1174, found 147.1171.

2-((1,1-Dimethyl-3-phenylpropyl)sulfonyl)pyridine 7a

Purification by column chromatography (EtOAc/hexane = 1:5). 568 mg, 98% isolated yield (2 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 1.48 (s, 6H), 2.07-2.10 (m, 2H), 2.71-2.74 (m, 2H), 7.16 (d, *J* = 7.2 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 7.2 Hz, 2H), 7.55 (dd, *J* = 8.4, 4.8 Hz, 1H), 7.95 (t, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.80 (d, *J* = 4.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 21.1, 30.2, 37.5, 63.6, 125.4, 126.1, 127.2, 128.3, 128.4, 137.7, 141.2, 150.1, 155.4. IR (ATR): 3057, 2942, 1577, 1543, 1425, 1301, 1099, 745 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₆H₁₉NO₂SNa [M+Na]⁺: 312.1029, found 312.1028.

B) Typical procedure for preparation of tertiary sulfones from secondary sulfones

A two-neck flask containing a magnetic stirring bar was flame-dried under vacuum and filled with argon after cooling to room temperature. To the flask were added primary sulfone (1 equiv) and dry THF (5 mL per mmol of sulfone). A solution of LiHMDS (1.3 M in THF, 1.5 equiv) was added drop wise to the reaction mixture at -78 °C under argon. After stirring for 30 min, alkyl bromide or iodide (2 equiv) was added, the mixture was stirred at rt for 16 h. Sat. NH₄Claq was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with EtOAc (3 times), and the combined organic layer was washed with sat. NaHCO₃aq and brine. The organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography or GPC to afford the corresponding tertiary sulfone.

268 mg, 58% isolated yield (1 mmol scale); yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 1.44 (s, 9H), 1.63 (s, 3H), 2.24 (ddd, *J* = 14.4, 12.6, 6.4 Hz, 1H), 2.39 (ddd, *J* = 14.4, 12.6, 6.4 Hz, 1H), 2.73-2.83 (m, 2H), 3.05 (d, *J* = 15.0 Hz, 1H), 3.11 (d, *J* = 15.0 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.27 (t, *J* = 7.8 Hz, 1H), 7.53-7.56 (m, 4H), 7.60-7.62 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 19.7, 28.0, 30.4, 35.4, 38.2, 69.3, 82.2, 126.3, 128.3, 128.5, 129.2, 131.4, 133.3, 140.6, 152.2, 167.8. IR (ATR): 3001, 2979, 1726, 1498, 1458, 1340, 1145, 761 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₀H₂₃N₄O₂ClSNa [M+Na]⁺: 411.1122, found 411.1122.

5-((1'-(4-Chloropropyl)-1'-methyl-3'-phenylpropyl)sulfonyl)-1-phenyl-1*H*-tetrazole 1c

Purification by GPC and column chromatography (EtOAc/hexane = 1:12). 301 mg, 72% isolated yield (1 mmol scale); white solid ¹H NMR (500 MHz, CDCl₃) δ 1.54 (s, 3H), 1.90-2.03 (m, 2H), 2.07-2.24 (m, 4H), 2.68-2.78 (m, 2H), 3.50-3.57 (m, 2H), 7.14 (d, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.52-7.57 (m, 4H), 7.61-7.64 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 19.8, 26.9, 29.9, 30.8, 35.1, 44.6, 70.1, 126.3, 126.5, 128.2, 128.7, 129.3, 131.5, 133.3, 140.3, 152.1. IR (ATR): 3028, 2952, 1496, 1455, 1321, 1141, 761, 732 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₀H₂₃N₄O₂ClSNa [M+Na]⁺: 441.1122, found 411.1122.

S-((2',3'-Dihydro-2'-methyl-1*H*-inden-2'-yl)sulfonyl)-1-phenyl-1*H*-tetrazole 1i
 Purification by column chromatography (EtOAc/hexane = 1:20).
 139 mg, 41% isolated yield (1 mmol scale); white solid

¹H NMR (600 MHz, CDCl₃) δ 1.77 (s, 3H), 3.17 (d, *J* = 16.2 Hz, 2H), 3.94 (d, *J* = 16.2 Hz, 2H), 7.21 (s, 4H), 7.59-7.65 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 22.5, 41.2, 72.1, 124.8, 125.8, 127.6, 129.5, 131.5, 133.2, 138.1, 152.2. IR (ATR): 3075, 2917, 1496, 1443, 1332, 1155, 1104, 764cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₆N₄O₂SNa [M+Na]⁺: 363.0886, found 363.0885.

1-Benzyloxycarbonyl-3-methyl-3-((1-phenyl-1*H***-tetrazol-5-yl)sulfonyl)azetidine 1j Purification by column chromatography (EtOAc/hexane = 1:10). 345 mg, 84% isolated vield (1 mmol scale); colorless oil**

¹H NMR (600 MHz, CDCl₃) δ 1.95 (s, 3H), 4.09 (d, J = 10.2 Hz, 2H), 4.71 (d, J = 10.2 Hz, 2H), 5.12 (s, 2H),

7.31-7.37 (m, 5H), 7.60-7.69 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 20.5, 55.4, 56.2, 60.0, 67.3, 125.1, 128.1, 128.3, 128.5, 129.7, 131.6, 132.8, 135.9, 151.1, 155.9. IR (ATR): 3071, 2952, 1712, 1498, 1415, 1338, 1144, 1097, 763 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₉H₁₉N₅O₄SNa [M+Na]⁺: 436.1050, found 436.1045.

4-(4'-Biphenylmethyl)-4-((1'-phenyl-1*H*-tetrazol-5'-yl)sulfonyl)tetrahydropyran 1k

Purification by column chromatography (EtOAc/hexane = 1:5).

394 mg, 86% isolated yield (1 mmol scale); white solid.

¹H NMR (400 MHz, CDCl₃) δ 2.08-2.14 (m, 2H), 2.48-2.54 (m, 2H), 3.32 (s, 2H), 3.69-3.74 (m, 2H), 4.01-4.06 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.34-7.38 (m, 1H), 7.45 (t, *J* =

8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.55-7.67 (m, 7H). ¹³C NMR (150 MHz, CDCl₃) δ 28.0, 38.5, 63.0, 68.9, 126.1, 127.0, 127.1, 127.5, 128.8, 129.4, 131.50, 131.51, 132.3, 133.3, 140.3, 140.7, 152.3. IR (ATR): 3075, 2944, 2354, 1457, 1149, 758 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₅H₂₄N₄O₃SNa [M+Na]⁺: 483.1461, found 483.1459.

7.64 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 16.9,

5-(1'-Methylcyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole 11

Purification by column chromatography (DCM/hexane = 1:1). 283 mg, 92% isolated yield (1 mmol scale); white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.22 (qt, J = 13.2, 3.6 Hz, 1H), 1.44 (qt, J = 13.2, 3.6 Hz, 2H), 1.56 (s, 3H), 1.69-1.71 (m, 1H), 1.78 (dt, J = 14.4, 3.6 Hz, 2H), 1.88-1.90 (m, 2H), 1.97 (td, J = 13.2, 3.6 Hz, 2H), 7.56-

21.2, 24.8, 29.2, 68.3, 126.2, 129.3, 131.4, 133.5, 151.9. IR (ATR): 3088, 2936, 1498, 1465, 1335, 1150, 1094, 757 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₁₈N₄O₂SNa [M+Na]⁺: 329.1043, found 329.1042.

5-(1'-(4-Pentenyl)cyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole

Purification by column chromatography (EtOAc/hexane = 1:20). 104 mg, 29% isolated yield (1 mmol scale); pale yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 1.20-1.26 (m, 1H), 1.36-141 (m, 2H), 1.50-1.56 (m, 3H), 1.66 (dt, *J* = 13.5, 3.5 Hz, 1H), 1.75 (dt, *J* = 13.5, 3.5 Hz, 2H), 1.90-1.94 (m, 6H), 1.99 (q,

J = 14.0, 2.5 Hz, 2H), 4.96-5.01 (m, 2H), 5.67-5.75 (m, 1H), 7.53-7.64 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 22.4, 24.4, 28.1, 29.1, 33.9, 70.7, 115.4, 126.4, 129.2, 131.4, 133.5, 137.6, 152.1. IR (ATR): 3080, 2943, 1647, 1495, 1461, 1332, 1143, 1015, 771 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₂₄N₄O₂SNa [M+Na]⁺: 383.1512, found 383.1512.

O S O O Ph

 $\label{eq:constraint} 4-(1'-(4-Pentenyl)-4-(1'-phenyl-1H-tetrazol-5'-yl) sulfonyl) tetrahydropyran$

Purification by column chromatography (DCM/hexane = 1:1).

347 mg, 46% isolated yield (2.1 mmol scale); white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.48-1.54 (m, 2H), 1.85 (d, *J* = 13.2 Hz, 2H), 1.99-2.03 (m,

4H), 2.29-2.34 (m, 2H), 3.52-3.56 (m, 2H), 3.94 (dt, J = 11.4, 4.2 Hz, 2H), 4.97-5.00 (m, 2H), 5.66-5.72 (m, 1H), 7.56-7.65 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 22.3, 28.1, 29.4, 33.6, 62.8, 67.9, 115.7, 126.2, 129.2, 131.4, 133.2, 137.2, 151.6. IR (ATR): 2970, 2860, 1495, 1344, 1135, 1099, 762 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₂₂N₄O₃SNa [M+Na]⁺: 385.1305, found 385.1305.

5-(1'-(5-Hexenyl)cyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole

Purification by column chromatography (EtOAc/hexane = 1:30).

85 mg, 23% isolated yield (1 mmol scale); colorless oil

¹H NMR (500 MHz, CDCl₃) δ 1.17-1.26 (m, 1H), 1.28-1.34 (m, 1H), 1.35-1.46 (m, 3H), 1.65 (dt, J = 13.0, 3.5 Hz, 1H), 1.75 (dt, J = 14.0, 3.5 Hz, 2H), 1.89-1.94 (m, 6H), 1.99-

2.03 (m, 2H), 4.92-5.00 (m, 2H), 5.71-5.80 (m, 1H), 7.54-7.65 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 22.7, 24.4, 28.1, 29.3, 29.7, 33.3, 70.8, 114.7, 126.4, 129.2, 131.4, 133.5, 138.4, 152.1. IR (ATR): 3083, 3062, 2947, 1653, 1559, 1458, 1015, 707 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₉H₂₆N₄O₂SNa [M+Na]⁺: 397.1669, found 397.1668.

C) Preparation of 5-((3'-(4'-bromophenyl)oxy-1',1'-dimethylpropyl)sulfonyl)-1-phenyl-1H-tetrazole 1f

To a 100 mL flask were added 5-((3'-*tert*-butyldimethylsilyl)oxy-1',1'-dimethylpropyl)sulfonyl)-1phenyl-*1H*-tetrazole **1f** (1.80 g, 4.4 mmol) and THF (21 mL) and H₂O (10.5 mL). 1N HClaq (5.1 mL) was added at room temperature. After stirring at room temperature for 4 h, brine was added and this mixture was extracted with EtOAc. (3 times). The organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude material was purified by column chromatography (EtOAc/hexane = 1:2) to give 5-((1',1'-dimethyl-3'-hydroxypropyl)sulfonyl)-1-phenyl-*1H*-tetrazole (1.23 g, 95%) as a white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.59 (s, 6H), 2.22 (t, *J* = 6.6 Hz, 2H), 3.85 (q, *J* = 6.6 Hz, 2H), 7.58-7.64 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.1, 37.4, 58.3, 67.2, 126.1, 129.3, 131.5, 133.4, 151.9. IR (ATR): 3613, 3023, 2941, 1498, 1117, 1046, 763 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₂H₁₆N₄O₃SNa [M+Na]⁺: 319.0835, found 319.0835.

To a 20-mL flask were added 5-((1',1'-dimethyl-3'-hydroxypropyl)sulfonyl)-1-phenyl-*IH*-tetrazole (118 mg, 0.4 mmol), PPh₃ (126 mg, 0.48 mmol), 4-bromophenol (83 mg, 0.48 mmol) and dry THF (2 mL). under a stream of argon. Bis(2-methoxyethyl) azodicarboxylate (112 mg, 0.48 mmol) was slowly added to this mixture at 0 °C. After stirring at room temperature for 24 h, organic solvent was evaporated under reduced pressure. The crude material was purified by column chromatography (EtOAc/hexane = 1:10) to give 5-((3'-(4'-bromophenyl)oxy-1',1'-dimethylpropyl)sulfonyl)-1-phenyl-*IH*-tetrazole **1f** (145 mg, 80%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 1.62 (s, 6H), 2.47 (t, *J* = 6.0 Hz, 2H), 4.12 (t, *J* = 6.0 Hz, 2H), 6.73 (d, *J* = 7.2 Hz, 2H), 7.58-7.64 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.0, 34.2, 63.6, 67.0, 113.4, 116.2, 126.1, 129.4, 131.5, 132.4, 133.3, 151.8, 157.2. IR (ATR): 3064, 2901, 1488, 1338, 1243, 1172, 1117, 764 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₁₉N₄O₃SBrNa [M+Na]⁺: 473.0253, found 473.0253.

