Asymmetric Hydroalkylation of Alkynes and Allenes with Imidazolidinone Derivatives: α-Alkenylation of α-Amino Acids

Farhad Panahi,^a Hormoz Khosravi,^a Felix Bauer^a and Bernhard Breit^{a,*}

^a Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg Albertstraße 21, 79104 Freiburg im Breisgau (Germany)

Outline

1.	General methods and materials	S2			
2.	Optimization study	S4			
3.	Synthesized starting materials for this protocol	S7			
	3.1. Synthesis of aryl-methyl alkynes derivatives	S7			
	3.2. Synthesis of imidazolidinone derivatives	S11			
4.	General procedure for hydroalkylation of alkynes/allenes with imidazolidinone derivatives	S23			
	4.1. Alkynes	S23			
	4.2. Allenes	. S23			
	4.3. Large scale procedure	. S23			
	4.4. Spectral data for the alkenylated imidazolidinonecompounds	S24			
5.	General procedure for hydrolysis of alkenylated imidazolidinone	. S43			
6.	Deuterium labeling experiments	. S45			
7.	In situ IR experiments	. S51			
8.	. Computational details				
9.	9. HPLC data				
10.	X-ray crystallography of compound 3ac	5109			
11.	Copy of ¹ HNMR and ¹³ CNMR of synthesized compounds	S122			
	11.1. Aryl-methyl alkynes derivative	5122			
	11.2. Iimidazolidinone derivatives	5137			
	11.3. α-Alkenylated imidazolidinones	S148			
12.	Z-Matrix of optimized compounds in DFT calculations	S237			

1. General methods and materials

Chemicals were purchased from commercial suppliers and used without further purification, unless mentioned. Alkynes were either commercially available or synthesized according to the reported procedures. Allenes were synthesized according to the reported procedures.

■Toluene was freshly distilled over Sodium/Benzophenone and degassed with argon prior to use. THF was freshly distilled over Na and collected under Argon. DMF was purchased from Acros and used as received. Other solvents for optimization study were purchased in p.a. grade and used without further purification. Solvents employed for work-up and column chromatography were purified prior to use by evaporation on a rotary evaporator.

■All reactions were performed using Schlenk technique in flame dried glassware under argon (Argon 5.0, Sauerstoffwerk Friedrichshafen).

Reactions were monitored by TLC analysis which was performed on aluminum platespre-coated with silica gel (MERCK, 60 F-254), and visualized by UV fluorescence ($\lambda_{max} = 254$ nm) and/or by staining with 1% w/v KMnO₄ in 0.5 M aqueous K₂CO₃.

■FCC (Flash Column Chromatography) was accomplished using MACHEREY-NAGEL silica gel 60[®] (230-400 mesh).

■ NMR (Nuclear Magnetic Resonance) spectra were acquired on a Bruker Avance 400 spectrometer (400 MHz and 101 MHz for ¹H and ¹³C respectively) and/or on a Bruker DRX 500 (500 MHz and 126 MHz for ¹H and ¹³C respectively).

■All ¹H-NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signal at 7.26 ppm (CHCl₃).

■All ¹³C-NMR spectra are reported in ppm relative to residual CHCl₃ (77.16 ppm) and were obtained with 1H-decoupling.

Data for ¹H-NMR are described as following: chemical shift (δ in ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sx, sextet; sept, septet; m, multiplet; mc, centered multiplet, app, apparent; br, broad signal), coupling constant (Hz), integration.

Data for ¹³C-NMR spectra are described in terms of chemical shift (δ in ppm).

■High-resolution mass spectra (HR-MS) were obtained on a Thermo Scientific Advantage and a Thermo Scientific Exactive instrument (APCI/MeOH: spray voltage 4-5 kV, ion transfer tube: 250-300 °C, vaporizer: 300-400 °C).

Chiral HPLC were performed on a Merck Hitachi HPLC apparatus (pump: L-7100, UV detector: L-7400, auto sampler: L-7200 oven: L-7360) a Varian Pro Star (pump: 230, UV detector: 310, auto sampler: 410, oven: 510) and a Hitachi Primade (pump: 1100, DAD detector: 1430, auto sampler: 1210, oven: 1310). Used columns: Dr. MaischReprosil AM-3. Diacel Chiralpak AS, AD-H, AD-3, OB-H, OD-3, OJ-H, IC. Phenomenex Lux LA-1, LA-2, LC-1, LC-2, LC-3, LC-4.

■Melting points were measured with a Bibby Scientific Limited Stuart smp10.

2. Optimization of reaction condition

Me Me 1a	e + Ph CH ₃ 2a	Base THF, temp (°C), 20 h	Me Me Me CH ₃ 3a		
entry	base (eq)	temp (°C)	yield of 3a (%) ^b	dr ^c	er ^d
1	NaOH (2.0)	100	0	-	-
2	NaH (2.0)	100	0	-	-
3	K ₃ PO ₄ (2.0)	100	0	-	-
4	K ₂ CO ₃ (2.0)	100	0	-	-
5	Cs ₂ CO ₃ (2.0)	100	0	-	-
6	KtOBu (2.0)	100	0	-	-
7	LiHMDS (2.0)	80	91	>99:1	>99:1
8	NaHMDS (2.0)	80	82	>99:1	56:44
9	KHMDS (2.0)	80	79	>99:1	68:32
10	LDA (2.0)	80	75	95:5	95:5
11	n-BuLi (2.0)	80	71	92:8	90:10

Table 1S. Screening of base

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), base (0.4 mmol), THF (2.0 mL, 0.08M).

^bNMR yield with 1,3,5-trimethoxybenzene(TMB) as reference. ^cdr were determined using ¹HNMR.^d er was determined by chiral HPLC.

Table 2S. Screening of solvent

Ý			V		
Me N-Me +	Ph CH ₃	LiHMDS			
Me	Ŭ	THF, 80 ℃, 20 h	O Mě	Ph	
1a	2a		3a	43	
base (eq)	Solv	rent	yield of 3a (%) ^b	drc	

entry	base (eq)	Solvent	yield of 3a (%) ^b	dr ^c
1	LiHMDS (2.0)	THF	91	>99:1
2	LiHMDS (2.0)	Toluene	84	>99:1
3	LiHMDS (2.0)	DMF	55	91:9
4	LiHMDS (2.0)	DCE	trace	ND
5	LiHMDS (2.0)	1,4-dioxane	73	>99:1
6	LiHMDS (2.0)	Benzene	83	>99:1
7	LiHMDS (2.0)	CH ₃ CN	25	ND
8	LiHMDS (2.0)	CH ₂ Cl ₂	trace	ND

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), LiHMDS (0.4 mL, 1.0 M in THF), solvent (2.0 mL, 0.08M). ^bNMR yield with 1,3,5-trimethoxybenzene(TMB) as reference. ^cdr were determined using ¹HNMR.

	Me + Ph = Ch $Me + 2a$	H ₃ LiHMDS THF, Temp (°C),	20 h Me N-Me Me CH ₃ 3a	1
entry	base (eq)	Temp (°C)	yield of 3a (%) ^b	dr ^c
1	LiHMDS (2.0)	rt	30	>99:1
2	LiHMDS (2.0)	50	48	>99:1
3	LiHMDS (2.0)	60	85	>99:1
4	LiHMDS (2.0)	70	87	>99:1
5	LiHMDS (2.0)	80	91	>99:1
6	LiHMDS (2.0)	90	86	97:3
7	LiHMDS (2.0)	100	80	95:5
8	LiHMDS (2.0)	110	68	90:10

Table 3S. Screening of temperature

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), base (0.4 mmol), THF (2.0 mL, 0.08M).

^bNMR yield with 1,3,5-trimethoxybenzene(TMB) as reference. ^cdr were determined using ¹HNMR.

	$Me + Ph - CH_3 - H_3 -$	LiHMDS Me. N F, 80 °C, 20 h	N-Me Ph CH ₃
entry	1a:2a:LiHMDS	yield of 3a (%) ^b	dr ^c
1	1:1:2	91	>99:1
2	1:1.5:2.5	85	98:2
3	1:1.2:2.2	90	98:2
4	1:1:2.2	92	98:2
5	1:1:1	23	>99:1
6	1:1:1.5	58	>99:1
7	1:1:0.5	trace	ND
8	1.5:1:2.5	62	>99:1

Table 4S. Screening of ratio of 1a, 2a and base

Î

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), base (0.4 mmol), THF (2.0 mL, 0.08M).

^bNMR yield with 1,3,5-trimethoxybenzene(TMB) as reference. ^c dr were determined using ¹HNMR.

3. Synthesized substrates for this protocol

3.1. Aryl-methyl alkynes

3.1.1. General procedure for the synthesis of alkynes

To a solution of iodobenzene derivative (5.0 mmol, 1.0 equiv), PdCl₂(PPh₃)₂ (2.0 mol %) and CuI (4.0 mol %) was added 15.0 mL of triethylamine. The reaction mixture was stirred under argon at room temperature to 50 °C for 5 minutes. Then, propyne (ca. 5% in tetrahydrofuran, ca. 1.0 mol/L, purchased from TCI) was added in one portion to the reaction mixture. The reaction solution was stirred between 5 hours to 24 hours (depends to the aryl halide used). To monitor the complete of the reaction TLC was used. After completion of the reaction it was cooled to room temperature and dilutedby ethyl acetate (60.0 mL). Filtration of the reaction mixture through a plug of Celite afforded an organic phase without precipitate. This obtained organic phase was washed with water and brine and it was dried over anhydrous Na₂SO₄. After collection of organic layer, it was concentrated in in vacuo and the residue was purified by flash chromatography on silica gel with pentane to obtain the pure products (**2b-u**).

3.1.2. Spectral data for the synthesized aryl-methyl alkynes derivative

3.1.2.1. 1-Fluoro-3-(prop-1-yn-1-yl)benzene (2b)

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.19 (m, 1H), 7.17 (dt, J = 7.7, 1.3Hz, 1H), 7.09 (ddd, J = 9.6, 2.6, 1.4 Hz, 1H), 7.02 – 6.94 (m, 1H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, J = 245.8 Hz), 129.8 (d, J = 9.0 Hz), 127.5 (d, J = 3.2 Hz), 126.0 (d, J = 9.4 Hz), 118.4 (d, J = 22.7 Hz), 114.9 (d, J = 21.2 Hz), 87.1, 78.8 (d, J = 3.4 Hz), 4.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -113.40, -113.41.

3.1.2.2. 1-Methoxy-3-(prop-1-yn-1-yl)benzene (2d)

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.15 (m, 1H), 7.00 (dt, J = 7.6, 1.2 Hz, 1H), 6.95 (dd, J = 2.6, 1.4 Hz, 1H), 6.84 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 3.79 (s, 3H), 2.05 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 159.4, 129.3, 125.2, 124.1, 116.6, 114.2, 85.7, 79.8, 55.3, 4.3.

