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1 Hyperparameter Tuning

We systematically explored a number of hyperparameter combinations to identify one well-suited for fragment
prediction. We found that the choice of hyperparameters can substantially impact both the speed of grid
generation and the quality of information ultimately provided to the machine-learning model.

Due to the number of parameters, testing all combinations was not practical. We therefore selected an
initial parameter set and tested whether deviations from that set might improve performance. For the initial
set, we considered only the atomic elements of receptor (N, O, C, S, other) and parent (N, O, C, other)
heavy atoms (ignoring hydrogen atoms), without regard for atomic hybridizations (i.e., the simple grid-layer
definition applied to both the receptor and parent; see Section 1.2.1).

We mapped the positions of these heavy atoms onto cubic voxel grids. The grid width, w, is defined as
the number of grid points in each dimension, such that there are w?® points total. The spacing in Angstroms
between the grid points, s, is called the grid resolution. The physical length of the grid is thus ws along
each dimension, and the volume is w3s3. We initially considered grids with 24 x 24 x 24 points, spaced 1.0
A apart along the z, y, and z axes.

Finally, to calculate each atom’s contribution (density) at each grid point, we initially used the SMOOTH
voxelation method. Voxelation methods determine the shape and falloff of the density at each atom. SMOOTH
specifically uses a continuous, piecewise function, as in ref. [1]:
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where d is the distance from the grid point to the atom center and r is the atom-influence radius, initially
set to 2.0 A (see Section 1.2.2). The radius thus controls the size of each atom’s density (i.e., how close an
atom must be to a grid point to influence the density recorded at that point). Where more than one atom
of the same type contributed to the same voxel point, the corresponding values were summed.

1.1 Early-Stage Tuning

Our early-stage efforts focused on identifying model and grid-density parameters well suited to the fragment-
selection task. Because this phase of hyperparameter tuning required us to generate many models for com-
parison, we considered only the receptor/ligand complexes present in the PDBBind database [2, 3]. We note
that the ligand SMILES strings in the PDBBind database are somewhat inconsistent (e.g., carboxylate moi-
eties are inconsistently protonated), so that some fragment labels were duplicated in this initial dataset. This
duplication led to overall lower accuracy. Fortunately, for the purpose of hyperparameter tuning we were
concerned only with the relative performance between models. To further reduce the size of the dataset, we
also considered only (receptor/parent, fragment) tuples with connection points that came within 3 A of any
receptor atom.



Table S1: Hyperparameters varied during our tuning protocol
Phase 1: Model parameters

Learning rate 0.01, 0.001, (0.0001)
Batch size (16), 32, 64, 128
Blocks [32,64], [16,32], [64,128], ([64,64])
Fully Connected (fc) [256], ([512]), [1024], [2048], [256,256], [512,512], [1024,1024]
Grid width 16, (24), 32
Grid resolution 05A,1.0A,20A
Phase 2: Grid-density parameters
Grid resolution 0.25 A to 3.00 A (0.75 A)

Atom-influence radius | 0.25 A to 4.00 A

Phase 3: Grid-layer parameters

Parent types flat, flat-h, (simple), simple-h
Receptor types flat, flat-h, (simple), simple-h, meta,
meta-mix

Phase 4: Voxelation parameters
Voxelation method SPHERE, CUBE, POINT, SMOOTH,
(SMOOTH-2), LJ

Atom-influence radius | 1.0 A, (1.75 A), 2.5 A

Parentheses indicate optimal values that were fixed for later phases.

We divided these tuples into TRAIN, TEST, and VAL sets (60/20/20), using the approach described in
the main text. We trained on examples in the TRAIN set and evaluated TOP-k accuracy on examples in
the VAL set. We merged the fragment vectors from the TRAIN and VAL sets into a combined label set that
we used for fragment selection. We trained each model variant for 8 hours on a GPU, achieving accuracy
roughly 80-90% of the eventual maximum. During early experiments, we found that this shortened training
cycle was sufficient to assess relative validation accuracy between model variants. That is, in general if a
model performed better after 8 hours, it also performed better after full convergence.