D) Preparation of 5-(1',1'-Dimethyl-3'-(4-(4',4',5',5'-tetramethyl-1',3',2'-dioxaborolan-2'yl)benzoyl)oxypropyl)sulfonyl)-1-phenyl-*1H*-tetrazole 1g

To a flask were added 5-((1',1'-dimethyl-3'-hydroxypropyl)sulfonyl)-1-phenyl-*1H*-tetrazole (119 mg, 0.4 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (119 mg, 0.48 mmol), 4-dimethylaminopyridine (68.4 mg, 0.56 mmol) and dry CH_2Cl_2 (5 mL) under a stream of argon. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (99 µL, 0.56 mmol) was added to this mixture at room temperature. After stirring at room temperature for 16 h, sat. NH_4Claq was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with EtOAc (3 times), and the combined organic layer was dried over Na_2SO_4 , filtered and the solvent was evaporated under reduced pressure. The crude

material was purified by GPC to give 5-(1',1'-Dimethyl-3'-(4-(4',4',5',5'-tetramethyl-1',3',2'-dioxaborolan-2'-yl)benzoyl)oxypropyl)sulfonyl)-1-phenyl-1H-tetrazole 1g (148 mg, 70%) as a beige solid.

¹H NMR (600 MHz, CDCl₃) δ 1.36 (s, 12H), 1.62 (s, 6H), 2.47 (t, *J* = 7.2 Hz, 2H), 4.50 (t, *J* = 7.2 Hz, 2H), 7.56-7.63 (m, 5H), 7.88 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 20.7, 24.8, 33.5, 60.2, 66.6, 84.1, 126.0, 128.5, 129.3, 131.4, 131.7, 133.2, 134.7, 151.7, 166.1. IR (ATR): 3085, 2980, 1718, 1507, 1399, 1119, 761cm⁻¹. HRMS (DART) m/z calcd for C₂₅H₃₂BN₄O₆S [M+H]⁺: 527.2146, found 527.2148.

E) Preparation of 12 for intermolecular Giese reaction

A 20-mL two-neck flask containing a magnetic stirring bar was flame-dried under vacuum and filled with argon after cooling to room temperature. To this flask were added sulfone (1.0 equiv), DCM (7.5 mL per mmol), olefin (5 equiv), and Grubbs catalyst 2nd generation (5 mol%) under a stream of argon. This mixture was heated at 40 °C for 12 h. After cooling to room temperature, the mixture was passed through a pad of silica gel with copious washings with EtOAc (~10 mL). The filtrate was concentrated under reduced pressure. The crude product was purified by PTLC to afford the corresponding sulfone 11.

Benzyl 6-(1-(1'-phenyl-1H-tetrazol-5'-yl)sulfonylcyclohexyl)-2-hexanoate 11a

Purification by column chromatography (EtOAc/hexane = 1:5).

BnO₂C

122 mg, 91% isolated yield (0.27 mmol scale); white solid.

¹H NMR (500 MHz, CDCl₃) δ 1.16-1.41 (m, 3H), 1.62-1.68 (m, 3H), 1.75 (dt, J = 13.5, 3.5 Hz, 2H), 1.90-1.97 (m, 6H), 2.13-2.17 (m, 2H), 5.18 (s, 2H), 5.85 (d, *J* = 15.5 Hz, 1H), 6.92 (dt, J = 15.5, 6.5 Hz, 1H), 7.32-7.38 (m, 5H), 7.53-7.64 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 21.2, 21.7, 24.3, 28.0, 29.2, 32.3, 66.1, 70.6, 121.8, 126.3, 128.2, 128.5, 129.3, 131.4, 133.4, 136.0, 148.3, 151.9, 166.1. (1 aryl carbon signal is obscured). IR (ATR): 3100, 3060, 2937, 1712, 1495, 1461, 1334, 1145, 760 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₆H₃₀N₄O₄SNa [M+Na]⁺: 517.1880, found 517.1880.

Benzyl 6-(4-(1'-phenyl-1H-tetrazol-5'-yl)sulfonyltetrahydro-2H-pyran)-2hexanoate 11b

Purification by column chromatography (EtOAc/hexane = 1:5). 161 mg, 81% isolated yield (0.4 mmol scale); beige solid.

¹H NMR (600 MHz, CDCl₃) δ 1.63 (quin, J = 7.8 Hz, 2H), 1.83 (d, J = 13.8 Hz, 2H), 2.05-2.08 (m, 2H), 2.17 (q, J = 7.2 Hz, 2H), 2.28-2.33 (m, 2H), 3.49-3.53 (m, 2H), 3.94 (dt, J = 12.0, 4.2 Hz, 2H), 5.17 (s, 2H), 5.85 (d, J = 15.6 Hz, 1H), 6.89 (dt, J = 15.6, 7.2 Hz, 1H), 7.31-7.37 (m, 5H), 7.55-7.63 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.8, 28.1, 29.5, 32.1, 62.7, 66.1, 67.8, 122.0, 126.1, 128.1, 128.5, 129.3, 131.5, 133.2, 135.9, 147.7, 151.5, 165.9 (1 aryl carbon signal is obscured). IR (ATR): 3091, 3035, 2869, 2364, 1713, 1642, 1521, 1436, 957, 751 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₅H₂₈N₄O₅SNa [M+Na]⁺: 519.1673, found 519.1672.

Benzyl 7-(1-(1'-phenyl-1*H*-tetrazol-5'-yl)sulfonylcyclohexyl)-2-heptanoate 11c
 Purification by column chromatography (EtOAc/hexane = 1:10).
 73.9 mg, 51% isolated yield (0.29 mmol scale); beige solid.

¹H NMR (500 MHz, CDCl₃) δ 1.17-1.22 (m, 1H), 1.35-1.40 (m, 4H), 1.44-1.50 (m, 1H), 1.62-1.65 (m, 1H), 1.72-1.74 (m, 2H), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz, 1.44-1.50 (m, 2H), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (q, *J* = 14.0 Hz), 1.88-1.93 (m, 6H), 2.17 (m, 2H), 1.88-1.93 (m, 6H), 1.

2H), 5.17 (s, 2H), 5.85 (d, J = 15.5 Hz, 1H), 6.96 (dt, J = 15.5, 7.0 Hz, 1H), 7.31-7.37 (m, 5H), 7.53-7.62 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 21.1, 22.7, 24.2, 27.9, 28.2, 29.3, 31.7, 65.9, 70.4, 121.1, 126.2, 128.0, 128.4, 129.1, 131.3, 133.3, 135.9, 149.1, 149.2, 151.8, 166.2. IR (ATR): 3053, 3041, 2940, 2370, 1717, 1643, 1456, 1441, 797, 703 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₇H₃₂N₄O₄SNa [M+Na]⁺: 531.2036, found 531.2036.

(*4E*)-1-phenyl-9-(1-(1'-phenyl-1*H*-tetrazol-5'-yl)sulfonylcyclohexyl)-4-nonen-3one 11d

Purification by column chromatography (EtOAc/hexane = 1:20). 57.2 mg, 34% isolated yield (0.34 mmol scale); white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.18-1.22 (m, 1H), 1.36-1.41 (m, 4H), 1.46-1.51 (m, 2H), 1.63-1.66 (m, 1H), 1.72-1.75 (m, 2H), 1.88-1.95 (m, 6H), 2,16-2.20 (m, 2H), 2.85 (t, *J*

= 7.8 Hz, 2H), 2.93 (t, J = 7.8 Hz, 2H), 6.08 (d, J = 16.2 Hz, 1H), 6.77 (dt, J = 16.2, 6.6 Hz, 1H), 7.17-7.20 (m, 3H), 7.26-7.28 (m, 3H), 7.52-7.63 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 22.7, 24.2, 28.0, 28.4, 29.4, 30.0, 31.9, 41.7, 70.5, 126.0, 126.3, 128.3, 128.4, 129.1, 130.4, 131.3, 133.4, 141.2, 146.6, 151.9, 199.3. IR (ATR): 3053, 2968, 1696, 1457, 1437, 1049, 760, 727 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₈H₃₄N₄O₃SNa [M+Na]⁺: 529.2244, found 529.2244.

4. Typical Procedure for Zn/phen-mediated Giese reaction of tertiary sulfone 1 with electron-deficient olefins 2

To A 10-mL sealable glass vessel containing a magnetic stirring bar was added Zn powder (32.7 mg, 0.5 mmol), flame-dried under vacuum, and filled with argon after cooling to room temperature. The tube was charged with 5-((1',1'-dimethyl-3'-phenylpropyl)sulfonyl)-1-phenyl-*1H*-tetrazole **1a** (71.2 mg, 0.2 mmol), 1,10-phenanthroline (108 mg, 0.6 mmol), and Hantzsch ester (101 mg, 0.4 mmol). The mixture was evacuated under vacuum and refilled with Ar. This cycle was repeated two additional times. Under an argon atmosphere, DMF (1.0 mL) and benzyl acrylate **2a** (61 μ L, 0.4 mmol) were added and the reaction was sealed, and stirred at 25 °C for 16 h. The reaction was quenched with 3-4 drops of H₂O and EtOAc (~1.0 mL). The mixture was passed through a pad of silica gel with copious washings with EtOAc. The filtrate was concentrated under reduced pressure. The crude product was purified by PTLC (Hexane/EtOAc = 40:1) to afford benzyl 4,4-dimethyl-6-phenylhexanoate **3aa** (50.7 mg, 82% yield) as a colorless oil.

Me Me N ^{-N}	2	3 equiv Phen 2 equiv Hantzsch ester	Me Me	
Ph S N Ph	✓CO ₂ Bn	2.5 equiv Zn	Ph	CO₂Bn
1a	2a (2 equiv)	DMF, 25 °C, 16 h	3aa	
Variation	Yield (¹ H-NMR) Varia	tion	Yield (¹ H-NMR)
None 84%		2,2-bipydiryl instead of phen		0%
No Zn	0%	terpyridine ins	tead of phen	25%
No phen	0%	2 equiv	phen	61%
Zn pre-activated by TMSCI, no phen	0%	4 equiv	phen	74%
Ricke Zn, no phen	0%	1.5 equiv Har	ntzsch ester	67%
Zn (particle size 75-150 um)	0%	No Hantzs	sch ester	26%
Mg instead of Zn	0%	2 equiv MeOH instea	d of Hantzsch ester	28%
Mn instead of Zn	0%	50 %	O.	77%
2 equiv Zn	71%	2 equiv	/ LiCl	58%
4 equiv Zn	79%	10 mol% NiCl ₂ ,	2 equiv MgCl ₂	59%
DMAP instead of phen 0%		1.5 equiv 2a		55%

Table S1. Optimization of reaction conditions

Yields were determined by ¹H NMR using anisole as an internal standard.

Table S2. Reaction in DMF-d₇

Table S3. Reaction using deuterated Hantzsch esters

Table S4. ICP-AES analysis of Zn powder

Fe	Со	Ni	Cu	Pd
0.5 ppm	<0.1 ppm	<0.5 ppm	2.5 ppm	<0.4 ppm

Table S5. Competitive reaction of sulfone and redox-active ester in Ni-catalyzed Giese reaction.¹¹

Compound Data for Quaternary product 3

Unless otherwise noted, sulfone derivatives described in this section were prepared following the typical procedure. All products were purified by column chromatography, PTLC or GPC (preparative recycling HPLC equipped with JAIGEL-1H/JAIGEL-2H column (eluent: CHCl₃)).

Ph CO_2Bn Benzyl 4,4-dimethyl-6-phenylhexanoate 3aa¹² Purification by PTLC (Hexane/EtOAc = 40:1).

 $O_2 BT$ Purification by PILC (Hexane/EtOAc = 40

50.7 mg, 82% isolated yield (0.2 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 0.93 (s, 6H), 1.48-1.51 (m, 2H), 1.64-1.67 (m, 2H), 2.33-2.36 (m, 2H), 2.53-2.56 (m, 2H), 5.11 (s, 2H), 7.15-7.16 (m, 3H), 7.26 (t, *J* = 7.2 Hz, 2H), 7.30-7.36 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 26.7, 29.6, 30.6, 32.6, 36.3, 44.0, 66.2, 125.6, 128.17, 128.20, 128.24, 128.3, 128.5, 136.0, 143.1, 174.1. IR (ATR): 3029, 2953, 1737,1506, 1462, 1148, 740 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₁H₂₇O₂ [M+H]⁺: 312.2011, found 312.2006.

Purification by PTLC (Hexane/EtOAc = 40:1).