3.1.2.3.1-(Prop-1-yn-1-yl)-3-(trifluoromethyl)benzene (2e)

¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.57 – 7.49 (m, 2H), 7.42 – 7.35 (m, 1H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 130.9 (q, J = 32.5 Hz), 128.4 (q, J = 4.0 Hz), 125.3, 125.1, 124.2 (q, J = 3.9 Hz), 122.6, 87.8, 78.6, 4.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.02.

3.1.2.4. 1-Chloro-4-(prop-1-yn-1-yl)benzene (2g)

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 1H), 7.27 – 7.23 (m, 1H), 2.04 (s, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 133.6, 132.8, 128.6, 122.7, 87.0, 78.8, 4.4.

3.1.2.5.2-(Prop-1-yn-1-yl)naphthalene (2h)

¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.84 – 7.74 (m, 3H), 7.52 – 7.43 (m, 3H), 2.12 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 133.2, 132.6, 131.1, 128.8, 127.9, 127.8, 127.7, 126.5, 126.4, 121.47, 86.3, 80.2, 4.5.

3.1.2.6.1-(Prop-1-yn-1-yl)naphthalene(2i)

¹H NMR (400 MHz, CDCl₃) δ 8.42 (ddd, J = 9.1, 1.8, 0.8 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.68 (dd, J = 7.1, 1.1 Hz, 1H), 7.60 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.54 (ddd, J = 8.1, 6.8, 1.4 Hz, 1H), 7.44 (dd, J = 8.3, 7.1 Hz, 1H), 2.25 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 133.7, 133.3, 130.1, 128.3, 128.0, 126.5, 126.4, 126.3, 125.3, 121.9, 90.9, 77.9, 4.7.

3.1.2.7. 2-(Prop-1-yn-1-yl)thiophene (2j)

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J = 5.2, 1.2 Hz, 1H), 7.12 (ddd, J = 3.6, 1.1, 0.5 Hz, 1H), 6.94 (dd, J = 5.2, 3.6 Hz, 1H), 2.08 (d, J = 0.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 130.9, 126.8, 125.9, 124.3, 90.0, 73.0, 4.6.

3.1.2.8. 3-(Prop-1-yn-1-yl)thiophene (2k)

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (dd, J = 3.0, 1.1 Hz, 1H), 7.23 (dd, J = 5.0, 3.0 Hz, 1H), 7.07 (dd, J = 5.0, 1.2 Hz, 1H), 2.03 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 130.0, 127.6, 125.0, 123.1, 85.4, 74.9, 4.3.

3.1.2.9. 1,4-Di(prop-1-yn-1-yl)benzene (2l)

¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 1H), 2.05 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 131.4, 123.3, 87.4, 79.7, 4.5.

3.1.2.10. 1-Butyl-2,3,5,6-tetrafluoro-4-(prop-1-yn-1-yl)benzene (2m)

14.2, 8.0, 3.7 Hz), 143.0 (ddd, J = 14.7, 6.4, 3.4 Hz), 118.5 (t, J = 18.9 Hz), 113.2 (t, J = 18.0 Hz), 96.1 (t, J = 2.5 Hz), 69.6, 33.4, 31.6, 29.8, 22.6, 22.5, 13.8, 13.2, 13.2, 13.1; ¹⁹F NMR (377 MHz, CDCl₃) δ -141.08 (dd, J = 22.5, 12.1 Hz), -146.23 (dd, J = 22.6, 12.0 Hz).

3.1.2.11. (*E*)-Pent-1-en-3-yn-1-ylbenzene (2n)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.22 (m, 8H), 6.86 (d, J = 16.4 Hz, 1H), 6.13 (dq, J = 16.2, 2.4 Hz, 1H), 2.01 (dd, J = 2.4, 0.6 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 140.2, 136.7, 128.8, 128.4, 126.2, 109.0, 88.4,

3.1.2.12. 1-(Phenylethynyl)-4-(prop-1-yn-1-yl)benzene (20)

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 1H), 7.46 – 7.42 (m, 1H), 7.39 – 7.33 (m, 1H), 2.07 (s, 1H);¹³C NMR (101 MHz, CDCl₃) δ 131.7, 131.6, 131.6, 128.5, 124.1, 123.3,

122.5, 90.9, 89.3, 88.0, 79.7, 4.5.

3.1.2.13. 5-(Prop-1-yn-1-yl)benzo[d][1,3]dioxole (2p)

¹**H** NMR (400 MHz, CDCl₃) δ 6.90 (dd, J = 8.1, 1.6 Hz, 1H), 6.84 (d, J = 1.6 Hz, 1H), 6.74 – 6.69 (m, 1H), 5.94 (s, 1H), 2.01 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 147.3, 125.9, 117.5, 111.7, 108.4, 101.2, 84.0, 79.6, 4.3.

3.2. Synthesis of imidazolidinone derivatives

3.2.1. Synthetic pathway toward synthesis of imidazolidinone derivatives starting from amino acids

To synthesize imidazolidinone derivatives a known synthetic route in the literature was used (Scheme 1S).^{1,2}

a)

Scheme S1. Synthetic route to prepare imidazolidinone derivatives starting from amino acids

¹ Naef, R.; Seebach, D. *Helv. Chim. Acta* **1985**, 68, 135-143.

²Leonard, D.J.; Ward, J.W.; Clayden, J. *Nature* **2018**, 562, 105-109.

3.2.2. General Procedure A: Imine amide formation

N-Methylamide: To an amino acid methyl esters hydrochloride (1.0 eq.) was added $MeNH_2$ (33% w/w solution in EtOH, 7.0 eq.). The mixture was left to stir at room temperature for 48 h andconcentrated in vacuo. The solid was suspended in toluene and concentrated again. The titled product was used without any further purification.

Imine amide: To a solution of *N*-methylamide (10 mmol, 1.0 eq.) and MgSO₄ (1.90 g)in anhydrous CH_2Cl_2 (1.5 M) was added pivaldehyde (1.18 mL, 10.8 mmol, 1.1 equiv) at 0 °C. The reaction mixture was left to stir at room temperature for 24 h before addedadditional MgSO₄ (0.20 g) and pivaldehyde (1.18 mL, 10.8 mmol, 1.10 equiv) and stirring for 5 h.The reaction mixture was diluted with Et₂O to induce precipitation. The solids were filtered off and the filtrate was concentrated under reduced pressure. The crude product was used immediately without any further purification.³

3.2.3. General Procedure B: Imidazolidinone synthesis

Toanhydrous EtOH (2.0 M) was added dropwise Acetyl Chloride (1.1 eq) at 0 °C. Imine amide (1.0 eq.) was added and solution stirred for 15 min at 0 °C and 30 min at 75 °C. mixture was stirred at room temperature for addition 4h. the solid was filter off and washed with small portion of cold EtOH. The filtrate was concentrated and precipitate was fitter off again. After drying under vacuum the desired product was obtained.³

3.2.4. General Procedure C: (5S)-2-(tert-butyl)-5-alkyl-2,3-dimethylimidazolidin-4-one

To solution of Imidazolidinone (1.0 eq.) and K_2CO_3 (2.0- 2.5 eq.) in anhydrous DMF (0.6 M) at 0 °C was added methyl iodide (1.5 eq.) during 5 min. The mixture was heated at 60 °C for 12 hours. After the reaction time, the mixture diluted with water and extracted with ethyl acetate (×3). The combined organic layers were dried over MgSO₄, concentrated in vacuo and subjected to silica gel chromatography (pet. ether/EtOAc 4:1).

³ Ponath, S.; Menger, M.; Grothues, L.; Weber, M.; Lentz, D.; Strohmann, C.; Christmann, *M. Angew. Chem. Int. Ed.* **2018**, 57, 11683-11687.

3.2.5. Spectral data for the synthesized imidazolidinone derivatives

3.2.5.1. (S)-2-((2,2-Dimethylpropylidene)amino)-N-methylpropanamide (1"a)

Following general **procedureA**, the title compound (14.13 g, 83%) was yielded as a yellow oil.¹**H NMR** (500 MHz, CDCl₃): $\delta_{\rm H} = 7.58$ (s, 1H, CHC(CH₃)₃), 6.98 (br. s, 1H, NH), 3.70 (q, J = 7.1, 1H, CHCH₃), 2.87(d, J = 4.9, 3H, NMe), 1.32 (d, J = 6.9, 3H, CH₃CH), 1.06 (s, 9H,

C(CH₃)₃); **HRMS** (ESI⁺): m/z calcd. for C₉H₁₉ON₂ [M+H]⁺ 171.1492, found: 171.1494. 233.1649. Data in agreement with reported values.²

3.2.5.2. (S)-2-((2,2-dimethylpropylidene)amino)-3-(4-hydroxyphenyl)-N-

methylpropanamide (1''b)

Following general **procedure A**, the title compound (10.04 g, 81%) was yielded as pale yellow oil.¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H} =$ 7.08 – 6.99 (m, 1H), 6.87 (d, *J* = 8.5 Hz, 2H), 6.85 (s, 1H), 6.78 (d, *J* = 8.4 Hz, 2H), 3.66 (dd, *J* = 10.2, 3.0 Hz, 1H), 3.23 (dd, *J* = 13.5, 3.0 Hz, 1H), 2.86 (d, *J* = 5.0 Hz, 3H), 2.65 (dd, *J* = 13.6, 10.2 Hz,

1H), 0.89 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) $\delta_C = 174.5$ (C=O), 174.5 (CHC(CH₃)₃), 155.3 (ArC), 131.1(ArC), 128.5(ArC), 115.3(ArC), 74.3 (CCH₂Ar), 40.2 (CH₂Ar), 36.3 (C(CH₃)₃), 26.7 ((CH₃)₃C), 26.1(NMe); **HRMS** (ESI⁺): m/z calcd. for C₁₅H₂₂O₂N₂ [M+H]⁺263.1754, found: 263.1750.