1.1.1 Phase 1: Model Parameters

In the first phase of early-stage hyperparameter tuning, we randomly sampled 32 combinations of learning
rates, batch sizes, model architecture parameters (blocks and fc), grid widths, and grid resolutions (Table
S1), where “blocks” describes the number of filters in each 3-part convolution block, and “fc” describes the
number and sizes of fully connected layers between the “Flatten” layer and the fragment output.

The learning rate, batch size, and model-architecture parameters impact training and information pro-
cessing. Based on our hyperparameter search, we ultimately selected a learning rate of 0.0001, a batch size
of 16, and a model architecture with two convolutional blocks of size 64 and a single fully connected layer of
size 512.

The grid width and resolution parameters used to generate the voxel grids impact the speed of grid
generation and the amount of information provided to the network. The grid resolution (i.e., the distance
between adjacent grid points) is particularly impactful. Low-resolution grids can be generated quickly, but
high-resolution grids provide more information. Based on our hyperparameter search, we selected a grid
width of 24 (i.e., a cubic grid comprised of 24 x 24 x 24 points). However, this first-phase search did not
unambiguously identify a best grid resolution.

1.1.2 Phase 2: Grid-Density Parameters

In the second phase of hyperparameter tuning, we fixed the best learning rate, batch size, model architecture,
and grid width parameters found during the first phase. We then randomly sampled 32 different combinations
of grid resolutions and atom-influence radii (Table S1). We continued to tune the grid resolution in the
second phase because the first phase did not reveal an optimal value. Based on our hyperparameter search,



we selected a grid resolution of 0.75 A (Table S1). The best atom-influence radius was less clear, though it
seemed to lie between 1.0 and 2.0 A. We tentatively fixed it at 1.0 A.

1.2 Late-Stage Tuning

Our subsequent efforts to identify suitable voxelation and grid-layer parameters leveraged a dataset derived
from the larger Binding MOAD database [4] rather than the PDBBind [2, 3]. The data was again split into
TRAIN, TEST, and VAL sets (roughly 60/20/20), as described in the main text. We continued to train on
examples in the TRAIN set and evaluated TOP-k accuracy on examples in the VAL set. We merged the
fragment vectors from the TRAIN and VAL sets into a combined label set, which we used for fragment
selection. We trained each model variant for 15 epochs (approximately 20 hours) on a GPU, again achieving
accuracy roughly 80-90% of the eventual maximum.

1.2.1 Phase 3: Grid-Layer Parameters

In the third phase of hyperparameter tuning, we explored the effect of varying the grid-layer definitions of
the parent and receptor atoms. In the same way a 2D image has three color channels (e.g., red, green, blue),
our 3D grids have N atom (i.e., grid-layer) channels (e.g., carbon, nitrogen, oxygen, etc.). It is tempting to
construct a large array of features (e.g., to create separate layers for aliphatic and aromatic carbon atoms)
in order to maximize information. But using too many layers can slow training and make the model harder
to deploy because each feature must be separately computed during inference. On the other hand, too few
layers may result in information loss and worse performance.

We evaluated several “atom-channel” (i.e., grid-layer) definitions. In all cases, atoms from the receptor
and parent always contributed to different grid layers, allowing our model to distinguish between the two. In
the flat definition, we assigned all atoms to a single channel. This method serves as a baseline comparison
and is analogous to converting an image to grayscale before training an image classifier. The flat-h definition
includes hydrogen atoms, but flat does not.

In the simple definition (also described above), we assigned atoms to separate layers based on atomic
number. We assigned the most common atoms to individual layers and aggregated all other atoms in a
separate “other” layer. For ligands, the most common atoms are carbon, nitrogen, and oxygen. For receptors,
we also include a separate sulfur layer. The simple-h definition further includes a hydrogen layer.