40.0 mg, 62% isolated yield (0.2 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 0.90 (s, 3H), 0.91 (s, 3H), 1.19 (d, *J* = 7.8 Hz, 3H), 1.26 (dd, *J* = 8.4, 2.4 Hz, 1H), 1.49 (d, *J* = 8.4 Hz, 2H), 1.96-2.00 (m, 1H), 2.52-2.57 (m, 2H), 2.58-2.60 (m, 1H), 5.06 (d, *J* = 12.0 Hz, 1H), 5.09 (d, *J* = 12.0 Hz, 1H), 7.14-7.15 (m, 3H), 7.25 (t, *J* = 7.2 Hz, 2H), 7.29-7.34 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 20.5, 26.88, 26.90, 30.6, 33.4, 35.8, 44.4, 45.6, 66.2, 125.5, 128.1, 128.2, 128.26, 128.28, 128.5, 136.0, 143.2, 177.6. IR (ATR): 3205, 2953, 1737, 1555, 1454, 1170, 733 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₂H₂₉O₂ [M+H]⁺: 325.2168, found 325.2165.

$\begin{array}{c} \mbox{Me Me Ph} & \mbox{Methyl 4,4-dimethyl-2,6-diphenylhexanoate 3ac} \\ \mbox{Ph} & \mbox{CO}_2\mbox{Me} & \mbox{Purification by PTLC (Hexane/EtOAc = 20:1).} \end{array}$

36.2 mg, 58% isolated yield (0.2 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 0.94 (s, 6H), 1.50-1.53 (m, 2H), 1.66-1.69 (m, 1H), 2.35-2.40 (m, 1H), 2.46-2.57 (m, 2H), 3.61 (s, 3H), 3.68-3.70 (m, 1H), 7.11-7.16 (m, 3H), 7.22-7.26 (m, 3H), 7.29-7.34 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 27.0, 30.6, 33.6, 44.4, 45.2, 47.6, 52.0, 125.6, 127.1, 127.8, 128.2, 128.3, 128.7, 140.9, 143.1, 175.2. IR (ATR): 3026, 2947, 1737, 1454, 1433, 1204, 730 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₁H₂₇O₂ [M+H]⁺: 311.2011, found 311.2009.

 $\begin{array}{c} \mbox{Me} & \mbox{Phenyl 4,4-dimethyl-6-phenylhexanoate 3ad}^{13} \\ \mbox{Ph} & \mbox{CO}_2 \mbox{Ph} & \mbox{Purification by PTLC (Hexane/EtOAc = 40:1).} \end{array}$

43.4 mg, 73% isolated yield (0.2 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 1.00 (s, 6H), 1.54-1.57 (m, 2H), 1.75-1.78 (m, 2H), 2.53-2.55 (m, 2H), 2.57-2.60 (m, 2H), 7.06 (d, *J* = 7.8 Hz, 2H), 7.16-7.22 (m, 4H), 7.27 (t, *J* = 7.8 Hz, 2H), 7.37 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 26.7, 29.7, 30.6, 32.7, 36.4, 44.0, 121.5, 125.6, 125.7, 128.25, 128.34, 129.3, 143.0, 150.7, 172.7. IR (ATR): 3205, 2955, 1750, 1493, 1456, 1118, 701 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₀H₂₅O₂ [M+H]⁺: 297.1855, found 297.1859.

3-(2',2'-Dimethyl-4'-phenylbutyl)dihydrofuran-2'(3H)-one 3ae¹³

Purification by PTLC (Hexane/EtOAc = 20:1).

30.6 mg, 62% isolated yield (0.2 mmol scale); yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 1.00 (s, 3H), 1.03 (s, 3H), 1.34 (dd, J = 14.4, 8.4 Hz, 1H), 1.51-1.59 (m, 2H), 1.93-2.01 (m, 1H), 2.14 (d, J = 14.4 Hz, 1H), 2.48-2.52 (m, 2H), 2.54-2.64 (m, 2H), 4.13 (td, J = 9.6, 6.0 Hz, 1H), 4.33 (t, J = 8.4 Hz, 1H), 7.16-7.18 (m, 3H), 7.27 (t, J = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 27.1, 27.3, 30.5, 31.7, 33.1, 36.0, 43.0, 44.5, 66.1, 125.6, 128.2, 128.3, 142.9, 180.2. IR (ATR): 3029, 2955, 1765, 1453, 1437, 1146, 1025, 727 cm⁻¹. HRMS (DART) *m/z* calcd for C₁₆H₂₃O₂ [M+H]⁺: 247.1698, found 247.1695.

Oxiran-2-ylmethyl 2,4,4-trimethyl-6-phenylhexanoate 3af

Purification by PTLC (Hexane/EtOAc = 40:1) and GPC.

18.1 mg, 62% isolated yield (0.1 mmol scale, diastereomeric ratio = 1:1); colorless oil.

¹H NMR (600 MHz, CDCl₃, mixture of diastereomers) δ 0.93 (s, 6H), 1.199 (d, *J* = 7.2 Hz, 1.5H), 1.203 (d, *J* = 7.2 Hz, 1.5H), 1.272 (d, *J* = 14.4 Hz, 0.5H), 1.276 (d, *J* = 14.4 Hz, 0.5H), 1.50 (d, *J* = 9.0 Hz, 2H), 1.964 (dd, *J* = 14.4, 8.4 Hz, 0.5H), 1.967 (dd, *J* = 14.4, 8.4 Hz, 0.5H), 2.53-2.63 (m, 4H), 2.79 (t, *J* = 4.2 Hz, 0.5H), 2.80 (t, *J* = 4.2 Hz, 0.5H), 3.13-3.18 (m, 1H), 3.86-3.90 (m, 1H), 4.35-4.36 (m, 0.5H), 4.37-4.39 (m, 0.5H), 7.15-7.18 (m, 3H), 7.26 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃, mixture of diastereomers) δ 20.5, 26.85/26.88, 30.6, 33.4, 35.62/35.67, 44.4, 44.58/44.61, 45.66/45.72, 49.3, 64.84/64.97, 125.6, 128.26/128.29, 143.2, 177.53/177.56. IR (ATR): 3025, 2936, 1745, 1462, 1455, 1445, 908, 742cm⁻¹. HRMS (DART) *m/z* calcd for C₁₈H₂₇O₃ [M+H]⁺: 291.1960, found 291.1955.

CO₂Bn Benzyl 6,6-dimethyl-8-phenyl-3-octenoate 3ag

Purification by PTLC (Hexane/EtOAc = 40:1).

46.8 mg, 70% isolated yield (0.2 mmol scale, *trans:cis* = 17:1); white solid.

Me Me

Ph

¹H NMR (600 MHz, CDCl₃, mixture of isomers) δ 0.91 (s, 5.6H), 0.93 (s, 0.4H), 1.42-1.52 (m, 2H), 2.00 (d, J = 6.0 Hz, 2H), 2.53-2.56 (m, 2H), 3.10 (d, J = 6.0 Hz, 1.9H), 3.15 (d, J = 6.0 Hz, 0.1H), 5.10 (s, 0.06H), 5.11 (s, 0.94H), 5.54-5.63 (m, 1.9H), 5.66-5.72 (m, 0.1H), 7.14-7.16 (m, 3H), 7.25 (t, J = 7.2 Hz, 2H), 7.30-7.33 (m, 5H). ¹³C NMR (150 MHz, CDCl₃, mixture of isomers) (*trans*) δ 26.9, 30.6, 33.5, 38.2, 44.1, 44.8, 66.3, 123.8, 125.5, 128.2, 128.3, 128.5, 131.5, 135.9, 143.3, 171.8. (2 aryl carbon signal is obscured). IR (ATR): 3060, 3027, 2957, 1729, 1647, 1454, 1437, 969, 732 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₃H₂₉O₂ [M+H]⁺: 337.2168, found 337.2166.

MeMe5,5-Dimethyl-7-phenyl-2-hepanone 3ahPhCOMePurification by PTLC (Hexane/EtOAc = 40:1).

33.3 mg, 76% isolated yield (0.2 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 0.93 (s, 6H), 1.48-1.51 (m, 2H), 1.54-1.57 (m, 2H), 2.15 (s, 3H), 2.39-2.41 (m, 2H), 2.53-2.56 (m, 2H), 7.15-7.17 (m, 3H), 7.27 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 26.8, 29.9, 30.6, 32.5, 35.1, 38.9, 44.0, 125.6, 128.2, 128.3, 143.1, 209.3. IR (ATR): 3027, 2959, 1713, 1468, 1452, 742 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₂₂ONa [M+Na]⁺: 241.1563, found 241.1563.

Ph CN Purification by PTLC (Hexane/EtOAc = 20:1).

31.5 mg, 78% isolated yield (0.2 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 0.97 (s, 6H), 1.49-1.52 (m, 2H), 1.69 (t, *J* = 7.8 Hz, 2H), 2.28 (t, *J* = 7.8 Hz, 2H), 2.53-2.56 (m, 2H), 7.16-7.19 (m, 3H), 7.28 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 12.3, 26.3, 30.5, 32.9, 37.2, 43.6, 120.4, 125.8, 128.2, 128.4, 142.5. IR (ATR): 3030, 2936, 2334, 1458, 1419, 740 cm⁻¹. HRMS (DART) *m/z* calcd for C₁₄H₂₀N [M+H]⁺: 202.1596, found 202.1600.

Me Me 4,4-Dimethyl-*N*,*N*,6-triphenylhexanamide 3aj Ph CONPh₂ Reaction temperature was 50 °C Purification by PTLC (Hexane/EtOAc = 20:1) and GPC. 55.2 mg, 74% isolated yield (0.2 mmol scale); pale yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 0.81 (s, 6H), 1.33-1.36 (m, 2H), 1.67-1.70 (m, 2H), 2.25-2.27 (m, 2H), 2.42-2.45 (m, 2H), 7.06-7.07 (m, 2H), 7.13-7.34 (m, 13H). ¹³C NMR (150 MHz, CDCl₃) δ 26.7, 30.46, 30.50, 32.7, 37.0, 43.9, 125.48, 125.52, 128.2, 128.9, 143.0, 143.1, 173.7. IR (ATR): 3059, 2956, 1592, 1488, 1452, 748 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₆H₂₉NONa [M+Na]⁺: 394.2141, found 394.2141.

4-(3',3'-dimethyl-5'-phenylpentyl)benzonitrile 3ak

Purification by PTLC (Hexane/EtOAc = 40:1).

CN 45.3 mg, 82% isolated yield (0.2 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 1.02 (s, 6H), 1.54-1.59 (m, 4H), 2.56-2.59 (m, 2H), 2.62-2.64 (m, 2H), 7.17-7.19 (m, 3H), 7.26-7.29 (m, 4H), 7.55 (d, *J* = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 27.0, 30.7, 31.1, 33.2, 43.7, 44.0, 109.5, 119.1, 125.7, 128.2, 128.4, 129.1, 132.2, 143.1, 149.1. IR (ATR): 3030, 2936, 2228, 1606, 1414, 771 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₀H₂₄N [M+H]⁺: 278.1909, found 278.1905.

MeMe4-(3',3'-dimethyl-5'-phenylpentyl)pyridine 3alPh4-PyPurification by PTLC (Hexane/EtOAc = 40:1).

34.4 mg, 68% isolated yield (0.2 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 1.02 (s, 6H), 1.55-1.59 (m, 4H), 2.55-2.60 (m, 4H), 7.10 (d, *J* = 4.8 Hz, 2H), 7.16-7.19 (m, 3H), 7.28 (t, *J* = 7.8 Hz, 2H), 8.47 (d, *J* = 4.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 27.0, 30.2, 30.7, 33.1, 42.9, 44.0, 128.3, 125.6, 128.2, 128.3, 143.1, 149.6, 152.3. IR (ATR): 3400, 3273, 3025, 2954, 1602, 1416, 804 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₂₄N [M+H]⁺: 254.1903, found 254.1904.

¹H NMR (600 MHz, CDCl₃) δ 0.93 (s, 6H), 0.94 (s, 6H), 1.33 (d, *J* = 14.4 Hz, 2H), 1.50 (t, *J* = 8.4 Hz, 4H), 1.87 (dd, *J* = 14.4, 10.2 Hz, 2H), 2.48-2.57 (m, 4H), 2.59-2.63 (m, 1H), 3.59 (s, 3H), 7.15-7.17 (m, 6H), 7.25 (t, *J* = 7.2 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 27.0, 30.6, 33.7, 37.3, 44.4, 47.3, 51.4, 125.6, 128.28, 128.31, 143.2, 178.8. IR (ATR): 3088, 2949, 1736, 1520, 1432, 1157, 810 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₇H₃₈O₂Na [M+Na]⁺: 417.2764, found 417.2763.

1-Benzyl 6-tert-butyl 4-methyl-4-(2'-phenylethyl)hexanedioate 3ba

Purification by PTLC (Hexane/EtOAc = 20:1).