3.2.5.3. (S)-2-((2,2-dimethylpropylidene)amino)-N-methyl-2-phenylacetamide (1"c)

Following general **procedure A**, the title compound (9.86 g, 85%) was yielded as a yellow oil.¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H} = 7.58$ (s, 1H, CHC(CH₃)₃), 7.35 (d, J = 7.1 Hz, 2H, PhH), 7.29 (t, J = 7.4 Hz, 2H, PhH), 7.26 – 7.20 (m, 1H, PhH), 7.00 (br, s, 1H, NH), 4.72 (s, 1H, CHPh), 2.82 (d, J = 5.0 Hz, 3H, NMe), 1.09 (s, 9H, C(CH₃)₃); **HRMS**

(ESI⁺): m/z calcd. for $C_{14}H_{20}ON_2$ [M+H]⁺ 233.1648, found: 233.1650. Data in agreement with reported values.²

3.2.5.4. (S)-2-((2,2-dimethylpropylidene)amino)-N,3-dimethylbutanamide (1''d)

Following general procedure A, the title compound (7.83 g, 79%) was yielded as a yellow

oil.¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H} = 7.41$ (s, 1H,CHC(CH₃)₃), 6.70 (br, s, 1H, NH), 3.36 (d, J = 3.8 Hz, 1H, CHCH(CH₃)₂), 2.83 (d, J = 5.0 Hz, 3H, NMe), 2.21 (pd, J = 6.9, 3.8 Hz, 1H, CH(CH₃)₂), 1.08 (d, J = 0.9 Hz, 9H, C(CH₃)₃), 0.82 (t, J = 7.1 Hz, 6H, (CH₃)₂CH); **HRMS** (ESI⁺):

m/z calcd. for $C_{11}H_{22}ON_2$ [M+H]⁺199.1805, found: 199.1805.Data in agreement with reported values.¹

3.2.5.5. (S)-2-((2,2-Dimethylpropylidene)amino)-N,4-dimethylpentanamide (1''e)

Following general **procedure A**, the title compound (8.69 g, 82%) was yielded as a pale yellow oil.¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H} = 7.45$ (t, J = 0.6 Hz, 1H, CHC(CH₃)₃), 6.66 (br, s, 1H, NH), 3.62 (dd, J = 9.9, 3.9 Hz, 1H, CHCH₂), 2.84 – 2.74 (m, 3H, NMe), 1.60 (dddd, J = 22.2, 9.8, 4.2, 0.8 Hz, 1H, CH₂CH), 1.46 – 1.35 (m, 1H, CH(CH₃)₂), 1.07 (s, 9H,

 $C(CH_3)_3$, 0.88 (dd, J = 6.7, 0.8 Hz, 3H, (CH₃)₂CH), 0.84 (dd, J = 6.6, 0.8 Hz, 3H, (CH₃)₂CH); **HRMS** (ESI⁺): m/z calcd. for C₁₂H₂₄ON₂ [M+H]⁺213.1961, found: 213.1964.Data in agreement with reported values.²

3.2.5.6. (2S,3R)-2-((2,2-dimethylpropylidene)amino)-N,3-dimethylpentanamide (1"f)

Following general **procedure A**, the title compound (7.95 g, 75%) was yielded as a pale yellow oil.¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H} = 7.40$ (s, 1H, CHC(CH₃)₃), 6.68 (br, s, 1H, NH), 3.40 (d, J = 3.9 Hz, 1H, CHCH(CH₃)(CH₂CH₃)), 2.81 (d, J = 5.0 Hz, 3H, NMe), 1.96 – 1.86 (m, 1H, CH(CH₃)(CH₂CH₃)), 1.44 (dqt, J = 13.7, 7.9, 4.0 Hz, 2H, CH₂CH₃),

1.06 - 1.04 (m, 9H), 0.82 (t, J = 7.4 Hz, 3H, CH₃CH₂), 0.78 (d, J = 6.9 Hz, 3H, CH₃CH); **HRMS** (ESI⁺): m/z calcd. for C₁₂H₂₄ON₂ [M+H]⁺213.1961, found: 213.1963. Data in agreement with reported values.³

3.2.5.7. (S)-2-((2,2-Dimethylpropylidene)amino)-N-methyl-4-(methylthio)butanamide (1''g)

Following general procedure A, the title compound (16.56 g, 72%) was yielded as a pale yellow oil.¹H NMR (500 MHz, CDCl₃) $\delta_{\rm C} = 7.50$ (s, 1H, CHC(CH₃)₃), 6.68 (br, s, 1H, NH), 3.68 (dd, J = 9.0, 4.0 Hz, 1H, CHCH₂), 2.79 (d, J = 5.0 Hz, 3H, NMe), 2.39 (ddd, J = 13.5, 9.1, 4.7 Hz, 1H, CH₂CH₂), 2.27 (ddd, J = 13.1, 8.8, 7.5 Hz, 1H, CH₂CH₂), 2.15 -2.07 (m, 1H, CH₂CH₂), 2.02 (s, 3H, SMe), 1.86 (dtd, J = 13.7, 8.9, 4.7 Hz, 1H, CH₂CH₂), 1.04 (s, 9H, C(CH₃)₃); **HRMS** (ESI⁺): m/z calcd. for C₁₁H₂₂ON₂S [M+H]⁺231.1526, found:

231.1525.Data in agreement with reported values.²

3.2.5.8. (2R,5S)-2-(tert-butyl)-3,5-dimethylimidazolidin-4-one (1'a)

Following general procedure B, the title compound (8.75 g, 85%) was yielded as a white solid.¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 11.17$ (s, 1H, NH), 10.18 (s, 1H, NH), 4.65 (d, J = 5.9 Hz, 1H, CHC(CH₃)₃), 4.13 (q, J =7.0 Hz, 1H, CHCH₃), 3.04 (s, 3H, NMe), 1.71 (d, *J* = 7.1 Hz, 3H, CH₃CH), 1.19 (s, 9H, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ = 169.3 (C=O),

80.6 (CC(CH₃)₃), 53.9 (CCH₃), 37.2 (C(CH₃)₃), 32.3 (NMe), 25.4 ((CH₃)₃C), 15.2 (CH₃CH); HRMS (ESI⁺): m/z calcd. for C₉H₁₉ON₂ [M+H]⁺171.1492, found: 171.1493.Data in agreement with reported values.⁴

3.2.5.9. (2R,5S)-2-(tert-butyl)-5-(4-hydroxybenzyl)-3-methylimidazolidin-4-one (1'b)

Following general procedure B, the title compound (5.98 g, 80%) was yielded as a white solid.¹H NMR (500 MHz, D₂O) $\delta_{\rm H} = 7.21 - 7.09$ (m, 2H, ArH), 6.89 - 6.79 (m, 2H, ArH), 4.55 (s, 1H, CHC(CH₃)₃), 4.47 (dd, J = 7.6, 5.3 Hz, 1H, CHCH₂), 3.26 (dd, J = 15.0, 5.2 Hz, 1H, CH₂Ar), 3.04 (dd, J = 15.1, 7.7 Hz, 1H, CH₂Ar), 2.96 (s, 3H, NMe), 1.00 (s, 9H, C(CH₃)₃); ¹³C NMR (126 MHz, D₂O) δ_{C} = 170.1 (C=O), 155.2 (ArC),

130.8 (ArC), 125.6 (ArC), 115.9 (ArC), 81.6 (CC(CH₃)₃), 59.2 (CCH₂Ar), 35.9 (C(CH₃)₃), 33.9 (CH₂Ar), 31.6 (NMe), 24.0 (C(CH₃)₃); HRMS (ESI⁺): m/z calcd. For C₁₅H₂₂O₂N₂ [M+H]⁺ 263.1754, found: 263.1758.

⁴ Graham, T. H.; Horning, B. D.; MacMillan, D. W. C. Org. Synth. 2003, 42–53

3.2.5.10. (2R,5S)-2-(tert-butyl)-3-methyl-5-phenylimidazolidin-4-one (1'c)

Following general procedure B, the title compound (5.04 g, 75%) was yielded as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 7.47 - 7.33$ (m, 5H, PhH), 4.97 (s, 1H, CHC(CH₃)₃), 4.72 (s, 1H, CHPh), 3.08 (d, J = 0.6Hz, 3H, NMe), 0.89 (s, 9H, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl3) $\delta_{C} =$ 168.0 (C=O), 130.8 (PhC), 130.2 (PhC), 130.2 (PhC), 129.2 (PhC), 80.9 (CC(CH₃)₃), 61.6 (CHPh), 37.3 (C(CH₃)₃), 32.6 (NMe), 25.1 ((CH₃)₃C), 23.5; HRMS (ESI⁺): m/z calcd. for C₁₂H₂₄ON₂ [M+H]⁺ 233.1648, found: 233.1649.

3.2.5.11. (2R,5S)-2-(tert-butyl)-5-isopropyl-3-methylimidazolidin-4-one (1'd)

Following general procedure B, the title compound (2.53 g, 43%) was yielded as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 10.57$ (s, 1H, NH), 10.07 (s, 1H, NH), 4.74 (s, 1H, CHC(CH₃)₃), 4.08 (s, 1H, CHCH(CH₃)₂), 3.02 (s, 3H, NMe), 2.52 (heptd, J = 6.9, 3.3 Hz, 1H, CH(CH₃)₂), 1.23 (d, *J* = 7.1 Hz, 3H, CH₃CH), 1.21 (s, 9H, C(CH₃)₃), 1.17 (d,

J = 6.8 Hz, 3H, CH₃CH); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C} = 168.0$ (C=O), 81.1 (CC(CH₃)₃), 62.4 (CCH(CH₃)₂), 37.2 (C(CH₃)₂), 31.6, 30.0, 25.4 (CH₃)₃CCH), 18.4 ((CH₃)₂CH), 17.0 $((CH_3)_2CH)$; **HRMS** (ESI⁺): m/z calcd. for C₁₁H₂₂ON₂ [M+H]⁺ 199.1805, found: 199.1805.

3.2.5.12. (5S)-2-(*tert*-butyl)-5-isobutyl-3-methylimidazolidin-4-one (1'e)

Following general procedure B, the title compound (3.24 g, 52%, 4:1trans:cis) was yielded as a white solid. ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ =11.26 (s, 0.23H, NH (min))10.99 (s, 1H, NH (maj)), 10.13 (s, 1H, NH (maj)), 8.35 (s, 0.25H, NH (min)), 4.73 - 4.65 (s, 1H, CHC(CH₃)_{3(maj)}), 4.61 (s, 0.26H, CHC(CH3)3), 4.04 (m, 1H,CHCH2(maj)), 4.00 (m, 0.27H, CHCH2 (min)), 3.02 (s, 3H, NMe_(maj)), 3.00 (s, 0.68H, NMe_(min)), 2.36 - 2.16 (m, 1.53H), 1.92 (m, , 2.32H), 1.26 (s, 2.07H,C(CH₃)_{3(min})), 1.21 (s, 9H,C(CH₃)_{3(maj})), 0.99 (d, J = 6.7 Hz, 7.0H, $2 \times \text{Me}$; ¹³C NMR (126 MHz, CDCl₃) $\delta_{\text{C}} = 169.9$ (C=O (min)), 169.4 (C=O (maj)), 81.2 (CC(CH₃)₃)

(min)), 80.8(CC(CH₃)₃ (maj)), 55.6 (CCH₂ (maj)), 55.2 (CCH₂ (min)), 39.5(maj), 38.9(min), 37.3(maj), 35.6(min), 32.3 (NMe(maj)), 31.7(NMe(min)), 25.7(min), 25.5(maj), 24.8, 24.1(maj), 22.6(maj), 22.0(maj), 21.9_(min);**HRMS** (ESI⁺): m/z calcd. for C₁₂H₂₄ON₂ [M+H]⁺213.1961, found: 213.1964.