We also experimented with high-level descriptors for receptor atoms. In the meta definition, we assigned
each atom to one or more channels based on the following properties: aromatic, hydrogen-bond donor,
hydrogen-bond acceptor, partial positive charge, partial negative charge, and occupancy (any atom). For
example, an aromatic carbon atom with a partial positive charge would be present in the aromatic, partial
positive, and occupancy layers. In the meta-mizx description we combine the meta layers and the simple-h
layers.

We trained nine model variants in triplicate and report the average validation accuracy after 15 epochs
(Table S3). When the parent-atom definition was varied, the receptor-atom definition was fixed as simple,
and vice versa. We obtained the best performance when the simple grid-layer definition was applied to
both the parent and receptor. It is interesting that this definition was optimal, given that it ignores both
hydrogen atoms and atomic hybridizations. Other works have found that element-type channels are sufficient
to achieve high performance on the related binding-affinity prediction task [1]. Similarly, including hydrogen
atoms appears to have little impact on affinity-prediction performance [5].

1.2.2 Phase 4: Voxelation Parameters

Our grid representation requires that each atom contribute “density” to neighboring grid points. In the fourth
phase of hyperparameter tuning (Table S1), we fixed the parent and receptor typing schemes as simple and
used a comprehensive grid search to vary the voxelation method (Table S4). We also continued to tune the
atom-influence radius because previous efforts had identified no optimal value. We considered the following
voxelation methods (Figure S1):

1. SPHERE: Set all grid points within r to 1 (spherical boolean).

2. CUBE: Set all grid points within r along the x, y, or z axis to 1 (cubical boolean).



Table S2: Grid-layer (atom typing) descriptions
Parent Typing Layers
flat single channel, no hydrogen
flat-h single channel, including hydrogen
simple [C, N, O, (other)]
simple-h [H, C, N, O, (other)]
Receptor Typing | Layers
flat single channel, no hydrogen
flat-h single channel, including hydrogen
simple [C, N, O, S, (other)]
simple-h [H, C, N, O, S, (other)]
meta [aromatic, H-don, H-ace, pos, neg, occupancy|
meta-mix meta + simple-h

Note that the simple and simple-h variants for the receptor include a separate sulfur layer. Otherwise, the parent

and receptor typing schemes are identical. Additionally, the meta and meta-miz descriptions are used only for the

Table S3: Effect of varying grid layer descriptions on TOP-1 accuracy

receptor.

Parent Typing | Receptor Typing | TOP-1 Accuracy
flat simple 45.87 (£ 0.44)
flat-h simple 46.00 (£ 0.55)
simple simple 50.57 (£ 0.25)
simple-h simple 50.45 (4 0.06)
Parent Typing | Receptor Typing | TOP-1 Accuracy
simple flat 46.20 (+ 0.51)
simple flat-h 47.27 (+ 0.83)
simple simple 50.57 (£ 0.25)
simple simple-h 50.10 (£ 0.58)
simple meta 49.22 (£ 0.58)
simple meta-mix 50.10 (& 0.87)

For each parent grid-layer variant, the receptor grid-layer definition was fixed at simple, and vice-versa. Each model
variant was trained in triplicate on the TRAIN dataset for 15 epochs. We report TOP-1 accuracy (%) and standard
error on the VAL set.
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Figure S1: Illustration of different grid-voxelation methods in 2D.

3. POINT: Set only the nearest grid point to 1 (as in ref. [6]).

4. SMOOTH: Set nearby grid points per a continuous, piecewise function (as in ref. [1]), defined as:
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where d is the distance from the grid point to the atom center. Note that in the present work, r is the
same for all atom types and so is not equivalent to an atomic radius.