26.1 mg, 64% isolated yield (0.1 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 1.04 (s, 3H), 1.43 (s, 9H), 1.59-1.63 (m, 2H), 1.76-1.80 (m, 2H), 2.19 (s, 2H), 2.40-2.42 (m, 2H), 2.58-2.60 (m, 2H), 5.11 (s, 2H), 7.15-7.18 (m, 3H), 7.26 (t, *J* = 7.8 Hz, 2H), 7.31-7.37 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 24.8, 28.1, 29.2, 30.1, 34.2, 35.7, 41.7, 44.5, 66.3, 80.4, 125.7, 128.19, 128.24, 128.27, 128.35, 128.5, 136.0, 142.6, 171.0, 173.6. IR (ATR): 3028, 2940, 1737, 1454, 1153, 750 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₆H₃₅O₄ [M+H]⁺: 411.2535, found 411.2532.

Benzyl 7-chloro-4-methyl-4-(2'-phenylethyl)heptanoate 3ca

Purification by PTLC (Hexane/EtOAc = 20:1).

23.3 mg, 63% isolated yield (0.1 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 0.92 (s, 3H), 1.38-1.41 (m, 2H), 1.48-1.51 (m, 2H), 1.66-1.69 (m, 2H), 1.72-1.77 (m, 2H), 2.32-2.35 (m, 2H), 2.51-2.54 (m, 2H), 3.51 (t, *J* = 6.6 Hz, 2H), 5.12 (s, 2H), 7.15-7.17 (m, 3H), 7.27 (t, *J* = 7.2 Hz, 2H), 7.31-7.38 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 24.5, 27.0, 29.1, 30.1, 33.9, 34.8, 36.2, 41.3, 45.7, 66.3, 125.7, 128.2, 128.4, 128.56, 128.57, 136.0, 142.8, 173.9 (1 aryl carbon signal is obscured). IR (ATR): 3032, 2940, 1737, 1454, 1448, 1180, 1157, 746 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₃H₃₀O₂Cl [M+H]⁺:373.1934, found 373.1931.

Me Me Benzyl 6-benzyloxy-4,4-dimethylhexanoate 3da BnO CO_2Bn Purification by PTLC (Hexane/EtOAc = 30:1). 66.2 mg, 97% isolated yield (0.2 mmol scale); pale yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 0.89 (s, 6H), 1.55-1.61 (m, 4H), 2.33 (t, *J* = 7.8 Hz, 2H), 3.51 (t, *J* = 7.8 Hz, 2H).

2H), 4.46 (s, 2H), 5.09 (s, 2H), 7.22-7.36 (m, 10H). ¹³C NMR (150 MHz, CDCl₃) δ 27.0, 29.5, 31.8, 36.8, 40.6, 66.1, 67.1, 72.9, 127.4, 127.5, 128.10, 128.13, 128.3, 128.5, 136.0, 138.5, 174.0. IR (ATR): 3025, 2957, 1734, 1540, 1458, 1118, 1095, 1010, 731 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₂H₂₉O₃ [M+H]⁺: 341.2117, found 341.2117.

27.1 mg, 74% isolated yield (0.1 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 0.04 (s, 6H), 0.88 (s, 9H), 0.89 (s, 6H), 1.46 (t, *J* = 7.2 Hz, 2H), 1.59 (t, *J* = 8.4 Hz, 2H), 2.34 (t, *J* = 8.4 Hz, 2H), 3.65 (t, *J* = 7.2 Hz, 2H), 5.10 (s, 2H), 7.32-7.38 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ -5.3, 18.3, 25.9, 27.1, 29.6, 31.9, 36.9, 43.8, 59.8, 66.2, 128.17, 128.21, 128.5, 136.1, 174.1. IR (ATR): 3043, 2953, 1735, 1472, 1448, 1256, 1094, 829, 740 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₁H₃₇O₃Si [M+H]⁺: 365.2512, found 365.2510.

Benzyl 6-(4'-bromophenyloxy)-4,4-dimethylhexanoate 3fa Purification by GPC. 28.2 mg, 70% isolated yield (0.1 mmol scale); yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 0.95 (s, 6H), 1.65-1.67 (m, 2H), 1.70 (t, *J* = 7.2 Hz, 2H), 2.36-2.39 (m, 2H), 3.96 (t, *J* = 7.2 Hz, 2H), 5.11 (s, 2H), 6.73 (d, *J* = 9.0 Hz, 2H), 7.33-7.38 (m, 7H). ¹³C NMR (150 MHz, CDCl₃) δ 27.1, 29.6, 32.0, 36.8, 39.9, 64.9, 66.3, 112.6, 116.2, 128.2, 128.6, 132.2, 136.0, 157.9, 173.9. (1 aryl carbon signal is obscured). IR (ATR): 3033, 2958, 1729, 1487, 1455, 1242, 1170, 740 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₁H₂₆O₃Br [M+H]⁺: 405.1065, found 405.1063.

32.6 mg, 68% isolated yield (0.1 mmol scale); pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 0.97 (s, 6H), 1.35 (s, 12H), 1.66-1.73 (m, 4H), 2.36-2.40 (m, 2H), 4.37 (t, *J* = 7.2 Hz, 2H), 5.10 (s, 2H), 7.32-7.36 (m, 5H), 7.86 (d, *J* = 8.0 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 24.9, 26.9, 29.5, 32.0, 36.8, 39.5, 62.2, 66.3, 84.1, 128.2, 128.3, 128.5, 128.6, 132.5, 134.6, 136.0, 166.7, 173.8. IR (ATR): 3021, 2974, 1720, 1400, 1361, 1267, 1141, 709 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₈H₃₈BO₆ [M+H]⁺: 481.2761, found 481.2771.

Benzyl 4,4-diethyl-6-phenylhexanoate 3ha

 CO_2Bn Purification by PTLC (Hexane/EtOAc = 40:1).

20.8 mg, 62% isolated yield (0.1 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 0.81 (t, *J* = 7.8 Hz, 6H), 1.28 (q, *J* = 7.8 Hz, 4H), 1.43-1.46 (m, 2H), 1.61-1.64 (m, 2H), 2.27-2.30 (m, 2H), 2,45-2.48 (m, 2H), 5.12 (s, 2H), 7.15-7.18 (m, 3H), 7.26 (t, *J* = 7.8 Hz, 2H), 7.30-7.38 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 7.4, 27.7, 28.7, 29.7, 30.2, 37.2, 37.8, 66.2, 125.6, 128.16, 128.17, 128.21, 128.3, 128.5, 136.0, 143.2, 174.2. IR (ATR): 3027, 2936, 1522, 1453, 1152, 1147, 702 cm⁻¹. HRMS (DART) *m/z* calcd for C₂₃H₃₁O₂ [M+H]⁺: 339.2324, found 339.2330.

Me

CbzŃ

2-(2'-Benzyloxycarbonyl)ethyl-2,3-dihydroxy-2-methyl-*1H***-indene 3ia** Purification by PTLC (Hexane/EtOAc = 40:1).

21.2 mg, 72% isolated yield (0.1 mmol scale); white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.06 (s, 3H), 1.87 (t, *J* = 8.4 Hz, 2H), 2.39 (t, *J* = 8.4 Hz, 2H), 2.65 (d, *J* = 15.6 Hz, 2H), 2.80 (d, *J* = 15.6 Hz, 2H), 5.11 (s, 2H), 7.10-7.13 (m, 5H), 7.31-7.37 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 25.9, 30.8, 36.6, 42.7, 45.9, 66.3, 124.7, 126.2, 128.2, 128.3, 128.5, 136.0, 142.6, 173.8. IR (ATR): 3056, 2923, 1730, 1646, 1437, 1153, 738 cm⁻¹. HRMS (DART) *m*/*z* calcd for C₂₀H₂₁O₂ [M-H]⁺: 293.1542, found 293.1539.

•CO₂Bn Purification by GPC.

18.9 mg, 51% isolated yield (0.1 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 1.22 (s, 3H), 1.93 (t, *J* = 7.8 Hz, 2H), 2.33 (t, *J* = 7.8 Hz, 2H), 3.62 (d, *J* = 7.8 Hz, 2H), 3.71 (d, *J* = 7.8 Hz, 2H), 5.08 (s, 2H), 5.12 (s, 2H), 7.30-7.38 (m, 10H). ¹³C NMR (150 MHz, CDCl₃) δ 23.9, 29.8, 33.9, 34.3, 59.4, 60.2, 66.5, 66.6, 127.91, 127.98, 128.30, 128.32, 128.4, 128.6, 135.7, 136.7, 156.5, 172.9. IR (ATR): 3056, 2955, 1731, 1453, 1422, 1356, 1100, 702 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₂H₂₅O₄NNa [M+Na]⁺: 390.1676, found 390.1676.

Me

CO₂Bn

Benzyl 4-biphenylmehyl-tetrahydro-*2H***-pyran-4-propanoate 3ka** Purification by PTLC (Hexane/EtOAc = 20:1).

21.9 mg, 53% isolated yield (0.1 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 1.38-1.42 (m, 2H), 1.52-1.56 (m, 2H), 1.75-1.77 (m, 2H), 2.42-2.45 (m, 2H), 2.68 (s, 2H), 3.66-3.70 (m, 2H), 3.76-3.79 (m, 2H), 5.13 (s, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 7.32-7.37 (m, 5H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 28.7, 30.2, 34.3, 34.9, 42.9, 63.5, 66.4, 126.7, 126.9, 127.1, 128.3, 128.6, 128.7, 130.9, 135.9, 136.4, 139.2, 140.8, 173.6 (1 aryl carbon signal is obscured). IR (ATR): 3014, 2955, 1735, 1448, 1166, 1157, 1103, 739 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₈H₃₀O₃Na [M+Na]⁺: 437.2087, found 437.2087.

Benzyl 3-(1-methylcyclohexyl)propanoate 3la¹²

Purification by PTLC (Hexane/EtOAc = 40:1).

14.5 mg, 56% isolated yield (0.1 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 0.84 (s, 3H), 1.22-1.25 (m, 5H), 1.40-1.46 (m, 5H), 1.60 (t, *J* = 8.4 Hz, 2H), 2.31 (t, *J* = 8.4 Hz, 2H), 5.11 (s, 2H), 7.31-7.38 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.9, 24.4, 26.4, 29.0, 32.3, 36.7, 37.5, 66.1, 128.1, 128.2, 128.5, 136.1, 174.4. IR (ATR): 3065, 2931, 1743, 1560, 1419, 1163, 749 cm⁻¹. HRMS (DART) *m/z* calcd for C₁₇H₂₃O₂ [M-H]⁺: 259.1698, found 259.1697.

CO₂Bn Benzyl 3-cyclohexylpropanoate 3ma¹⁴

Purification by PTLC (Hexane/EtOAc = 40:1).

12.5 mg, 25% isolated yield (0.2 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 0.85-0.91 (m, 2H), 1.11-1.26 (m, 4H), 1.53-1.56 (m, 2H), 1.62-1.65 (m, 1H), 1.68-1.70 (m, 4H), 2.36 (t, *J* = 7.8 Hz, 2H), 5.11 (s, 2H), 7.31-7.37 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 26.2, 26.5, 31.9, 32.3, 32.9, 37.2, 66.1, 128.1, 128.2, 128.5, 136.2, 174.0.IR (ATR): 3094, 2923, 1738, 1490, 1448, 1157, 728 cm⁻¹. HRMS (DART) *m/z* calcd for C₁₆H₂₁O₂ [M-H]⁺: 245.1542, found 245.1549.

 Table S6. Unsuccessful olefin substrates

5. Intermolecular Giese reaction of tertiary sulfone 11

To A 10-mL sealable glass vessel containing a magnetic stirring bar was added Zn powder (16.4 mg, 0.25 mmol), flame-dried under vacuum, and filled with argon after cooling to room temperature. The tube was charged with benzyl 6-(1-(1'-phenyl-1*H*-tetrazol-5'-yl)sulfonylcyclohexyl)-2-hexanoate **11a** (49.5 mg, 0.1 mmol), 1,10-phenanthroline (54.1 mg, 0.3 mmol), and Hantzsch ester (50.7 mg, 0.2 mmol). The mixture was evacuated under vacuum and refilled with Ar. This cycle was repeated two additional times. Under an argon atmosphere, DMF (0.5 mL) were added and the reaction was sealed, and stirred at 25 °C for 16 h. The reaction was quenched with 3-4 drops of H₂O and EtOAc (~1.0 mL). The mixture was passed through a pad of silica gel with copious washings with EtOAc. The filtrate was concentrated under reduced pressure. The crude product was purified by PTLC (Hexane/EtOAc = 50:1) to afford benzyl spiro[4,5]decane-1-acetate **12a** (22.0 mg, 77% yield) as a colorless oil.