3.2.5.13. (2R,5S)-5-((S)-sec-butyl)-2-(tert-butyl)-3-methylimidazolidin-4-one(1'f)

Following general procedure B, the title compound (2.74 g, 44%) was yielded as a white solid. ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H} = 10.62$ (s, 1H, NH), 10.15 (s, 1H, NH), 4.73 (s, 1H, CHC(CH₃)₃), 4.15 (s, 1H, CHCH(CH₃)(CH₂CH₃)), 3.01 (s, 3H, NMe), 2.21 (dtq, J = 9.7, 6.9, 3.4, 2.9Hz, 1H,CH(CH₃)(CH₂CH₃)), 1.68 (p, J = 7.4 Hz, 2H, CH₂CH₃), 1.21 (s, 9H, $C(CH_3)_3$, 1.11 (d, J = 6.8 Hz, 3H, CH_3CH), 0.97 (t, J = 7.4 Hz, 3H, CH₃CH₂); ¹³C NMR (126 MHz, CDCl₃) δ_{C} = 167.9 (C=O), 81.1 (CC(CH₃)₃), 61.4 (CCH(CH₃)(CH₂CH₃)), 37.3, 36.7, 31.6 (NMe), 25.6, 25.4, 13.7, 12.1; HRMS (ESI⁺): m/z calcd.

3.2.5.14. (2S,5S)-5-Benzyl-2-tert-butyl-3-methyl-4-imidazolidinone (1'g) and (2R,5S)-5-Benzyl-2- tert-butyl-3-methyl-4-imidazolidinone (1'h)⁵

The resulting mixture of (S)-2-amino-N-methyl-3-phenylpropanamide which was synthesized according to general procedure A (2.00 g, 11.2 mmol, 1.00 equiv.), pivaldehyde (1.93 g, 22.4 mmol, 2.00 equiv.) and Yb(OTf)₃ (70 mg, 0.11 mmol, 0.01 equiv.) in CHCl₃ (100 mL) under an atmosphere of argon was heated at reflux for 8 h. The reaction was allowed to cool to RT and the two diastereomers separated by column chromatography (SiO₂; CH/EtOAc 3:1).

3.2.5.15. (2R,5S)-5-benzyl-2-(tert-butyl)-3-methylimidazolidin-4-one (1'h)

white solid (1.6 g, 58%) $R_f = 0.39$ (CH/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 7.33 - 7.26$ (m, 2H, PhH), 7.25 - 7.20 (m, 3H, PhH), 3.85 (ddd, J = 6.6, 4.3, 1.7 Hz, 1H, (CHCH₂Ph), 3.80 (d, *J* = 1.8 Hz, 1H, CHC(CH₃)₃), 3.11 $(dd, J = 14.1, 4.2 Hz, 1H, CH_2Ph), 2.94 - 2.84 (m, 1H, CH_2Ph), 2.89 (s, 3H, 2.84 Hz)$ NMe), 1.81 (s, b, 1H, NH), 0.90 (s, 9H, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_{C} = 175.4$ (C=O), 137.6 (PhC), 129.6 (PhC), 128.6 (PhC), 126.7 (PhC), 83.5 (CC(CH₃)₃), 59.6 (CCH₂Ph), 38.7 (C(CH₃)₃), 37.8 (CH₂Ph), 31.4

(NMe), 25.7 ((CH₃)₃C); **HRMS** (ESI⁺): m/z calcd. for C₁₅H₂₂ON₂ [M+H]⁺ 247.1805, found: 147.1808.

for C₁₂H₂₄ON₂ [M+H]⁺ 213.1961, found: 213.1960.

⁵Samulis, L.; Tomkinson, N. C. O. *Tetrahedron***2011**, 67, 4263-4267

3.2.5.16. (2S,5S)-5-benzyl-2-(tert-butyl)-3-methylimidazolidin-4-one (1'i)

Me

colorless oil (314 mg, 11%), $R_f = 0.32$ (CH/EtOAc 1:1); ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.20 (m, 5H), 4.06 (d, J = 1.5 Hz, 1H, CHC(CH₃)₃), 3.71 (ddd, J = 8.2, 4.0, 1.4 Hz, 1H, CHCH₂Ph), 3.16 (dd, J = 13.8, 4.0 Hz, 1H, CH₂Ph), 2.95 (dd, J = 13.8, 7.5 Hz, 1H, CH₂Ph), 2.92 (s, 3H, NMe), 1.66 (s, b, 1H, NH), 0.83 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 175.3 (C=O), 137.9 (PhC), 129.7 (PhC), 128.7 (PhC), 126.8 (PhC), 82.5 (CC(CH₃)₃), 59.5 (CCH₂Ph), 38.2 (C(CH₃)₃), 35.1 (CH₂Ph), 30.8 (NMe), 25.4 ((CH₃)₃C); HRMS (ESI⁺): m/z calcd. for C₁₅H₂₂ON₂ [M+H]⁺ 247.1805, found: 247.1805.

3.2.5.17. (2*R*,5*S*)-2-(*tert*-butyl)-1,3,5-trimethylimidazolidin-4-one (1a)

Following procedure C, Methyl iodide (0.90 mL, 14.56 mmol) was added to solution of K₂CO₃ (2.68 g, 19.4 mmol) and (2R,5S)-2-tert-butyl-3,5dimethylimidazolidin-4-one (2.0 g, 9.7mmol) to give titlecompound (1.44 g, 81%) as a colorless oil. $R_f = 0.30$ (pet. ether/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ_{H} = 3.66 (q, J = 7.4 Hz, 1H, CHCH₃), 3.48 (d, J = 1.0 Hz, 1H, CHC(CH₃)₃), 2.96 (s, 3H, NCH₃), 2.38 (s, 3H, NCH₃), 1.25 (d, *J* = 7.4 Hz, 3H, CCH3), 0.95 (s, 9H, C(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃) $\delta_{C} = 176.1$ (C=O), 92.8 (CHC(CH₃)₃), 58.1 (CHCH₃),

39.9 (NCH₃), 38.9 (NCH₃), 32.0, 26.1 (C(CH₃)₃), 12.1 (CHCH₃); HRMS (ESI⁺): m/z calcd. for C₁₀H₂₀ON₂ [M+H]⁺ 185.1651, found: 185.1651.

3.2.5.18. (2R,5S)-2-(tert-butyl)-5-(4-hydroxybenzyl)-1,3-dimethylimidazolidin-4-one (1b)

Following procedure C, Methyl iodide (187 μ L, 3 mmol) was added to solution of K₂CO₃ (0.69 g, 5.0 mmol) and related imidazolidinone (1'b) (600mg, 2.0 mmol) to give title compound (385 mg, 65%) as a white solid. $R_f = 0.30$ (pet. ether/EtOAc 7:3). ¹H NMR (500 MHz, CDCl₃) $\delta_H = 7.21 - 100$ 7.13 (m, 2H, 2×ArH), 6.83 – 6.74 (m, 2H, 2×ArH), 6.03 (s, 1H, OH), 4.00 (dd, J = 11.1, 3.4 Hz, 1H, CHCH₂), 3.52 (s, 1H, CHC(CH₃)₃), 3.23 (dd, J = 16.7, 3.4 Hz, 1H, CH₂Ar), 3.02 (s, 3H, NMe), 2.85 (dd, J = 16.6, 11.0 Hz,

1H, CH₂Ar), 2.36 (s, 3H, NMe), 1.00 (s, 9H, C(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃) $\delta_{C} = 175.5$ (ArC), 154.4 (ArC), 130.6 (ArC), 129.2 (ArC), 115.5 (ArC), 93.1 (CC(CH₃)₃), 62.7 (CCH₂), 40.2 (NMe), 39.1 (NMe), 32.3, 31.0, 26.4; **HRMS** (ESI⁺): m/z calcd. for $C_{16}H_{24}O_2N_2$ [M+Na]⁺ 299.1730, found: 299.1732.

3.2.5.19. (2R,5S)-2-(tert-butyl)-5-(4-methoxybenzyl)-1,3-dimethylimidazolidin-4-one (1c)

To solution of (2R,5S)-2-(tert-butyl)-5-(4-hydroxybenzyl)-3-methylimidazolidin-4-one

hydrochloride (1'b) (600 mg, 2.0 mmol, 1.0 eq.) and NaOH (3.5 eq.) in anhydrous DMSO (2 mL, 1 M) at 0 °C was added methyl iodide (374 μ L, 6 mmol, 3.0 eq.). The mixture was heated at 50 °C for 24 hours. After the reaction time, the mixture diluted with water and extracted with ethyl acetate (×3). The combined organic layers were dried over MgSO₄, concentrated and separated with the column chromatography (pet. ether/EtOAc 4:1) to give desired product (296 mg, 51%) as a white solid.

 $R_f = 0.32$ (pet. ether/EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta_H = 7.30 - 7.18$ (m, 2H, 2×ArH), 6.85 (d, J = 8.7 Hz, 2H, 2×ArH), 4.00 (dd, J = 11.2, 3.4 Hz, 1H, CHC(CH₃)₃), 3.79 (s, 3H, OCH₃), 3.50 (s, 1H, CHCH₂), 3.26 (dd, J = 16.8, 3.4 Hz, 1H, CH₂Ar), 3.01 (s, 3H, NMe), 2.86 (dd, J = 16.8, 11.2 Hz, 1H, CH₂Ar), 2.36 (s, 3H, NMe), 1.00 (s, 9H, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_C = 175.2$ (C=O), 158.1 (ArC), 131.1 (ArC), 129.1 (ArC), 114.0 (ArC), 93.0 (CC(CH₃)₃), 62.6 (CCH₂), 55.3 (OMe), 40.2 (NMe), 39.1(NMe), 32.2, 31.0, 26.4; HRMS (ESI⁺): m/z calcd. for C₁₇H₂₆O₂N₂ [M+H]⁺291.2067, found: 291.2072.