5. SMOQOTH-2: Set nearby grid points per the exponential part of SMOOTH:
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6. LJ: Set grid points per the repulsive component of a Lennard-Jones potential (as in ref. [7]), defined
as:
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Each of these approaches has its advantages and disadvantages. For example, simple boolean voxelation
is fast to compute but may oversimplify the input representation, while more complex functions can retain
high-resolution distance information at the cost of slower grid generation. Surprisingly, the specific method
had little effect on overall prediction accuracy (Table S4), with the exception of the CUBE and POINT
methods, which apparently fail to provide sufficient information to the model. We hypothesize that the
CUBE method does not preserve atomic symmetries (especially as the atom-influence radius increases),
and the POINT method is too sparse. As others have noted [1], the hard boolean cutoff in SPHERE and
the smooth Gaussian in SMOOTH are remarkably competitive, even though the former does not preserve
atomic-distance information.

We ultimately settled on the SMOOTH-2 voxelation method (1.75 A radius) because it is the fastest to
compute of the distance-preserving spherical methods. However, our hyperparameter search did not reveal a
clearly optimal voxelation method and atom-influence radius; indeed, different methods/radii produce similar
results.



Table S4: Effect of voxelation method on TOP-1 accuracy (%)

1.0 A 1.75 A 2.5 A Overall

1. SPHERE 49.12 (4 0.48) | 49.65 (£ 0.38) | 48.50 (£ 0.43) | 49.09 (& 0.30)
2. CUBE 49.27 (+ 0.55) | 42.12 (£ 0.13) | 39.18 (£ 0.13) | 44.06 (& 1.41)
3. POINT 44.13 (£ 0.18) | 43.27 (£ 0.48) | 43.40 (£ 0.56) | 43.64 (£ 0.28)
4. SMOOTH 50.38 (+ 0.08) | 49.00 (+ 0.06) | 46.93 (£ 0.70) | 48.74 (£ 0.56)
5. SMOOTH-2 | 51.13 (£ 0.61) | 49.40 (& 0.61) | 46.23 (£ 0.74) | 48.92 (£ 0.78)
6. LJ 50.03 (4 0.42) | 48.68 (& 0.88) | 47.32 (£ 0.30) | 48.68 (£ 0.50)
Overall 49.01 (4 0.58) | 47.13 (£ 0.76) | 45.62 (£ 0.71)

Each model variant was trained three times on the TRAIN dataset for 15 epochs. We report TOP-1 accuracy (%)
and standard error on the VAL set.

Table S5: Effect of multiple-rotation sampling on accuracy

N TOP-1 TOP-8 TOP-64
1 56.41 64.79 70.78
2 57.17 65.47 71.36
4 57.57 65.87 71.78
8 97.72 66.03 71.98
16 57.83 66.06 72.05
32 57.91 66.17 72.13

Each entry represents the TOP-k VAL-set accuracy obtained by averaging N-rotations per sample (fully converged
model, roughly 50 epochs of training).

1.3 Final Hyperparameters Used to Train to Convergence

For the final DeepFrag model, we ultimately selected a learning rate of 0.0001, a batch size of 16, and a model
architecture with two convolutional blocks of size 64 and a single fully connected layer of size 512 (Figure S2).
To convert receptor and parent structures to voxel grids, we considered only the atomic elements of receptor
(N, O, C, S, other) and parent (N, O, C, other) heavy atoms, without regard for atomic hybridizations (i.e.,
the simple definition for both the receptor and parent, see Section 1.2.1). We ignored hydrogen atoms.

Atomic positions were mapped onto cubic voxel grids with 24 x 24 x 24 points, spaced 0.75 A apart
along the z, y, and z axes. The influence of each atom at each point was calculated using the SMOOTH-2
voxelation method (1.75 A radius).

We found that averaging the fingerprint predictions of multiple randomly rotated grids further improved
accuracy. In Table S5 we report the TOP-k test accuracy on the VAL set obtained by averaging N-rotations
per sample for different values of V. By default, DeepFrag averages the output of 32 such rotations.

2 Converting DeepFrag Output to 3D Molecular Models

As output, DeepFrag produces an RDKFingerprint-like vector representing the candidate fragment, where
each vector component is a continuous number in (0, 1). This fingerprint is then compared to a library (label
set) of known fingerprints to identify corresponding SMILES strings. But SMILES strings do not describe
3D atomic coordinates, as required for subsequent visualization and smina rescoring (see below) [8].