Benzyl spiro[4,5]decane-1-acetate 12a Purification by PTLC (Hexane/EtOAc = 50:1). 22.0 mg, 77% isolated yield (0.1 mmol scale); colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 1.01 (td, *J* = 12.6, 4.2 Hz, 1H), 1.06-1.14 (m, 1H), 1.20-1.26 (m, 2H), 1.28-1.38 (m, 5H), 1.51-1.61 (m, 5H), 1.68-1.75 (m, 1H), 1.83-1.90 (m, 2H), 2.12 (dd, *J* = 14.4, 10.8 Hz, 1H), 2.45 (dd, *J* = 14.4, 4.2 Hz, 1H), 5.10 (d, *J* = 18.6 Hz, 1H), 5.13 (d, *J* = 18.6 Hz, 1H), 7.30-7.38 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 22.6, 23.9, 26.5, 30.1, 30.3, 34.8, 35.2, 37.3, 44.2, 46.5, 66.1, 128.1, 128.2, 128.5, 136.1, 174.1. IR (ATR): 3036, 2919, 1731, 1450, 1419, 1147, 735 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₉H₂₆O₂Na [M+Na]⁺: 309.1825, found 309.1825.

Benzyl 8-oxaspiro[4,5]decane-1-acetate 12b

Purification by PTLC (Hexane/EtOAc = 10:1).

ⁿ 21.9 mg, 76% isolated yield (0.1 mmol scale); pale yellow oil.

¹H NMR (600 MHz, CDCl₃) δ 1.12-1.16 (m, 2H), 1.30-1.36 (m, 1H), 1.43-1.49 (m, 2H), 1.59-1.75 (m, 3H), 1.81-1.85 (m, 1H), 1.89-1.94 (m, 2H), 2.14 (dd, *J* = 14.4, 10.8 Hz, 1H), 2.48 (dd, *J* = 14.4, 3.6 Hz, 1H), 3.48-3.53 (m, 2H), 3.79-3.83 (m, 2H), 5.12 (s, 2H), 7.31-7.38 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 29.8, 30.9, 34.1, 34.9, 36.9, 42.0, 46.3, 64.6, 65.6, 66.2, 128.18, 128.22, 128.5, 136.0, 176.5. IR (ATR): 3025, 2952, 1729, 1559, 1456, 1148, 1106, 1016, 752 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₈H₂₄O₃Na [M+Na]⁺: 311.1618, found 311.1617.

Benzyl spiro[5,5]undecane-1-acetate 12c Purification by PTLC (Hexane/EtOAc = 50:1). 27.0 mg, 90% isolated yield (0.1 mmol scale); colorless oil. PH NMR (600 MHz CDCl₂) δ 0.99 (td. J = 12.0.3.6 Hz 2H) 1.14-1.38 (m. 6Hz)

¹H NMR (600 MHz, CDCl₃) δ 0.99 (td, *J* = 12.0, 3.6 Hz, 2H), 1.14-1.38 (m, 6H), 1.42-1.59 (m, 9H), 1.77-1.86 (m, 2H), 2.10 (dd, *J* = 15.0, 10.2 Hz, 1H), 2.58 (dd, *J* = 15.0, 3.6 Hz, 1H), 5.10 (d, *J* = 12.6 Hz, 1H), 5.12 (d, *J* = 12.6 Hz, 2H), 7.30-7.38 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 21.0, 21.1, 21.2, 24.7, 26.7, 27.1, 29.2, 32.2, 34.9, 35.0, 36.2, 42.1, 66.0, 128.08, 128.12, 128.5, 136.2, 174.3. IR (ATR): 3072, 2920, 1728, 1454, 1447, 1143, 732 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₀H₂₈O₂Na [M+Na]⁺: 323.1982, found 323.1979.

1-Phenyl-4-spiro[5,5]undec-1-yl-3-butanone 12d

Purification by PTLC (Hexane/EtOAc = 15:1).

16.1 mg, 54% isolated yield (0.1 mmol scale); colorless oil.

O ¹H NMR (600 MHz, CDCl₃) δ 0.91-0.97 (m, 2H), 1.09-1.17 (m, 3H), 1.24-1.53 (m, 12H), 1.74-1.78 (m, 1H), 1.87 (d, *J* = 13.2 Hz, 1H), 2.13 (dd, *J* = 15.6, 10.2 Hz, 1H), 2.53 (dd, *J* = 15.6, 3.6 Hz, 1H), 2.66-2.71 (m, 1H), 2.73-2.78 (m, 1H), 2.89 (t, *J* = 7.2 Hz, 2H), 7.17-7.19 (m, 3H), 7.26-7.29 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 21.0, 21.15, 21.25, 25.0, 26.7, 27.4, 28.8, 29.9, 32.4, 35.0, 36.4, 41.0,

43.6, 44.8, 126.0, 128.3, 128.4, 141.2, 210.8. IR (ATR): 3083, 2916, 1711, 1540, 1448, 741 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₁H₃₀ONa [M+Na]⁺: 321.2189, found 321.2188.

6. Orthogonal Giese reaction of tertiary sulfone 13

A) Preparation of tertiary sulfone 13

To a 30-mL flask were added 5-((1',1'-dimethyl-3'-hydroxypropyl)sulfonyl)-1-phenyl-1H-tetrazole (215 mg, 0.72 mmol). 1-(1,1-dimethylethyl) 2,2-dimethylbutanedioate¹⁵ (160)mg, 0.80 mmol), 4dimethylaminopyridine (122 mg, 1 mmol) and dry CH₂Cl₂ (5 mL) under a stream of argon. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (177 µL, 1 mmol) was added to this mixture at room temperature. After stirring at room temperature for 12 h, sat. NH₄Clag was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with EtOAc (3 times), and the combined organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude material was purified by column chromatography (Hexane/EtOAc = 5:1) to give the corresponding *t*-butyl ester (337 mg, 88%) as a colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 1.22 (s, 6H), 1.43 (s, 9H), 1.56 (s, 6H), 2.31 (t, *J* = 7.2 Hz, 2H), 2.51 (s, 2H), 4.23 (t, *J* = 7.2 Hz, 2H), 7.32-7.37 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 20.6, 25.4, 27.8, 33.5, 41.0, 43.9, 59.4, 66.6, 80.3, 126.1, 129.3, 131.5, 133.3, 151.7, 171.0, 175.6. IR (ATR): 3073, 2978, 1729, 1499, 1339, 1120, 760 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₂H₃₂N₄O₆SNa [M+Na]⁺: 503.1935, found 503.1935.

To a 20-mL flask were added *t*-butyl ester (144 mg, 0.3 mmol) and CH_2Cl_2 (1.1 mL) under a stream of argon. 4N HCl in dioxane (1.1 mL) was added to this mixture at room temperature. After stirring at room temperature for 12 h, brine was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with EtOAc (3 times), and the combined organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure.

To this flask were added *N*-hydroxyphthalimide (53.8 mg, 0.33 mmol), DCC (74.3 mg, 0.36 mmol), CH_2Cl_2 (2 mL), and 4-dimethylaminopyridine (5.5 mg, 0.045 mmol) under a stream of argon. After stirring at room temperature for 12 h, solids were filtered and the filtrate was evaporated under reduced pressure. The crude material was purified by column chromatography (Hexane/EtOAc = 5:1) to give the corresponding sulfone **13** (164 mg, 96%) as a white solid.

¹H NMR (600 MHz, CDCl₃) δ 1.51 (s, 6H), 1.58 (s, 6H), 2.30 (t, *J* = 7.8 Hz, 2H), 2.77 (s, 2H), 4.31 (t, *J* = 7.8 Hz, 2H), 7.57-7.62 (m, 5H), 7.78-7.80 (m, 2H), 7.88-7.89 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 20.5, 25.5, 33.3, 40.2, 43.9, 60.1, 66.4, 124.0, 126.2, 128.9, 129.3, 131.4, 133.3, 134.7, 151.6, 161.8, 169.7, 172.7. IR (ATR): 3082, 2979, 1737, 1647, 1336, 1121, 1049, 764 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₆H₂₇N₅O₈SNa [M+Na]⁺: 592.1473, found 592.1472.

B) Intermolecular Giese reaction

To A 10-mL sealable glass vessel containing a magnetic stirring bar was added Zn powder (26 mg, 0.4 mmol), flame-dried under vacuum, and filled with argon after cooling to room temperature. The tube was charged with sulfone 13 (114 mg, 0.2 mmol), Ni(ClO₄)₂ • 6H₂O (14.6 mg, 0.04 mmol), LiCl (25.4 mg, 0.6 mmol). The mixture was evacuated under vacuum and refilled with Ar. This cycle was repeated two additional times. Under an argon atmosphere, dry MeCN (1.0 mL) and benzyl acrylate 2a (61.0 µL, 0.4 mmol) were added and the reaction was sealed, and stirred at 25 °C for 12 h. The reaction was quenched with 3-4 drops of H_2O and EtOAc (~1.0 mL). The mixture was passed through a pad of silica gel with copious washings with EtOAc. The filtrate was concentrated under reduced pressure. Toluene was added and insoluble solids were filtered and the filtrate was evaporated under reduced pressure to remove 2a. To this flask was added Zn powder (flame-dried under vacuum, 32.6 mg, 0.5 mmol), 1,10-phenanthroline (108 mg, 0.6 mmol), and Hantzsch ester (101 mg, 0.4 mmol). The mixture was evacuated under vacuum and refilled with Ar. This cycle was repeated two additional times. Under an argon atmosphere, DMF (1.0 mL) and p-cyanostyrene 2l (51.7 mg, 0.4 mmol) were added and the reaction was sealed, and stirred at 25 °C for 16 h. The reaction was quenched with 3-4 drops of H_2O and EtOAc (~1.0 mL). The mixture was passed through a pad of silica gel with copious washings with EtOAc. The filtrate was concentrated under reduced pressure. The crude product was purified by column (Hexane/EtOAc = 30:1) and GPC to afford 14 (60.1 mg, 65% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 0.99 (s, 6H), 1.00 (s, 6H), 1.50-1.52 (m, 2H), 1.62 (t, *J* = 7.8 Hz, 2H), 1.70 (t, J = 8.4 Hz, 2H), 2.18 (s, 2H), 2.37 (t, J = 8.4 Hz, 2H), 2.61-2.64 (m, 2H), 4.12 (t, J = 7.8 Hz, 2H), 5.11 (s, 2H), 7.27 (d, J = 7.8 Hz, 2H), 7.32-7.37 (m, 5H), 7.55 (d, J = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 27.0, 27.1, 29.5, 30.9, 32.4, 32.9, 36.5, 39.5, 43.9, 45.8, 61.2, 66.2, 109.5, 119.1, 128.2, 128.5, 129.1, 132.2, 135.9, 148.7, 171.9, 173.6. IR (ATR): 3052, 2958, 2228, 1728, 1471, 1155, 820 cm⁻¹. HRMS (ESI) m/z calcd for C₂₉H₃₇NO₄Na [M+Na]⁺: 486.2615, found 486.2615.

7. Preparation of samples for EPR and UV-Vis measurement

To A 10-mL sealable glass vessel containing a magnetic stirring bar was added Zn powder (32.7 mg, 0.5 mmol), flame-dried under vacuum, and filled with argon after cooling to room temperature. The tube was charged with 1,10-phenanthroline (108 mg, 0.6 mmol). The mixture was evacuated under vacuum and refilled with Ar. This cycle was repeated two additional times. Under an argon atmosphere, dry DMF (1.0 mL) was added and the reaction was sealed, and stirred at 25 °C for 16 h.

For EPR measurement, supernatant was transferred into tube, and then DMF was removed under vacuum before measurement. For UV-Vis measurement, the mixture was diluted with dry DMF, and supernatant was used for measurement (0.2 mM). The solution of 1,9-phenanthlorine (c = 1.0 mM) and $Zn(phen)_3(OTf)_2$ (c = 1.4 mM) were prepared in DMF.

8. Cyclic Voltammetry Measurement

Cyclic voltammograms were taken on a CH Instruments 600E potentiostat using a 3 mm glassy carbon working electrode, Ag/AgNO₃ reference electrode, and a Pt wire counter electrode. The voltammograms were taken at room temperature in a 100 mM MeCN

solution of tetrabutylammonium hexafluorophosphate containing 1 mM of the designated substance. The scan rate was 0.2 V/s. At the end of each sample, a small amount of ferrocene was added as a reference. Conversion to SCE was achieved by adding 380 mV to the corrected potentials against Fc/Fc+.

9. Computational methods

All calculations were performed using Gaussian 09. Geometry optimizations and thermal correction were performed at CAM-B3LYP/6-31+G* level. Stationary points were verified by vibrational frequency analysis. Solvation effects of DMF were evaluated with the IEFPCM calculation with radii and non-electrostatic terms for Truhlar and coworkers' SMD solvation model.