3.2.5.20. (2R,5S)-2-(tert-butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one (1d)

Following procedure C, Methyl iodide (522µL, 8.4 mmol) was added to solution of K₂CO₃

(1.55 g, 11.2 mmol) and related imidazolidinone hydrochloride (1'c) (1.3 g, 5.6 mmol) to give title compound (772 mg, 56%) as a colorless oil. $R_f = 0.24$ (pet. ether/EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta_H = 7.34$ (qd, J = 7.7, 6.7, 3.6 Hz, 3H, PhH), 7.19 (d, J = 7.2 Hz, 2H, PhH), 4.77 (s, 1H, CHPh), 3.80 (s, 1H, CHC(CH₃)₃), 3.10 (s, 3H, NMe), 2.10 (s, 3H, NMe),

1.05 (s, 9H, C(CH₃)₃). ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C} = 174.0$ (C=O), 135.1 (PhC), 130.3 (PhC), 128.4 (PhC), 128.1 (PhC), 91.5 (C(CH₃)₃), 68.7 (CPh), 40.8 (NMe), 39.5 (NMe), 32.1 C(CH₃)₃, 26.2 (CH3); HRMS (ESI⁺): m/z calcd. for C₁₅H₂₂ON₂ [M+H]⁺ 247.1805, found: 247.1805.

3.2.5.21. (2R,5S)-2-(tert-butyl)-5-isopropyl-1,3-dimethylimidazolidin-4-one (1e)

Following **procedure** C, Methyl iodide (562 μ L, 9.1mmol) was added to solution of K₂CO₃ (1.68 g, 12.2 mmol) and related imidazolidinone hydrochloride (**1'd**) (1.2 g, 6.1mmol) to give title compound (845mg, 65%) as a pale yellow oil. R_f = 0.30 (pet. ether/EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 3.59$ (d, J = 1.6 Hz, 1H, CHC(CH₃)₃), 3.36 – 3.28 (m, 1H, CHCH(CH₃)₂)),

2.88 (s, 3H, NMe), 2.42 (s, 3H, NMe), 2.15 – 2.01 (m, 1H, CH(CH₃)₂), 1.07 (d, J = 6.9 Hz, 3H, CH₃CH), 0.92 (d, J = 6.7 Hz, 3H, CH₃CH), 0.90 (s, 9H, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C} = 174.4$ (C=O), 90.8 (C(CH₃)₃), 67.1 (CCH(CH₃)₂), 39.3 (NMe), 38.3 (NMe), 31.5, 26.9, 26.5, 20.4, 18.0; **HRMS** (ESI⁺): m/z calcd. for C₁₂H₂₄ON₂ [M+H] ⁺213.1961, found: 213.1961.

3.2.5.22. (2R,5S)-2-(tert-butyl)-5-isobutyl-1,3-dimethylimidazolidin-4-one (1f)

Following procedure C, Methyl iodide (332µL, 5.35 mmol) was added to solution of K₂CO₃

(993 mg, 7.2 mmol) and related imidazolidinone hydrochloride (1'e) (900 mg, 3.57mmol) to give title compound (507 mg, 62%) as a pale yellow oil. $R_f = 0.29$ (pet. ether/EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta_H = 3.57$ (dd, J = 10.0, 4.8 Hz, 1H, CHCH₂), 3.41 (s, 1H, CHC(CH₃)₃), 2.95 (s, 3H, NMe), 2.30 (s, 3H, NMe), 1.87 (dt, J = 15.1, 6.3 Hz, 1H, CCH₂C), 1.63 – 1.42 (m, 2H,

CCH₂CH), 0.96 (s, 9H, C(CH₃)₃), 0.94 (d, J = 3.5 Hz, 3H, CCH₃), 0.93 (d, J = 3.3 Hz, 3H, CCH₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_c = 176.2$ (C=O), 93.3 (CC(CH₃)₃), 60.5 (CHCH₂), 40.6 (NMe), 38.8 (NMe), 34.8, 32.2, 26.5, 25.5, 23.2, 21.8; HRMS (ESI⁺): m/z calcd. for C₁₃H₂₆ON₂ [M+H]⁺ 227.2118, found: 227.2119.

3.2.5.23. (2R,5S)-5-((S)-sec-butyl)-2-(tert-butyl)-1,3-dimethylimidazolidin-4-one (1g)

Following **procedure C**, Methyl iodide (332 μ L, 5.35 mmol) was added to solution of K₂CO₃ (993mg, 7.2 mmol) and related imidazolidinone hydrochloride (1'f) (900 mg, 3.6 mmol) to give title compound (441 mg, 54%) as a colorless oil. R_f = 0.28 (pet. ether/EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃) δ 3.65 (d, J = 1.8 Hz, 1H, CHC(CH₃)₃), 3.50 – 3.44 (m, 1H,

CHCH(CH₃)CH₂), 2.91 (s, 3H, NMe), 2.46 (s, 3H, NMe), 1.85 (dddd, J = 13.4, 8.7, 4.3, 2.0 Hz, 1H), 1.62 (dtd, J = 14.9, 7.5, 4.7 Hz, 1H), 1.54 – 1.39 (m, 1H), 0.94 (s, 9H, C(CH₃)₃), 0.92 – 0.87

(m, 6H, $2 \times CH_3$); ¹³C NMR (101 MHz, CDCl₃) δ 174.5 (C=O), 90.8 (C(CH₃)₃), 65.8 (CCH(CH₃)CH₂),39.5 (NMe), 38.3 (NMe), 33.9, 31.6, 26.8, 26.5, 15.0, 12.1; **HRMS** (ESI⁺): m/z calcd. for C₁₃H₂₆ON₂ [M+H]⁺ 227.2118, found: 227.2118.

3.2.5.24. (2R,5S)-5-benzyl-2-(tert-butyl)-1,3-dimethylimidazolidin-4-one (1h)

Following procedure C, Methyl iodide (0.45 mL, 7.28 mmol) was added to solution of K₂CO₃

(1.34 g, 9.7 mmol) and related imidazolidinone (**2h**) (1.193 g, 4.85 mmol) to give title compound (870 mg, 69%) as a pale yellow oil. $R_f = 0.35$ (pet. ether/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) $\delta_H = 7.40 - 7.27$ (m, 4H, 4×ArH), 7.21 (t, J = 7.2 Hz, 1H, ArH), 4.06 (dd, J = 11.3, 3.3 Hz, 1H, CHCH₂), 3.52 (s, 1H, CHC(CH₃)₃), 3.34 (dd, J = 17.0, 3.3 Hz, 1H, CH₂Ph), 3.02 (s, 3H, NMe), 2.93 (dd, J = 17.0, 11.3 Hz, 1H, 1H, CH₂Ph), 2.36 (s,

3H, NMe), 1.01 (s, 9H, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ_{C} =179.6 (C=O), 139.1 (ArC), 128.5(ArC), 128.2 (ArC), 126.2 (ArC), 93.0 (CC(CH₃)₃), 62.4 (CCH₂),40.3(NCH₃), 39.1(NCH₃), 32.3, 31.9, 26.4; **HRMS** (ESI⁺): m/z calcd. for C₁₆H₂₄ON₂ [M+H]⁺261.1961, found: 261.1964.

3.2.5.25. (2S,5S)-5-benzyl-2-(tert-butyl)-1,3-dimethylimidazolidin-4-one (1i)

Following **procedure C**, Methyl iodide (90 μ L, 1.45 mmol) was added to solution of K₂CO₃ (1.34 g, 9.7 mmol) and related imidazolidinone (**1**'g) (238mg, 0.97 mmol) to give title compound (196 mg, 78%) as a pale yellow oil. R_f = 0.27 (pet. ether/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 7.30 - 7.26$ (m, 4H, 4×ArH), 7.24 – 7.18 (m, 1H, ArH), 3.55 (s, 1H, CHC(CH₃)₃), 3.23 – 3.15 (m, 2H, CHCH₂ and CH₂Ph), 2.95 (d, J = 0.5 Hz, 3H, NMe), 2.77 – 2.62 (m, 1H, CH₂Ph), 2.06 (s, 3H, NMe), 0.95 (s, 9H,

C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C} = 173.4$ (C=O), 139.0 (ArC), 129.7 (ArC), 128.3 (ArC), 126.3 (ArC), 91.5 (CC(CH₃)₃),70.3 (CCH₂), 46.6 (NMe), 40.0 (NMe), 37.4, 31.4, 26.1; HRMS (ESI⁺): m/z calcd. for C₁₆H₂₄ON₂ [M+H]⁺261.1961, found: 261.1962.

3.2.5.26. (5S)-2-(tert-butyl)-1,3-dimethyl-5-(2-(methylthio)ethyl)imidazolidin-4-one (1j)

Following **procedure** C, Methyl iodide (1.3*m*L, 20.0 mmol) was added to solution of K₂CO₃ (1.38 g, 20.0 mmol) and related imidazolidinone hydrochloride (1'i) (2.66 g, 10.0 mmol) to give title compound (1.71 g, 70%, 93:7 trans:cis) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H} = 3.70 - 3.61$ (m, 1H, CHCH_{2 (maj)}), 3.55 (s, 0.06H, CHC(CH₃)_{3 (min)}), 3.46 (s, 1H, CHC(CH₃)_{3 (maj})), 3.42 - 3.35 (m, 0.04H, CHCH_{2 (min)}), 2.94 (s, 3H, NMe

(maj)), 2.89 (s, 0.17H, NMe (min)), 2.73 – 2.60 (m, 2H, SCH₂ (maj)), 2.49 (s, 0.19H, NMe (min)), 2.34 (d, J = 0.9 Hz, 3H, NMe(maj)), 2.33 – 2.30 (s, 0.23H, SMe(min)), 2.10 (d, J = 1.1 Hz, 3H, SMe(maj)), 2.05 – 1.99 (m, 1H, CH₂CH (maj)), 1.85 (dtd, J = 14.0, 8.3, 5.6 Hz, 1H, CH₂CH (maj)), 0.94 (d, J = 1.1 Hz, 9H, C(CH₃)_{3 (maj})), 0.91 (d, J = 1.0 Hz, 0.66H, C(CH₃)_{3 (min})); ¹³C NMR (126 MHz, CDCl3) $\delta_{c} = 175.3$ (C=O (maj)), 174.0 (C=O (min)), 93.0 (CC(CH₃)_{3 (maj})), 91.7 (CC(CH₃)_{3 (min})), 66.4 (CHCH₂ (min)), 61.2 (CHCH₂ (maj)), 46.9 (NMe(min)), 40.2 (NMe(maj)), 38.9 (NMe(maj)), 37.2 (NMe(min)), 33.2(min), 31.4(maj), 31.3(min), 30.5(min), 26.5(maj), 26.4(maj), 26.3(min), 26.0(min), 15.4(maj), 15.3(min); HRMS (ESI⁺): m/z calcd. for C₁₂H₂₄N₂OS [M+H]⁺245.1682, found: 245.1682.