To address this issue, we created 3D molecular models of DeepFrag-optimized compounds, comprised of
the parent ligand and suggested fragment merged into one molecule. DeepFrag requires the 3D coordinates
of parent-ligand atoms as input, so we retained parent coordinates. We then used RDKit [9] to (1) generate
3D coordinates of DeepFrag-suggested fragments, (2) position each 3D fragment at the appropriate location
relative to the corresponding parent ligand, and (3) add a chemical bond between the atoms at the parent
and fragment connection points.

DeepFrag assumes that the pose of the parent ligand is correct relative to the receptor, but RDKit assigns
atomic coordinates to fragment atoms without regard for receptor atoms. Indeed, the fragment may extend
into the receptor itself in some cases. To address this issue, we used RDKit to systematically rotate the
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Figure S2: Final DeepFrag convolutional neural network architecture. The input tensor consists of concate-
nated atom-wise channels (grids) from the parent and receptor (N = total number of atom channels). The
output tensor contains a raw fragment-fingerprint prediction. For this model, blocks = [64,64] and fc = [512].

modeled fragment around the dihedral angle of the new parent-fragment bond in 5° increments. At each
angle, we calculated the energy relative to the respective crystallographic receptor using the UFF force field
[10]. The positioned (posed) moiety conformation with the lowest calculated energy was retained.

3 Reevaluating DeepFrag-Optimized Compounds with smina

We used the docking program smina to provide independent validation of select DeepFrag-generated com-
pounds. To further prepare the small-molecule models, we used manual inspection, Open Babel [11], and
Avogadro [12] to (1) reassign the hydrogen atoms as appropriate for physiological pH (e.g., deprotonate
the carboxylate moieties, protonate amines in some cases, etc.) and (2) correct occasional compounds with
inappropriate geometries. To further prepare protein-receptor models, we used PDB2PQR [13, 14] to add hy-
drogen atoms as appropriate for physiological pH and to optimize the hydrogen-bond network. We converted
the small-molecule and protein-receptor files to the smina-compatible PDBQT format using MGLTools [15].

We next used smina to score the 3D poses. The --minimize option allowed smina to optimize the geometry



of the crystallographic (original) and DeepFrag-modified molecules within the receptor binding site, without
redocking. We used --minimize because, although our original efforts to position the suggested moieties using
RDKit effectively prevented major steric clashes (Subsection 2), RDKit is not designed for fragment docking.
Furthermore, in our RDKit protocol the positions of the parent atoms were fixed, but in reality a ligand
must sometimes shift within a binding site to accommodate a new fragment addition.

4 DeepFrag Applied to a Crystallographic Fragment Screen

To build on the XChem crystallographic screen targeting the SARS-CoV-2 main protease (MF™) [16], we
used DeepFrag (default settings) to identify 132 candidate moieties that could replace various hydrogen
atoms belonging to any of 18 crystallographic ligands. We then followed the protocols described in Sections 2
and 3 to position and score 3D models of the crystallographic and DeepFrag-optimized compounds. For one
of the 18 crystallographic ligands, the root-mean-square deviation (RMSD) was greater than 1.5 A between
the pre- and post-minimization poses. We discarded this compound and all its DeepFrag derivatives because
our goal was to assess how DeepFrag additions alone might impact docking scores, and substantial shifts
in ligand poses could introduce new confounding variables. Of the remaining 120 DeepFrag compounds, 23
similarly shifted more than 1.5 A and so were also discarded.

We also further considered the positions of the heavy (non-hydrogen) fragment and receptor atoms. We
realized that in some cases we had asked DeepFrag to replace hydrogen atoms that were pointed away from
the protein receptor (e.g., towards bulk solvent), such that any added fragment was unlikely to interact with
the receptor itself. Of the 97 remaining DeepFrag compounds, 24 had posed fragments that came within 3
A of the receptor. These 24 candidate ligands were derived from 13 of the crystallographic ligands. The final
compound set described in the main text is composed of these compounds.
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