By using the optimized geometries, UV-Vis absorption spectra and bond dissociation energies were computed using TD-DFT and SCSMP2, respectively. The basis set for the TD-DFT and SCSMP2 calculations was cc-pVDZ basis set for H, C, S, Zn, and aug-cc-pVDZ for N, O.

10. References

1) Bateman, L. A.; Nguyen, T. B.; Roberts, A. M.; Miyamoto, D. K.; Ku, W. M.; Huffman, T. R.; Petri, Y.; Heslin, M. J.; Contreras, C. M.; Skibola, C. F.; Olzmann, J. A.; Nomura, D. K., *Chem. Commun.* **2017**, *53*, 7234-7237.

- 2) Uno, M.; Sumino, S.; Fukuyama, T.; Matsuura, M.; Kuroki, Y.; Kishikawa, Y.; Ryu, I., *J. Org. Chem.* **2019**, *84*, 9330-9338.
- 3) Denmark, S. E.; Cresswell A. J. J. Org. Chem. 2013, 78, 12593-12628.
- 4) Rodrigo, E.; Alonso, I.; Cid, M. B. Org. Lett. 2018, 20, 5789-5793.
- 5) Legarda, P. D.; Garcia-Rubia, A.; Arrayás, R. G.; Carretero, J. C. Adv. Synth. Catal. 2016, 358, 1065-1072.
- 6) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G. D.; Bao, D. H.; Qiao, W. H.; Sun, L. J.; Collins, M. R.; Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. *Science* 2018, *360*, 75-80.
- 7) Dussart, N.; Trinh, H. V.; Gueyrard, D. Org. Lett. 2016, 18, 4790-4793.
- 8) Sedrani, R.; Kallen, J.; Martin Cabrejas, L. M.; Papageorgiou, C. D.; Senia, F.; Rohrbach, S.; Wagner, D.;
- Thai, B.; Jutzi Eme, A. M.; France, J.; Oberer, L.; Rihs, G.; Zenke, G.; Wagner, J. J. Am. Chem. Soc. 2003, 125, 3849-59.
- 9) Hughes, J. M. E.; Fier, P. S. Org. Lett. 2019, 21, 5650-5654.
- 10) Sanhueza, L.; Cortes-Arriagada, D.; Ledoux-Rak, I.; Crivelli, I.; Loeb, B. Synthetic Met. 2017, 234, 9-17.
- 11) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. *Angew. Chem. Int. Ed.* **2017**, *56*, 260-265.
- 12) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. **2015**, *137*, 11270-11273.
- 13) Wu, X.; Hao, W.; Ye, K. Y.; Jiang, B.; Pombar, G.; Song, Z.; Lin, S. *J. Am. Chem. Soc.* **2018**, *140*, 14836-14843.
- 14) Chinzei, T.; Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. RSC Adv., 2015, 5, 21297-21300.
- 15) Han, Han, N.; Johns, B. A.; Tang, J., Patent WO 2013020245, Feb. 14, 2013.

11. ¹H, ¹³C and ¹⁹F NMR Spectra of Products ¹H-NMR (400 MHz, CDCl₃) of 3,5-bis(trifluoromethyl)phenyl 1-(3-phenylpropyl) sulfone

¹³C-NMR (150 MHz, CDCl₃) of 3,5-bis(trifluoromethyl)phenyl 1-(3-phenylpropyl) sulfone

¹⁹F-NMR (376 MHz, CDCl₃) of 3,5-bis(trifluoromethyl)phenyl 1-(3-phenylpropyl) sulfone

¹H-NMR (600 MHz, CDCl₃) of 5-((4-phenylbutan-2-yl)sulfonyl)-1-phenyl-1*H*-tetrazole

	Me I	N-N 11 N
Ph	∕_s 0	² N ² Ph

¹³C-NMR (150 MHz, CDCl₃) of 5-((4-phenylbutan-2-yl)sulfonyl)-1-phenyl-1*H*-tetrazole

¹H-NMR (600 MHz, CDCl₃) of 1a

¹³C-NMR (150 MHz, CDCl₃) of 1a

¹H-NMR (600 MHz, CDCl₃) of 1b

¹³C-NMR (150 MHz, CDCl₃) of 1b

¹H-NMR (500 MHz, CDCl₃) of 1c

¹³C-NMR (125 MHz, CDCl₃) of 1c

¹H-NMR (600 MHz, CDCl₃) of 1d

¹³C-NMR (150 MHz, CDCl₃) of 1d

¹H-NMR (600 MHz, CDCl₃) of 1e

TBSO

¹³C-NMR (150 MHz, CDCl₃) of 1e

¹H-NMR (600 MHz, CDCl₃) of 5-((1',1'-dimethyl-3'-hydroxypropyl)sulfonyl)-1-phenyl-1H-tetrazole

¹³C-NMR (150 MHz, CDCl₃) of 5-((1',1'-dimethyl-3'-hydroxypropyl)sulfonyl)-1-phenyl-*1H*-tetrazole

¹H-NMR (600 MHz, CDCl₃) of 1f

¹³C-NMR (150 MHz, CDCl₃) of 1f

¹H-NMR (600 MHz, CDCl₃) of 1g

¹³C-NMR (150 MHz, CDCl₃) of 1g

¹H-NMR (600 MHz, CDCl₃) of 1h

$$\overset{\text{Et}}{\xrightarrow{}} \overset{\text{Et}}{\xrightarrow{}} \overset{\text{N}}{\xrightarrow{}} \overset$$

¹³C-NMR (150 MHz, CDCl₃) of 1h

¹H-NMR (600 MHz, CDCl₃) of 1i

¹³C-NMR (150 MHz, CDCl₃) of 1i

¹H-NMR (600 MHz, CDCl₃) of 1j

¹³C-NMR (150 MHz, CDCl₃) of 1j

¹H-NMR (400 MHz, CDCl₃) of 1k

S55

¹³C-NMR (150 MHz, CDCl₃) of 1k

¹H-NMR (600 MHz, CDCl₃) of 11

¹³C-NMR (150 MHz, CDCl₃) of 11

¹H-NMR (600 MHz, CDCl₃) of 4a

¹³C-NMR (150 MHz, CDCl₃) of 4a

¹H-NMR (600 MHz, CDCl₃) of 6a

¹³C-NMR (150 MHz, CDCl₃) of 6a

¹⁹F-NMR (376 MHz, CDCl₃) of 6a

¹H-NMR (600 MHz, CDCl₃) of 7a

¹³C-NMR (150 MHz, CDCl₃) of 7a

¹H-NMR (500 MHz, CDCl₃) of 5-(1'-(4-Pentenyl)cyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole

¹³C-NMR (150 MHz, CDCl₃) of 5-(1'-(4-Pentenyl)cyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole

¹H-NMR (600 MHz, CDCl₃) of 4-(1'-(4-Pentenyl)-4-(1'-phenyl-1*H*-tetrazol-5'-yl)sulfonyl)tetra-hydropyran

¹³C-NMR (150 MHz, CDCl₃) of 4-(1'-(4-Pentenyl)-4-(1'-phenyl-1*H*-tetrazol-5'-yl)sulfonyl)tetra-hydropyran

¹H-NMR (500 MHz, CDCl₃) of 5-(1'-(5-Hexenyl)cyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole

¹³C-NMR (150 MHz, CDCl₃) of 5-(1'-(5-Hexenyl)cyclohexylsulfonyl)-1-phenyl-1*H*-tetrazole

¹H-NMR (600 MHz, CDCl₃) of 3aa

Me Me CO₂Bn Ph-

¹³C-NMR (150 MHz, CDCl₃) of 3aa

¹H-NMR (600 MHz, CDCl₃) of 3ab

¹³C-NMR (150 MHz, CDCl₃) of 3ab

Ph CO₂Bn

¹H-NMR (600 MHz, CDCl₃) of 3ac

¹³C-NMR (150 MHz, CDCl₃) of 3ac

¹H-NMR (600 MHz, CDCl₃) of 3ad

¹³C-NMR (150 MHz, CDCl₃) of 3ad

Me Me CO₂Ph Ph /

¹H-NMR (600 MHz, CDCl₃) of 3ae

¹³C-NMR (150 MHz, CDCl₃) of 3ae

¹H-NMR (600 MHz, CDCl₃) of 3af

ò Me Me Me ċ، Ph Y

¹³C-NMR (150 MHz, CDCl₃) of 3af

¹H-NMR (600 MHz, CDCl₃) of 3ag

¹³C-NMR (150 MHz, CDCl₃) of 3ag

¹H-NMR (600 MHz, CDCl₃) of 3ah

Me Me Ph COMe

¹³C-NMR (150 MHz, CDCl₃) of 3ah

¹H-NMR (600 MHz, CDCl₃) of 3ai

Ph CN

¹³C-NMR (150 MHz, CDCl₃) of 3ai

¹H-NMR (600 MHz, CDCl₃) of 3aj

¹³C-NMR (150 MHz, CDCl₃) of 3aj

¹H-NMR (600 MHz, CDCl₃) of 3ak

¹³C-NMR (150 MHz, CDCl₃) of 3ak

¹H-NMR (600 MHz, CDCl₃) of 3al

¹³C-NMR (150 MHz, CDCl₃) of 3al

Me Me Ph ⁄ ∕4-Py

¹H-NMR (600 MHz, CDCl₃) of 3am

¹³C-NMR (150 MHz, CDCl₃) of 3am

¹H-NMR (600 MHz, CDCl₃) of 3ba

¹³C-NMR (150 MHz, CDCl₃) of 3ba

¹H-NMR (600 MHz, CDCl₃) of 3ca

¹³C-NMR (150 MHz, CDCl₃) of 3ca

¹H-NMR (600 MHz, CDCl₃) of 3da

¹³C-NMR (150 MHz, CDCl₃) of 3da

Me Me BnO CO₂Bn

¹H-NMR (600 MHz, CDCl₃) of 3ea

¹³C-NMR (150 MHz, CDCl₃) of 3ea

Me Me TBSO CO₂Bn

¹H-NMR (600 MHz, CDCl₃) of 3fa

Br Me Me J CO₂Bn 0

¹³C-NMR (150 MHz, CDCl₃) of 3fa

¹H-NMR (400 MHz, CDCl₃) of 3ga

Me Me 0 ℃O₂Bn (pin)B

¹³C-NMR (150 MHz, CDCl₃) of 3ga

¹H-NMR (600 MHz, CDCl₃) of 3ha

¹³C-NMR (150 MHz, CDCl₃) of 3ha

¹H-NMR (600 MHz, CDCl₃) of 3ia

¹³C-NMR (150 MHz, CDCl₃) of 3ia

¹H-NMR (600 MHz, CDCl₃) of 3ja

¹³C-NMR (150 MHz, CDCl₃) of 3ja

¹H-NMR (600 MHz, CDCl₃) of 3ka

¹³C-NMR (150 MHz, CDCl₃) of 3ka

-Ph ſ O. -CO₂Bn

¹H-NMR (600 MHz, CDCl₃) of 3la

¹³C-NMR (150 MHz, CDCl₃) of 3la

¹H-NMR (600 MHz, CDCl₃) of 3ma

¹³C-NMR (150 MHz, CDCl₃) of 3ma

¹H-NMR (500 MHz, CDCl₃) of 11a

¹³C-NMR (125 MHz, CDCl₃) of 11a

¹H-NMR (600 MHz, CDCl₃) of 11b

¹³C-NMR (150 MHz, CDCl₃) of 11b

¹H-NMR (500 MHz, CDCl₃) of 11c

¹³C-NMR (125 MHz, CDCl₃) of 11c

¹H-NMR (600 MHz, CDCl₃) of 11d

¹³C-NMR (150 MHz, CDCl₃) of 11d

¹H-NMR (600 MHz, CDCl₃) of 12a

·CO₂Bn

¹³C-NMR (150 MHz, CDCl₃) of 12a

¹H-NMR (600 MHz, CDCl₃) of 12b

¹³C-NMR (150 MHz, CDCl₃) of 12b

CO2Bn

¹H-NMR (600 MHz, CDCl₃) of 12c

¹³C-NMR (150 MHz, CDCl₃) of 12c

¹H-NMR (600 MHz, CDCl₃) of 12d

¹³C-NMR (150 MHz, CDCl₃) of 12d

Ph || 0

¹H-NMR (600 MHz, CDCl₃) of *t*-butyl ester

¹³C-NMR (150 MHz, CDCl₃) of *t*-butyl ester

¹H-NMR (600 MHz, CDCl₃) of 13

¹³C-NMR (150 MHz, CDCl₃) of 13

¹H-NMR (600 MHz, CDCl₃) of 14

¹³C-NMR (150 MHz, CDCl₃) of 14

12. Coordinates of calculated structures

Ţ

 \mathbb{Z}

<u></u> Ν	N—⁄			
С		-3.47711400	-0.36819000	-0.00000500
С		-2.82021000	0.83858700	-0.00000300
С		-1.41128700	0.86165200	-0.00000100
С		-0.72931800	-0.37719200	-0.00000100
С		-2.70648400	-1.54386900	-0.00000500
С		-0.67669200	2.09543500	0.00000000
С		0.72931800	-0.37719200	0.00000100
С		1.41128700	0.86165200	0.00000200
С		0.67669200	2.09543500	0.00000200
С		2.82021000	0.83858700	0.00000400
Н		3.36987300	1.77570400	0.00000500
С		3.47711400	-0.36819000	0.00000500
С		2.70648400	-1.54386900	0.00000400
Н		-1.23246800	3.02866200	0.00000000
Н		-4.56017500	-0.42613700	-0.00000700
Н		-3.36987300	1.77570400	-0.00000300
Н		-3.19946800	-2.51358900	-0.00000700
Н		1.23246800	3.02866200	0.00000300
Н		4.56017500	-0.42613700	0.00000600
Η		3.19946800	-2.51358900	0.00000500
Ν		-1.38668300	-1.55759700	-0.00000300
7		τ		
---	---	---	--	
I	•	N		
-				