3.2.5.27. (2R,5S)-2-(tert-butyl)-1-(4-methoxybenzyl)-3,5-dimethylimidazolidin-4-one (1k)

Following general procedure C, 4-Methoxybenzyl chloride (2.240mL, 16 mmol) was added to

solution of K₂CO₃ (2.65 g, 19.2 mmol) and related imidazolidinone hydrochloride (**1'j**) (1.65 g, 8.0 mmol) to give title compound (976 mg, 42%) as a pale-yellow oil. ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H} = 7.30 - 7.16$ (m, 2H, Ph), 6.86 (d, J = 8.6 Hz, 2H, Ph), 4.07 (d, J = 14.2 Hz, 1H, NCH₂Ph), 3.83 (q, J = 7.3 Hz, 1H, CHCH₃), 3.80 (s, 3H,

NMe), 3.78 (d, J = 1.2 Hz, 1H, CHC(CH₃)₃), 3.49 (d, J = 14.2 Hz, 1H, NCH₂Ph), 2.99 (s, 3H, OMe), 1.21 (d, J = 7.4 Hz, 3H, CH₃CH), 0.86 (s, 9H, C(CH₃)₃).¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ = 176.3 (C=O), 158.7 (PhC), 132.0 (PhC), 129.3 (PhC), 113.8 (PhC), 89.2 (CC(CH₃)₃), 58.2 (CCH₃), 55.3(NCH₂), 54.7 (OMe), 39.1 (NMe), 32.2, 26.4 ((CH₃)₃C), 13.4; **HRMS** (ESI⁺): m/z calcd. for C₁₇H₂₆O₂N₂ [M+H]⁺ 291.2067, found: 291.2069.

3.2.5.28. (2S,5S)-1-benzoyl-2-(tert-butyl)-3,5-dimethylimidazolidin-4-one (11)¹

To solution of (2R,5S)-2-tert-butyl-3,5-dimethylimidazolidin-4-one (1'a) (2 g, 9.7 mmol, 1.0 eq.)

and Et₃N (2.7ml) in anhydrous CH₂Cl₂ (10 mL, 1 M) at 0 °C was added benzoyl chloride (1.13mL, 9.7 mmol, 1.0 eq.). The mixture was left to stir at room temperature for 12 h. The mixture diluted with 10 mL Et₂O and washed with Na₂CO₃ (2N, \times 2) and water. The organic layers were dried over MgSO₄,

concentrated and recrystallized in Et₂O/pentan to give titled product (1.91 g, 72%) as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 7.64 - 7.57$ (m, 2H, Ph), 7.53 - 7.39 (m, 3H, Ph), 5.67 (s, 1H, CHC(CH₃)₃), 4.26 (q, *J* = 6.6 Hz, 1H, CHCH₃), 3.07 (s, 3H, NMe), 1.07 (s, 9H, C(CH₃)₃), 0.98 (d, *J* = 6.6 Hz, 3H, CH₃CH); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C} = 172.4$ (C=O), 171.2 (C=O), 137.1 (PhC), 134.6 (PhC), 131.6 (PhC), 130.6 (PhC), 129.0 (PhC), 127.7 (PhC), 80.0 (CC(CH₃)₃), 57.5 (CCH₃), 40.8 (NMe), 32.2, 26.4((CH₃)₃)C), 19.5; HRMS (ESI⁺): m/z calcd. for C₁₆H₂₂O₂N₂ [M+H]⁺275.1754, found: 275.1758.Data in agreement with reported values.¹

4. General procedure for the hydroalkylation of alkynes/alleneswith imidazolidinone derivatives

4.1. Alkynes (D): A flame-dried sealed Schlenk tube was charged with imidazolidinone derivative (1a-l) (0.2 mmol, 1.0 eq) and alkyne (0.2 mmol,1.0 eq.; if it is solid) and it was evacuated and backfilled with argon. Then 1.0 mL of THF, alkyne (0.2 mmol,1.0 eq; if it is liquid) and LiHMDS (0.4 mL, 1.0 M in THF, 2.0 eq) were addedwhile maintaining an argon counterflow. The tube was sealed with a screw-cap and theresulting mixture was stirred at 80 °C for 20h. After completion of thereaction the mixture was allowed to cooldown to r.t. Then, it was quenched byadding aq. sat. NH₄Cl (5 mL) and extracted with ethyl acetate (3x 10 mL). The combined organic layers weredried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flashcolumn chromatography using hexanes/ethyl acetate eluents to afford the pure desire compound.

4.2. Allenes (E): A flame-dried sealed Schlenk tube was charged with imidazolidinone derivative(1a-l) (0.2 mmol, 1.0 eq) and alkyne (0.2 mmol,1.0 eq.; if it is solid) and it was evacuated and backfilled with argon. Then 1.0 mL of THF, alkyne (0.2 mmol,1.0 eq; if it is liquid) and LiHMDS (0.4 mL, 1.0 M in THF, 2.0 eq) were addedwhile maintaining an argon counterflow. The tube was sealed with a screw-cap and theresulting mixture was stirred at 80 °C for 20h. The workup procedure is same to the previous one.

4.3. Large scale procedure

A flame-dried sealed Schlenk tube was charged with (2R,5S)-2-(tert-butyl)-1,3,5trimethylimidazolidin-4-one (**1a**) (1.0 g, 5.5 mmol) and it was evacuated and backfilled with argon. Then 4.0 mL of THF, and 1-phenyl-1-propyne (0.64g, 5.5 mmol) and LiHMDS (11 mL, 1.0 M in THF, 11 mmol) were addedwhile maintaining an argon counterflow. The tube was sealed with a screw-cap and theresulting mixture was stirred at 80 °C for 24 h. After completion of the reaction the mixture was allowed to cool down to r.t. Then, it was quenched byadding aq. sat. NH₄Cl (50 mL) and extracted with ethyl acetate (3x 50mL). The combined organic layers weredried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flashcolumn chromatography using hexanes/ethyl acetate eluents (5:1) to afford the pure product (74%, 1.22 g).

4.4. Spectral data for the alkenylated imidazolidinone compounds

4.4.1. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-phenylprop-1-en-2-yl)imidazolidin-4-one (3a)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-Phenyl-1-propyne (24 mg, 0.2

mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (50 mg, 83%). TLC (SiO₂): $R_f = 0.19$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (dd, J = 10.4, 4.7 Hz, 2H, Ph), 7.27 – 7.18 (m, 3H, Ph), 6.60 (s, 1H, CH=C), 3.86 (s, 1H, CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.43 (s,

3H, NMe), 1.55 (d, J = 1.0 Hz, 3H, CH₃C=CH), 1.51 (s, 3H, CH₃C), 1.01 (s, 9H, (CH₃)₃C);¹³C **NMR** (126 MHz, CDCl₃) δ 175.6 (C=O), 137.8, 137.7, 129.3, 129.3, 128.1, 128.1, 126.6, 90.2(CC(CH₃)₃), 70.2 (CCH₃), 38.5 (NMe), 37.0 (NMe), 31.6, 26.7 ((CH₃)₃)C), 22.9, 15.7(CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₁₉H₂₈N₂O [M+H]⁺ 300.2202, found: 300.2274;

4.4.2. (2*R*,5*R*)-2-(*tert*-butyl)-5-((*E*)-1-(3-fluorophenyl)prop-1-en-2-yl)-1,3,5trimethylimidazolidin-4-one (3b)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-fluoro-3-(prop-1-yn-1-yl)benzene

(27 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (54 mg, 85%).TLC (SiO₂): $R_f = 0.26$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 1H, Ph), 7.02 (d, J = 7.8 Hz, 1H, Ph), 6.99 – 6.88 (m, 2H, Ph), 6.55 (s, 1H, CH=C), 3.87 (s, 1H, CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.44 (s,

3H, NMe), 1.55 (d, J = 1.0 Hz, 3H, CH₃C=CH), 1.52 (s, 3H, CH₃C), 1.01 (s, 9H, (CH₃)₃)C); ¹³C **NMR** (101 MHz, CDCl₃) δ 175.3 (C=O), 162.7 (d, J = 245.3 Hz), 139.9 (d, J = 7.7 Hz), 129.5 (d, J = 8.4 Hz), 128.4, 125.1 (d, J = 2.9 Hz), 116.0(d, J = 21.5 Hz), 113.5 (d, J = 21.1 Hz), 90.2 (CC(CH₃)₃), 70.2 (CCH₃), 38.54 (NMe), 37.1(NMe), 31.6, 26.7 ((CH₃)₃)C), 22.8, 15.7 (CH₃C=CH); ¹⁹F NMR (282 MHz, CDCl₃) δ -113.77; HRMS (ESI⁺): m/z calcd. for C₁₉H₂₇FN₂O [M+H]⁺ 318.2107, found: 318.2178.

4.4.3. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-(m-tolyl)prop-1-en-2-yl)imidazolidin-4-one (3c)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-methyl-3-(prop-1-yn-1-yl)benzene

(26 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (50 mg, 80%); TLC (SiO₂):R_f = 0.3 (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, J = 7.7 Hz, 1H, Ph), 7.08 – 7.02 (m, 3H, Ph), 6.58 (s, 1H, CH=C), 3.87 (s, 1H, CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.46 (s, 3H, NMe), 2.34 (s,

3H, MeAr), 1.56 (d, J = 0.7 Hz, 3H, CH₃C=CH), 1.54 (s, 3H, CH₃C), 1.03 (s, 9H, ((CH₃)₃)C); ¹³C NMR (101 MHz, CDCl₃) δ 137.7, 130.0, 128.0, 127.5, 126.3, 90.4 (CC(CH₃)₃), 38.5 (NMe), 31.7, 26.7 ((CH₃)₃)C), 22.8, 21.5, 15.8 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₂₀H₃₀N₂O [M+H]⁺ 314.2358, found: 314.2431.

4.4.4. (2*R*,5*R*)-2-(*tert*-butyl)-5-((*E*)-1-(3-methoxyphenyl)prop-1-en-2-yl)-1,3,5trimethylimidazolidin-4-one (3d)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-methoxy-3-(prop-1-yn-1-

yl)benzene(30 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (51 mg, 77%).TLC (SiO₂): $R_f = 0.2$ (hexanes:ethylacetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 7.8 Hz, 1H, Ph), 6.84 (d, J = 7.7 Hz, 1H, Ph), 6.78 (dt, J = 8.1, 2.4 Hz, 2H, Ph), 6.57 (s, 1H, CH=C), 3.86 (s, 1H, CHC(CH₃)₃), 3.80

(s, 3H, OMe), 3.01 (s, 3H, NMe), 2.44 (s, 3H, NMe), 1.55 (d, J = 1.1 Hz, 3H, CH₃C=CH), 1.51 (s, 3H, CH₃C), 1.01 (s, 9H, ((CH₃)₃)C); ¹³C NMR (101 MHz, CDCl₃) δ 175.6 (C=O), 159.4, 139.2, 138.0, 129.3, 129.1, 121.8, 114.8, 112.4, 90.2 (CC(CH₃)₃), 70.2 (CCH₃), 55.3 (OMe), 38.5 (NMe), 37.1 (NMe), 31.6, 26.7 ((CH₃)₃)C), 22.8, 15.7 (CH₃C=CH); HRMS (ESI⁺): m/z calcd. for C₂₀H₃₀N₂O₂ [M+H]⁺ 330.2307, found: 330.2382.

4.4.5. (2*R*,5*R*)-5-((*E*)-1-(4-bromophenyl)prop-1-en-2-yl)-2-(*tert*-butyl)-1,3,5trimethylimidazolidin-4-one (3e)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-bromo-4-(prop-1-yn-1-

yl)benzene(40 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (65 mg, 85%).TLC (SiO₂): $R_f = 0.2$ (hexanes:ethylacetate = 5:1).¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H, Ph), 7.14 – 7.09 (m, 2H, Ph), 6.51 (s, 1H, CH=C), 3.86 (s, 1H, CHC(CH₃)₃), 3.00 (s, 3H, NMe), 2.43 (s, 3H, NMe), 1.52 (d, J = 1.0 Hz, 3H, CH₃C=CH), 1.51 (s, 3H, CH₃C), 1.01 (s, 9H,

 $((CH_3)_3)C); {}^{13}C NMR (101 MHz, CDCl_3)\delta 175.3 (C=O), 138.7, 136.6, 131.3, 130.9, 128.3, 120.6, 90.2 (CC(CH_3)_3), 70.3 (CCH_3), 38.5 (NMe), 37.1 (NMe), 31.6, 26.7((CH_3)_3)C), 22.8, 15.7 (CH_3C=CH); HRMS (ESI⁺): m/z calcd. for C₁₉H₂₇BrN₂O [M+H]⁺ 378.1307, found: 378.1227.$

4.4.6. (2R,5R)-2-(tert-butyl)-5-((E)-1-(4-chlorophenyl)prop-1-en-2-yl)-1,3,5trimethylimidazolidin-4-one (3f)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-chloro-4-(prop-1-yn-1yl)benzene(30 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (57 mg, 85%).TLC (SiO₂): $R_f =$ 0.23 (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.30 - 7.26 (m, 2H, Ph), 7.20 - 7.15 (m, 2H, Ph), 6.53 (s, 1H, CH=C), 3.86 (s, 1H, CHC(CH₃)₃), 3.00 (s, 3H, NMe), 2.42 (s, 3H, NMe), 1.52 (d, J = 0.9 Hz, 3H, CH₃C=CH), 1.50 (s, 3H, CH₃C), 1.00

(s, 9H, ((CH₃)₃)C); ¹³C NMR (126 MHz, CDCl₃) δ 175.4 (C=O), 138.6, 136.1, 132.4, 130.6, 130.6, 130.5, 128.29, 128.3, 128.3, 128.2, 90.2 (CC(CH₃)₃), 70.2 (CCH₃), 38.5 (NMe), 37.1 (NMe), 31.6, 26.7 ((CH₃)₃)C), 22.8, 15.6 (CH₃C=CH); HRMS (ESI⁺): m/z calcd. for C₁₉H₂₇ClN₂O [M+H]⁺ 334.1812, found: 334.1767.

4.4.7. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(3-(trifluoromethyl)phenyl)prop-1-en-2-yl)imidazolidin-4-one (3g)

Following the general procedure D, 1a (37 mg, 0.2 mmol), 1-(prop-1-yn-1-yl)-3-

(trifluoromethyl)benzene (37 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (62 mg, 84%). TLC (SiO₂): $R_f =$ 0.24 (hexanes:ethylacetate = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.37 (m, 4H, Ph), 6.61 (s, 1H, CH=C), 3.88 (s, 1H,CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.44 (s, 3H, NMe), 1.55 (d, *J* = 1.2 Hz, 3H,CH₃C=CH), 1.52 (s,

3H,CH₃C), 1.01 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) & 175.3 (C=O), 139.8, 138.4, 132.5, 130.6 (q, J = 31.9 Hz), 128.6, 128.6, 128.1, 126.0 (q, J = 4.0 Hz), 125.3, 123.4 (q, J = 3.6 Hz), 123.2, 90.2 (CC(CH3)3)), 70.2 (CCH3), 38.6 (NMe), 37.1 (NMe), 31.7, 29.8, 26.7 ((CH₃)₃)C), 22.8, 15.6 (CH3C=CH); ¹⁹F NMR (470 MHz, CDCl₃) δ -62.68; HRMS (ESI⁺): m/z calcd. for C₂₀H₂₇F₃N₂O[M+H]⁺ 368.2075, found: 369.2147.

4.4.8. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-(naphthalen-2-yl)prop-1-en-2-yl)imidazolidin-4-one (3h)

Following the general procedure D, 1a (37 mg, 0.2 mmol),2-(prop-1-yn-1-yl)naphthalene(34

mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (63 mg, 90%).TLC (SiO₂): $R_f = 0.24$ (hexanes:ethylacetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 3H, Ar), 7.71 (s, 1H, Ar), 7.49 – 7.41 (m, 2H, Ar), 7.39 (dd, J = 8.5, 1.7 Hz, 1H, Ar), 6.76 (s, 1H,CH=C), 3.89 (s, 1H,CHC(CH₃)₃), 3.03 (s, 3H, NMe), 2.49 (s, 3H, 2000)

NMe), 1.63 (d, J = 0.9 Hz, 3H,CH₃C=CH), 1.59 (s, 3H,CH₃C), 1.03 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 175.5 (C=O), 138.1, 135.2, 133.3, 132.3, 129.6, 128.0, 128.0, 127.7, 127.6, 127.6, 126.1, 125.8, 90.3 (CC(CH₃)₃)), 70.4 (CCH3), 38.5 (NMe), 37.3 (NMe), 31.7, 26.7 ((CH₃)₃)C), 22.9, 15.8 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₂₃H₃₀N₂O [M+H]⁺ 350.2358, found: 350.2306.

4.4.9. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-(naphthalen-1-yl)prop-1-en-2-yl)imidazolidin-4-one (3i)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-(prop-1-yn-1-yl)naphthalene(34

mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (60 mg, 85%).TLC (SiO₂): $R_f = 0.23$ (hexanes:ethylacetate = 5:1).¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, J = 8.6, 4.4 Hz, 1H, Ar), 7.88 – 7.82 (m, 1H, Ar), 7.76 (d, J = 8.2 Hz, 1H, Ar), 7.51 – 7.46 (m, 2H, Ar), 7.46 – 7.42 (m, 1H, Ar), 7.32 (d, J = 7.0 Hz, 1H, Ar), 6.99 (s, 1H,CH=C),

3.88 (s, 1H,CHC(CH₃)₃), 3.02 (s, 3H, NMe), 2.56 (s, 3H, NMe), 1.64 (s, 3H,CH₃C), 1.40 (d, J = 1.0 Hz, 3H,CH₃C=CH), 1.03 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 175.5, 139.7, 135.2, 133.6, 132.0, 128.4, 127.6, 127.3, 126.8, 126.0, 125.8, 125.4, 125.3, 90.0 (CC(CH₃)₃)), 70.0 (CCH₃), 38.6 (NMe), 37.2 (NMe), 31.6, 26.7 ((CH₃)₃)C), 22.8, 15.8 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₂₃H₃₀N₂O [M+H]⁺ 350.2358, found: 350.2431.

4.4.10. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-(thiophen-2-yl)prop-1-en-2-yl)imidazolidin-4-one (3j)

Following the general procedure D, 1a (37 mg, 0.2 mmol),2-(prop-1-yn-1-yl)thiophene (25 mg,

0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (48 mg, 78%). TLC (SiO₂): $R_f = 0.24$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 4.3, 2.0 Hz, 1H, Ar), 7.03 (dd, J = 5.1, 2.8 Hz, 2H, Ar), 6.73 (s, 1H,CH=C), 3.89 (s, 1H,CHC(CH₃)₃), 3.03 (s, 3H, NMe), 2.42 (s, 3H, NMe), 1.72 (s, 3H,CH₃C=CH), 1.55 (s,

3H,CH₃C), 1.03 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 128.0, 126.9, 125.5, 124.2, 124.0, 122.8, 122.7, 116.7, 90.5 (CC(CH₃)₃)), 77.3 (CCH₃), 38.5 (NMe), 31.7 (NMe), 26.7 ((CH₃)₃)C), 25.8, 23.1, 16.6 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₁₇H₂₆N₂OS; [M+H]⁺ 306.1766, found: 306.1838.

4.4.11. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-(thiophen-3-yl)prop-1-en-2yl)imidazolidin-4-one (3k)

Following the general procedure D, 1a (37 mg, 0.2 mmol),2-(prop-1-yn-1-yl)thiophene(25 mg,

0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (50 mg, 82%).TLC (SiO₂): $R_f = 0.21$ (hexanes:ethylacetate = 5:1).¹H NMR (500 MHz, CDCl₃) δ 7.26 (dd, J = 5.2, 2.7 Hz, 1H, Ar), 7.16 (d, J = 2.9 Hz, 1H, Ar), 7.08 (dd, J = 5.0, 1.1 Hz, 1H, Ph), 6.53 (s, 1H,CH=C), 3.86 (s, 1H,CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.40 (s, 3H,

NMe), 1.62 (d, J = 0.8 Hz, 3H,CH₃C=CH), 1.49 (s, 3H,CH₃C), 1.00 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 175.6 (C=O), 138.5, 137.1, 129.2, 124.7, 123.5, 123.2, 90.3 (CC(CH₃)₃)), 70.5 (CCH3), 38.5 (NMe), 37.3 (NMe), 31.6, 26.7((CH₃)₃)C),23.0, 16.3 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₁₇H₂₆N₂OS[M+H]⁺ 306.1766, found: 306.1840.