С	-3.49654400	-0.38277400	-0.00000500
С	-2.85346000	0.83474400	-0.00000500
С	-1.42427800	0.89035400	-0.00000200
С	-0.73941500	-0.37904200	-0.00000100
С	-2.73307300	-1.55786400	-0.00000300
С	-0.70222500	2.09266800	-0.00000100
С	0.73941500	-0.37904200	0.00000100
С	1.42427800	0.89035400	0.00000300
С	0.70222500	2.09266800	0.00000200
С	2.85346000	0.83474400	0.00000500
Н	3.41781400	1.76440100	0.00000700
С	3.49654400	-0.38277400	0.00000500
С	2.73307300	-1.55786400	0.00000200
Н	-1.24903200	3.03307100	-0.00000200
Н	-4.58189500	-0.44094600	-0.00000700
Н	-3.41781400	1.76440100	-0.00000600
Н	-3.21058900	-2.53477700	-0.00000300
Н	1.24903200	3.03307100	0.00000300
Н	4.58189500	-0.44094600	0.00000700
Н	3.21058900	-2.53477700	0.00000100
Ν	-1.38992400	-1.54432500	-0.00000100
Ν	1.38992400	-1.54432500	0.00000000

[Zn(phen)₃]²⁺

С	-2.88177600	-1.84674600	2.90052500
С	-4.09747200	-1.48921800	2.36597600
С	-4.13938800	-0.72093700	1.18513800
С	-2.91115300	-0.35506600	0.60666900
С	-1.70918300	-1.42842800	2.25487100
С	-5.36683300	-0.30510800	0.56669400
С	-2.90152600	0.42415300	-0.60875100
С	-4.12032900	0.82081000	-1.18684500
С	-5.35765200	0.43685600	-0.56745600
С	-4.05950300	1.58637300	-2.36863500
Н	-4.97963900	1.91175500	-2.84437600
С	-2.83540100	1.91126000	-2.90484000
С	-1.67348600	1.46401600	-2.25924700
Н	-6.30369400	-0.59723100	1.03049000
Н	-2.81280300	-2.43793000	3.80620300
Н	-5.02532200	-1.79125600	2.84210800
Н	-0.73487400	-1.68865600	2.65533400
Н	-6.28698300	0.75270400	-1.03083800
Н	-2.75189700	2.49890700	-3.81159200
Н	-0.69308100	1.69845800	-2.66075300
Ν	-1.72047100	-0.70420000	1.14766300
Ν	-1.70260800	0.74242400	-1.15065400
Zn	-0.00309900	-0.00007400	-0.00069400

Ν	1.47088900	-1.12733000	1.14758100
С	1.76578000	-2.33427600	0.61035600
Ċ	2.09584100	-0.74890800	2.25069500
Ċ	2 70368000	-3 20854200	1 18756700
Č	1 08015700	-2 72436300	-0 59884600
Č	3 05091700	-1 54865700	2 89493000
H	1 83215000	0 22544100	2 64880200
C	3 35236300	-2 78073700	2.36338500
C C	2,95955700	-4 48082600	0 57305500
C C	1 34709100	-3 98026400	-1 17204600
Ň	0 19736600	-1 85191700	-1 13911200
Н	3 53099400	-1 18776500	3 79703800
Н	4 08340100	-3 42835800	2 83786500
C	2 30675500	-4 85215400	-0 55509300
H	3 68720100	-5 14046300	1 03504800
C	0 64544200	-4 32062000	-2.34602900
C C	-0 45041900	-2 19747200	-2.23986900
H	2 49930000	-5 81607900	-1 01535100
Н	0 82417500	-5 28229900	-2 81735600
C	-0 25698100	-3 43042900	-2 87956100
H	-1 15096700	-1 47182000	-2 63975800
Н	-0.81496300	-3.66002200	-3.77980500
Ν	1.50158800	1.09235700	-1.14637400
C	1.82334200	2.29224000	-0.60868000
Ċ	2.12125900	0.69886100	-2.24713900
Ċ	2.78324000	3.14400100	-1.18339200
C	1.14400900	2.69852000	0.59868200
C	3.09697300	1.47550000	-2.88872700
Н	1.83635100	-0.26938500	-2.64556500
С	3.42542800	2.70054500	-2.35698800
С	3.06713800	4.41017300	-0.56857100
С	1.43906100	3.94782600	1.17253900
Ν	0.23978200	1.84700800	1.13697700
Н	3.57143800	1.10271400	-3.78896300
Н	4.17298800	3.33058000	-2.82940900
С	2.42028300	4.79697200	0.55778900
Н	3.81110100	5.05255300	-1.02887400
С	0.74327100	4.30448100	2.34516100
С	-0.40168600	2.20754500	2.23665000
Н	2.63427100	5.75618000	1.01838100
Н	0.94347700	5.26173800	2.81689700
С	-0.18064000	3.43555500	2.87691400
Н	-1.11973500	1.49848700	2.63522300
Н	-0.73470000	3.67796300	3.77622300
[Zn(phen) ₃] • ⁺			
С	-3 09215100	-1 40845800	-2 90868600
č	-3 43330000	-2 63921600	-2 39873500

C	-3.09215100	-1.40845800	-2.90808000
С	-3.43330000	-2.63921600	-2.39873500
С	-2.79423400	-3.10887200	-1.23386100
С	-1.82550400	-2.27540000	-0.64514100
С	-2.10786500	-0.65349600	-2.25226700
С	-3.08879300	-4.38412800	-0.64210000
С	-1.14747400	-2.71340400	0.55314600
С	-1.45256700	-3.97126600	1.10390500
С	-2.44368300	-4.79901300	0.47540200

С	-0.75451800	-4.35692600	2.26610000
Н	-0.96259000	-5.32084700	2.72081400
С	0.18251200	-3.50824200	2.80825000
С	0.41308100	-2.27025100	2.18880600
Н	-3.83933300	-5.01098900	-1.11360700
Н	-3.56257200	-1.01527600	-3.80260700
Н	-4.18718700	-3.25376200	-2.88159200
Н	-1.81308700	0.31865800	-2.63445100
Н	-2.66535300	-5.76556900	0.91711800
Н	0.73970500	-3.77494900	3.69895100
Н	1.14206800	-1.57177600	2.58783600
Ν	-1.49240100	-1.06964100	-1.15906300
Ν	-0.23357600	-1.88323400	1.10264400
Zn	0.10600700	-0.00056200	-0.00032400
Ν	-0.21793100	1.88478600	-1.10288100
С	-1.12490900	2.72250100	-0.55333100
С	0.43259900	2.26688800	-2.18848100
С	-1.41882000	3.98329000	-1.10348200
С	-1.80732300	2.28968300	0.64434400
С	0.21308800	3.50721800	-2.80724600
Н	1.15570700	1.56238900	-2.58761700
С	-0.71682000	4.36365700	-2.26503400
С	-2.40301700	4.81923300	-0.47498400
С	-2.76920000	3.13112700	1.23298200
Ν	-1.48492700	1.08078500	1.15774200
Н	0.77304900	3.76966800	-3.69747600
Н	-0.91624100	5.32966000	-2.71920100
С	-3.05232900	4.40928200	0.64190500
Н	-2.61597800	5.78797700	-0.91619300
С	-3.41311300	2.66622800	2.39709400
С	-2.10470400	0.66927800	2.25026000
Н	-3.79752000	5.04245400	1.11343700
Н	-4.16211800	3.28687400	2.87976500
С	-3.08293500	1.43224700	2.90647600
Н	-1.81858300	-0.30563400	2.63200300
Н	-3.55739200	1.04253500	3.79978500
Ν	1.71236600	0.65242000	1.18724300
С	2.92930100	0.33154600	0.61297500
С	1.71656000	1.31973500	2.34930500
С	4.16165000	0.68729300	1.24745100
C	2.92693900	-0.35485100	-0.61206500
C	2.86693600	1.69883300	3.01762800
Н	0.73884800	1.55667200	2.76086600
С	4.11660900	1.37043300	2.45123400
C	5.39163700	0.31198300	0.58992100
C	4.15676600	-0.72037400	-1.24588700
N	1.70784100	-0.66611100	-1.18697600
Н	2.79591100	2.23600900	3.95665300
Н	5.04092600	1.64974000	2.94959000
C	5.38933100	-0.35478200	-0.58771600
Н	6.33008900	0.57967400	1.06859400
С	4.10695300	-1.40318200	-2.44966900
C	1.70734400	-1.33343900	-2.34903200
Н	6.32589700	-0.62984800	-1.06589700
Н	5.02929000	-1.68987000	-2.94750300
С	2.85502200	-1.72167600	-3.01674100

0.72798000	-1.56257900	-2.76106100
2.78025500	-2.25827500	-3.95580500

$$\underbrace{{\color{black}}{\color{black}{\bigvee}}_{S}}_{O_2}\overset{N-\overset{N}{\overset{}}{\color{black}{\bigvee}}}_{Ph}}_{Ph}$$

H H

С	-2.88420900	-0.46741400	0.29206500
S	-1.11163800	-0.67462200	-0.18421600
0	-0.40645100	-1.40612800	0.87280000
0	-1.02276400	-1.16925800	-1.56226900
С	-0.36651300	0.97029100	-0.19857400
N	0.95702300	1.20761800	-0.12574100
N	1.12241900	2.53853900	-0.18015400
N	-0.04671500	3.06382200	-0.27963600
N	-1.00111200	2.11353900	-0.30094600
С	2.08843700	0.32758200	-0.02812200
С	2.36023300	-0.54605000	-1.07321900
С	2.89335700	0.40245600	1.10183800
С	3.46770800	-1.38185200	-0.97138800
Н	1.71825000	-0.57280500	-1.94706900
С	4.00226600	-0.43245200	1.18598300
Н	2.65079100	1.09685900	1.89896400
С	4.28673400	-1.32459500	0.15380700
Н	3.69268800	-2.07249700	-1.77730700
Н	4.64111300	-0.38813600	2.06182400
Н	5.15156900	-1.97636700	0.22615700
С	-3.62786300	0.26062100	-0.82673300
Н	-4.68698500	0.29278300	-0.55356400
Н	-3.27609000	1.28546000	-0.95286600
Н	-3.53833500	-0.27100900	-1.77681700
С	-2.96035300	0.26817500	1.62909800
Н	-2.64342400	1.30926100	1.54446300
Н	-4.00520100	0.25918100	1.95374800
Н	-2.36493600	-0.23023500	2.39812000
С	-3.38391500	-1.91248000	0.43181600
Н	-2.86220100	-2.44966500	1.22687600
H	-4.44567100	-1.86582200	0.68994500
Н	-3.28823600	-2.47027500	-0.50334000

C S O O C N N N N C C C C

-2.44671900	-0.47854200	0.85042800
-1.39823100	-0.61066900	-0.69190700
-0.52887500	-1.79496500	-0.50471100
-2.33038300	-0.63804000	-1.84241300
-0.31586000	0.80639400	-0.94963100
0.80200700	1.02689400	-0.13883200
0.80463600	2.36707800	0.22415500
-0.24575800	2.88898600	-0.32264400
-0.95647100	2.02569300	-1.02159800
1.99044400	0.28825900	-0.01388500
2.30620500	-0.72242000	-0.92668200
2.87848200	0.58798000	1.02596700
3.49658300	-1.42744800	-0.79123400

Н	1.61591700	-0.95258600	-1.72852300
С	4.06756800	-0.12272700	1.14643000
Н	2.63130400	1.37329300	1.73050000
С	4.38494000	-1.13551000	0.24296100
Н	3.73332300	-2.20902400	-1.50752700
Н	4.74867500	0.11689200	1.95791700
Н	5.31308400	-1.68982600	0.34269400
С	-3.50662600	0.59922300	0.63472100
Н	-4.10544200	0.68395100	1.54836200
Н	-3.05779600	1.57262400	0.42459100
Н	-4.17362200	0.33866700	-0.19043200
С	-1.52386000	-0.12718700	2.01700800
Н	-1.07896600	0.86517100	1.90121700
Н	-2.11358500	-0.12328400	2.93995500
Н	-0.72057400	-0.86019300	2.13253300
С	-3.09410400	-1.84889000	1.05531600
Н	-2.34566300	-2.62515900	1.22929600
Н	-3.74626900	-1.79508900	1.93423800
Н	-3.70784500	-2.13603400	0.19673400

$\left[\underbrace{\begin{matrix} N^{-} \overset{N}{\underset{N}{}} \overset{N}{\underset{N}{}} \\ \underbrace{\begin{matrix} N^{-} \overset{N}{\underset{N}{}} \\ \overset{N}{\underset{N}{\overset{N}{\underset{N}{}}} \\ \overset{N}{\underset{N}{\overset{N}{\underset{N}{}}} \\ \overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\underset$	2+		
С	-5.39242700	-3.28351300	0.28170800
С	-6.20474000	-2.95926800	-0.77953000
С	-5.91266100	-1.82049000	-1.55658700
С	-4.78292400	-1.06371100	-1.19821600
С	-4.29149100	-2.46267800	0.56654500
С	-6.71350100	-1.41364400	-2.67677100
С	-4.43602700	0.10548900	-1.97133400
С	-5.24328200	0.48023200	-3.05994400
С	-6.39512800	-0.30913000	-3.39466900
С	-4.86803800	1.63199800	-3.78005100
Н	-5.46665500	1.95348700	-4.62686900
С	-3.74765000	2.33425000	-3.40222800
С	-3.00137900	1.87870700	-2.30555800
Н	-7.58268000	-2.01039500	-2.93446700
Н	-5.58684500	-4.15273500	0.89912800
Н	-7.06820900	-3.56969200	-1.02630500
Н	-3.63531100	-2.68801200	1.40077300
Н	-7.00440900	-0.00243100	-4.23905400
Н	-3.43083000	3.22383900	-3.93391400
Н	-2.10950600	2.40736500	-1.98566200
Ν	-3.99644000	-1.38703100	-0.14507900
Ν	-3.33059100	0.80002500	-1.61370800
Zn	-2.30935500	-0.02354800	0.13347000
Ν	-1.34713600	-1.24798600	1.66300000
С	-0.44503400	-2.12458900	1.16268100
С	-1.54097000	-1.20663200	2.97119400
С	0.28331400	-3.00716400	1.97990000
С	-0.23821400	-2.14393300	-0.26610200
С	-0.85668600	-2.04113500	3.86662200
Н	-2.27021700	-0.48847100	3.33156700
С	0.05321300	-2.94462600	3.36890500
С	1.21292700	-3.92387700	1.38222500

С	0.67565100	-3.05677800	-0.82129000
N	-0.94112600	-1.26865800	-1.02226500
Н	-1.05637100	-1.96505900	4.92911300
Н	0 59709000	-3 60992500	4 03270900
C	1 39787800	-3 95031400	0.04001800
н	1 76550100	-4 59585800	2 03125500
C	0.83717300	-3 04374300	-2 22127200
C C	-0 77206900	-1 2788/1500	-2.22127200
с u	2 10123000	-1.2700+300	0 40010000
П Ц	2.10123900	2 72286000	2 68660800
II C	0.11055400	-3.73280000	-2.08000800
U U	1 25451400	-2.13030300	-2.97993700
П Ц	-1.33431400	-0.30242000	-2.90434000
П N	0.21100400	-2.11/9//00	-4.03832400
IN C	-0.93449200	1.04425900	1 10740700
C	-1.5/889000	2.00033200	1.19/40/00
C C	0.23230700	1.79084000	-0.21159/00
C	-0.63334800	3.76415400	1.4/983400
C	-2.668/1000	2.42105600	1.818/0/00
C	1.0/406800	2.905/9100	0.01283100
H	0.57502000	0.99543200	-0.87550300
C	0.62504600	3.89410500	0.85778100
C	-1.17036500	4.75262500	2.37247900
C	-3.16895100	3.40977000	2.68463100
N	-3.35110500	1.28532700	1.54111200
H	2.03950900	2.96168700	-0.48064600
H	1.22963500	4.77469300	1.05388/00
C	-2.38649800	4.58482200	2.94695100
H	-0.57931400	5.64008800	2.57586400
C	-4.4349/200	3.18675600	3.261/6000
C	-4.53901800	1.10206500	2.09440700
H	-2.79064000	5.33533400	3.61905300
H	-4.85480200	3.92773300	3.93519300
C	-5.12295700	2.03320500	2.96540900
Н	-5.05465100	0.18050300	1.84475700
Н	-6.09873900	1.83037600	3.39117100
С	6.58895800	1.77897500	-1.72483100
S	4.92253900	1.59991000	-0.89411400
0	5.15139200	1.80761600	0.55406400
0	4.00432000	2.54861900	-1.56800300
С	4.18622000	-0.03555700	-1.08348000
N	4.69062100	-1.14029600	-0.39098800
N	4.80937200	-2.18867600	-1.29203700
N	4.41540900	-1.72667800	-2.43418600
N	4.04092900	-0.46239800	-2.38696600
С	4.69779200	-1.42030000	0.98561900
С	3.93653700	-0.65737700	1.87608500
С	5.46248300	-2.49023100	1.46490600
С	3.94938600	-0.96234200	3.23205400
Н	3.34847100	0.17153900	1.50247100
С	5.46165600	-2.78686400	2.82350300
Н	6.05114400	-3.07983200	0.77190200
С	4.70936300	-2.02609900	3.71678500
Н	3.35293300	-0.36386600	3.91481700
Н	6.06033600	-3.61789500	3.18509700
Н	4.71549700	-2.25863000	4.77725000
С	6.38694700	1.78339200	-3.23819300

Н	7.36775500	1.87133400	-3.71852900
Н	5.91391700	0.86243100	-3.58614600
Н	5.77305100	2.63052200	-3.55321900
С	7.45939600	0.60395700	-1.28133800
Н	7.06713700	-0.35205000	-1.63960000
Н	8.46186700	0.73293100	-1.70303700
Н	7.55396900	0.55919800	-0.19285900
С	7.17112900	3.10940600	-1.24574500
Н	7.33006400	3.11329100	-0.16509600
Н	8.13881300	3.26091600	-1.73709400
Н	6.52298100	3.94977700	-1.51044400
С	-0.00013100	0.00004000	-0.17324100
C C	-0.00013100 0.89496700	0.00004000 1.18165800	-0.17324100 0.01722900
C C H	-0.00013100 0.89496700 1.05981600	0.00004000 1.18165800 1.39534300	-0.17324100 0.01722900 1.08941200
C C H H	-0.00013100 0.89496700 1.05981600 1.88450800	0.00004000 1.18165800 1.39534300 1.01801000	-0.17324100 0.01722900 1.08941200 -0.42504500
С С Н Н Н	-0.00013100 0.89496700 1.05981600 1.88450800 0.46776900	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100
C C H H H C	$\begin{array}{r} -0.00013100\\ 0.89496700\\ 1.05981600\\ 1.88450800\\ 0.46776900\\ 0.57601600\end{array}$	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200
C C H H C H	$\begin{array}{r} -0.00013100\\ 0.89496700\\ 1.05981600\\ 1.88450800\\ 0.46776900\\ 0.57601600\\ 1.57572300\end{array}$	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200 -1.45095900	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200 -0.42428700
C C H H C H H	$\begin{array}{c} -0.00013100\\ 0.89496700\\ 1.05981600\\ 1.88450800\\ 0.46776900\\ 0.57601600\\ 1.57572300\\ 0.68219100 \end{array}$	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200 -1.45095900 -1.61384200	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200 -0.42428700 1.08941700
C C H H C H H H	$\begin{array}{r} -0.00013100\\ 0.89496700\\ 1.05981600\\ 1.88450800\\ 0.46776900\\ 0.57601600\\ 1.57572300\\ 0.68219100\\ -0.06179500\end{array}$	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200 -1.45095900 -1.61384200 -2.14153600	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200 -0.42428700 1.08941700 -0.42201400
C C H H C H H H C	-0.00013100 0.89496700 1.05981600 1.88450800 0.46776900 0.57601600 1.57572300 0.68219100 -0.06179500 -1.47097400	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200 -1.45095900 -1.61384200 -2.14153600 0.18412000	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200 -0.42428700 1.08941700 -0.42201400 0.01724000
C C H H C H H C H	-0.00013100 0.89496700 1.05981600 1.88450800 0.46776900 0.57601600 1.57572300 0.68219100 -0.06179500 -1.47097400 -2.04464300	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200 -1.45095900 -1.61384200 -2.14153600 0.18412000 -0.63959700	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200 -0.42428700 1.08941700 -0.42201400 0.01724000 -0.42317100
C C H H C H H C H H H C H H	-0.00013100 0.89496700 1.05981600 1.88450800 0.46776900 0.57601600 1.57572300 0.68219100 -0.06179500 -1.47097400 -2.04464300 -1.73883300	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200 -1.45095900 -1.61384200 -2.14153600 0.18412000 -0.63959700 0.21760400	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200 -0.42428700 1.08941700 -0.42201400 0.01724000 -0.42317100 1.08942700
C C H H C H H H C H H H H H	-0.00013100 0.89496700 1.05981600 1.88450800 0.46776900 0.57601600 1.57572300 0.68219100 -0.06179500 -1.47097400 -2.04464300 -1.73883300 -1.82400600	0.00004000 1.18165800 1.39534300 1.01801000 2.09092100 -1.36577200 -1.45095900 -1.61384200 -2.14153600 0.18412000 -0.63959700 0.21760400 1.12377800	-0.17324100 0.01722900 1.08941200 -0.42504500 -0.42127100 0.01722200 -0.42428700 1.08941700 -0.42201400 0.01724000 -0.42317100 1.08942700 -0.42316400

-O₂S N-N, N Ph

S	-2.06057300	-1.26248800	0.31789900
Ο	-1.13478000	-1.67739000	1.44532700
Ο	-1.70406500	-1.95095400	-0.98882900
С	-1.48699400	0.48067000	-0.00803400
Ν	-0.25325700	1.01563800	-0.12261700
Ν	-0.39143200	2.34448100	-0.30800200
Ν	-1.65100900	2.59246000	-0.30078900
Ν	-2.36154700	1.46027500	-0.11617100
С	1.05025300	0.42849300	-0.08698800
С	1.28489300	-0.76687000	-0.75630700
С	2.06283300	1.09212800	0.59887900
С	2.56602000	-1.30956700	-0.72710100
Н	0.47117600	-1.26916600	-1.26983100
С	3.34065500	0.54294900	0.61028700
Н	1.85022500	2.02086800	1.11626500
С	3.59405600	-0.65748600	-0.05019800
Н	2.76007400	-2.24504500	-1.24237200
Н	4.13694400	1.05276000	1.14319300
Н	4.59191900	-1.08473900	-0.03579100
X_{so_2}			
С	0.87911000	-0.00002000	0.02642700
S	1 00112000	0.00000400	0 26527600

С	0.87911000	-0.00002000	0.02642700
S	-1.00118000	0.00000400	-0.36527600

0	-1.56966900	-1.27192700	0.14977400
0	-1.56945500	1.27196300	0.14987300
С	1.43771900	1.26609000	-0.60437500
Н	2.51329300	1.29721700	-0.40132700
Н	1.30087500	1.27616400	-1.68958400
Н	0.98548900	2.16467400	-0.17907500
С	1.43741100	-1.26723100	-0.60237700
Н	1.29929800	-1.27971200	-1.68739800
Н	2.51325900	-1.29746400	-0.40061900
Н	0.98602600	-2.16508300	-0.17465100
С	0.98410500	0.00112300	1.54737700
Н	0.52712300	-0.88959400	1.98531300
Н	2.04816000	0.00056600	1.80837400
Н	0.52828300	0.89311100	1.98390000

N-N _ // `N _ N Ph

С	-1.88038900	1.13862400	-0.35872700
Ν	-1.06506600	0.09042600	-0.02008800
Ν	-1.77781400	-1.01378900	0.32939000
Ν	-3.00699000	-0.67563700	0.21811300
Ν	-3.11384800	0.61839700	-0.19823000
С	0.35345700	0.04263500	-0.01156000
С	1.08280500	1.22066700	0.14724300
С	1.01563600	-1.17565200	-0.16270400
С	2.47341300	1.17587200	0.14856300
Η	0.55539800	2.15915200	0.26842700
С	2.40705900	-1.21035900	-0.14911400
Η	0.44233500	-2.08575700	-0.29274900
С	3.14279300	-0.03762000	0.00369500
Η	3.03530300	2.09691400	0.27232300
Η	2.91630400	-2.16229300	-0.26672600
Η	4.22802700	-0.06880200	0.01006300