4.4.12. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-(4-(prop-1-yn-1-yl)phenyl)prop-1-en-2-yl)imidazolidin-4-one (3l)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1,4-di(prop-1-yn-1-yl)benzene(30

mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (53 mg, 78%).TLC (SiO₂): $R_f = 0.2$ (hexanes:ethylacetate = 5:1).¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 8.2 Hz, 2H, Ph), 7.17 (d, J = 8.2 Hz, 2H, Ph), 6.55 (s, 1H,CH=C), 3.87 (s, 1H,CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.44 (s, 3H, NMe), 2.05 (s, 3H, CH₃CC), 1.56 (s, 3H), 1.53 (s,

3H), 1.02 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 175.3 (C=O), 137.9, 136.8, 131.2, 129.2, 122.3, 90.3 (CC(CH₃)₃)), 86.2 (C_{SP}), 79.8 (C_{SP}), 70.5 (CCH3), 38.5 (NMe), 31.7, 26.7 ((CH₃)₃)C), 22.9, 15.8 (CH₃C=CH), 4.5 (CH₃CC); HRMS (ESI⁺): m/z calcd. for C₂₂H₃₀N₂O [M+H]⁺ 338.2358, found: 338.2433.

4.4.13. (2*R*,5*R*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((*E*)-1-(4-(prop-1-yn-1-yl)phenyl)prop-1-en-2-yl)imidazolidin-4-one (3m)

Following the general procedure D, 1a (37 mg, 0.2 mmol),1-butyl-2,3,5,6-tetrafluoro-4-(prop-1-

yn-1-yl)benzene(50 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (65 mg, 76%).TLC (SiO₂): $R_f = 0.33$ (hexanes:ethylacetate = 5:1).¹H NMR (500 MHz, CDCl₃) δ 6.21 (s, 1H,CH=C), 3.86 (s, 1H,CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.72 (t, *J* = 7.6 Hz, 2H, CH₂Ar), 2.46 (s, 3H, NMe), 1.63 – 1.56 (m, 2H, CH₂CH₂CH₃), 1.55 (s, 3H, CH₃C=CH), 1.41 (s, 3H, CH₃C), 1.37 (dt, *J* = 14.7, 7.4 Hz, 2H, CH₂CH₃),

1.02 (s, 9H, (CH₃)₃C), 0.94 (t, J = 7.3 Hz, 3HCH₃CH₂); ¹³C NMR (126 MHz, CDCl₃) δ 174.5 (C=O), 146.0 – 145.8 (m), 144.9 (dd, J = 4.8, 2.2 Hz), 144.1 – 143.8 (m), 142.6 – 142.4 (m), 119.9 – 119.5 (m), 115.0 – 114.9 (m), 114.2 (t, J = 18.3 Hz), 90.0(CC(CH₃)₃)), 70.1 (CCH3), 38.8 (NMe), 37.2 (NMe), 31.7, 31.5, 31.0, 31.0, 31.0, 29.8, 26.7((CH₃)₃)C), 22.7, 22.60, 22.4, 16.6, 16.5, 16.5, 13.8, 1.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -140.36 (dd, J = 22.6, 12.4 Hz), - 145.89 (dd, J = 22.6, 12.5 Hz); HRMS (ESI⁺): m/z calcd. for C₂₃H₃₂F₄N₂O[M+H]⁺428.2451, found: 428.2525.

4.4.14. (2*S*,5*S*)-2-(*tert*-butyl)-1,3,5-trimethyl-5-((2*E*,4*E*)-5-phenylpenta-2,4-dien-2yl)imidazolidin-4-one (3n)

Following the general procedure D, 1a (37 mg, 0.2 mmol), (E)-pent-1-en-3-yn-1-ylbenzene(29

mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (54 mg, 82%).TLC (SiO₂): $R_f = 0.2$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H, Ph), 7.34 – 7.28 (m, 2H, Ph), 7.24 – 7.19 (m, 1H,Ph), 6.99 (dd, J = 15.5, 10.8 Hz, 1H,CH=C), 6.59 (d, J = 15.5 Hz, 1H,CH=C), 6.30 (d, J = 10.8 Hz, 1H,CH=C), 3.85 (s, 1H,CHC(CH₃)₃), 3.00 (s, 3H, NMe), 2.38 (s, 3H, NMe), 1.59 (d, J = 0.7 Hz,

3H,CH₃C=CH), 1.47 (s, 3H,CH₃C), 1.00 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 175.5 (C=O), 137.8, 137.6, 133.3, 129.0, 128.7, 127.6, 126.5, 124.9, 90.2 (CC(CH₃)₃)), 70.2 (CCH3), 38.5 (NMe), 37.3 (NMe), 31.6, 27.2, 26.7 ((CH₃)₃)C), 22.7, 14.8 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₂₁H₃₀N₂O [M+H]⁺ 326.2358, found: 326.2431.

4.4.15. (3*R*,7a*S*)-3-(*tert*-butyl)-7a-((*Z*)-1-(3-fluorophenyl)prop-1-en-2-yl)-2methylhexahydro-1H-pyrrolo[1,2-c]imidazol-1-one (30)

Following the general procedure D, 1m (40 mg, 0.2 mmol), 1-fluoro-3-(prop-1-yn-1-yl)benzene

(27 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (43 mg, 65%).TLC (SiO₂): $R_f = 0.23$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.23 (m, 1H, Ph), 6.99 (d, J = 7.7 Hz, 1H, Ph), 6.94 – 6.85 (m, 3H, Ph andCH=C), 3.59 (s, 1H,CHC(CH₃)₃), 3.27 (ddd, J = 10.9, 7.4, 5.9 Hz, 1H, CH₂N), 2.96 (s, 3H, NMe), 2.87 – 2.81 (m, 1H, CH₂N), 2.15 (dt, J = 13.1, 6.7 Hz, 1H), 2.03 (d, J = 1.3 Hz,

3H,CH₃C=CH), 2.00 – 1.93 (m, 1H), 1.82 – 1.74 (m, 1H), 1.66 – 1.57 (m, 1H), 0.97 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 174.5 (C=O), 161.8, 140.8, 129.42(d, J = 8.6 Hz), 124.9 (d, J = 3.0 Hz), 115.8 (d, J = 21.1 Hz), 112.9 (d, J = 21.2 Hz), 92.4 (CC(CH₃)₃)), 59.9 (NC (CO)), 37.5 (NMe), 36.9 (NCH₂), 31.4, 29.8, 26.4, 25.2, 14.5, 14.2, 1.1; ¹⁹F NMR (470 MHz, CDCl₃) δ -114.13 (dd, J = 17.4, 8.6 Hz).

4.4.16. (3*R*,7a*S*)-3-(*tert*-butyl)-7a-((*Z*)-1-(4-chlorophenyl)prop-1-en-2-yl)-2methylhexahydro-1H-pyrrolo[1,2-c]imidazol-1-one (3p)

Following the general **procedure D**, **1m** (40 mg, 0.2 mmol), 1-chloro-4-(prop-1-yn-1-yl)benzene (30 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (47 mg, 68%).TLC (SiO₂): $R_f = 0.22$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.26 (m, 1H, Ph), 7.25 (d, J = 2.5 Hz, 1H, Ph), 7.17 – 7.12 (m, 2H, Ph), 6.87 (s, 1H, CH=C), 3.59 (s, 1H, CHC(CH₃)₃), 3.33 – 3.24 (m, 1H, CH₂N), 2.96 (s, 3H,

NMe), 2.87 - 2.80 (m, 1H, CH₂N), 2.16 (dt, J = 13.1, 6.7 Hz, 1H), 2.00 (d, J = 1.3 Hz, 3H, CH₃C=CH), 1.95 (dd, J = 13.0, 7.0 Hz, 1H), 1.78 (dt, J = 12.4, 6.2 Hz, 1H), 1.62 (dd, J = 13.5, 6.1 Hz, 1H), 0.97 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 174.6 (C=O), 140.3, 137.0, 131.8, 130.4, 128.2, 123.9, 92.5 (CC(CH3)3)), 60.0 (NC (CO)), 37.6 (NMe), 36.9 (NCH₂), 31.4, 29.8, 26.4, 25.2, 14.5 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₂₀H₂₇ClN₂O [M+H]⁺ 346.1812, found: 347.1882.

4.4.17. (2*S*,5*S*)-5-benzyl-2-(*tert*-butyl)-1,3-dimethyl-5-((*E*)-1-phenylprop-1-en-2yl)imidazolidin-4-one (3q)

Following the general procedure D, (2R,5S)-5-benzyl-2-(tert-butyl)-1,3-dimethylimidazolidin-

4-one (52 mg, 0.2 mmol),1-Phenyl-1-propyne (24 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (64 mg, 84%).TLC (SiO₂): $R_f = 0.33$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.33 (dd, J = 10.5, 4.7 Hz, 1H, Ph), 7.27 (s, 5H, Ph), 7.26 – 7.20 (m, 4H, Ph), 6.76 (s, 1H,CH=C), 3.78 (s, 1H,CHC(CH₃)₃), 3.44 (d,J

=13.1 Hz, 1H, CH₂Ph) 3.05 (d, J = 13.1 Hz, 1H, CH₂Ph), 2.91 (s, 3H, NMe), 2.52 (s, 3H, NMe), 1.58 (d, J = 0.7 Hz, 3H, CH₃C=CH), 0.49 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 173.6 (C=O), 138.3, 137.8, 131.7, 129.5, 129.4, 128.2, 128.1, 128.1, 128.0, 126.7, 126.3, 90.0 (CC(CH₃)₃)), 74.9 (CCH₃), 39.1 (NMe), 37.6 (NMe), 37.0, 31.1, 31.0, 26.4 ((CH₃)₃)C), 15.9 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. forC₂₅H₃₂N₂O [M+Na]⁺ 376.2515, found: 376.2402.

4.4.18. (2*S*,5*S*)-5-benzyl-2-(*tert*-butyl)-5-((*E*)-1-(3-fluorophenyl)prop-1-en-2-yl)-1,3dimethylimidazolidin-4-one (3r)

Following the general procedure D, (2R,5S)-5-benzyl-2-(tert-butyl)-1,3-dimethylimidazolidin-

4-one (52 mg, 0.2 mmol),1-fluoro-3-(prop-1-yn-1-yl)benzene (27 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (68 mg, 87%).TLC (SiO₂): $R_f = 0.3$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H, Ph), 7.25 – 7.20 (m, 3H, Ph), 7.18 – 7.13 (m, 1H, Ph), 7.03 (d, *J* = 7.7 Hz, 1H, Ph), 6.99 – 6.90 (m, 2H, Ph), 6.71 (s, 1H,CH=C), 3.78 (s, 3H,CHC(CH₃)₃), 3.41 (d, *J* = 13.1 Hz, 1H, Ph), 6.71 (s, 200 MHz, 200

CH₂Ph), 3.02 (d, J = 13.1 Hz, 1H, CH₂Ph), 2.91 (s, 3H, NMe), 2.51 (s, 3H, NMe), 1.57 (d, J = 0.7 Hz, 3H, (CH₃C=CH)), 0.49 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 173.4 (C=O), 163.6, 161.7, 140.4, 140.0 (d, J = 7.8 Hz), 138.1, 131.7, 129.6 (d, J = 8.4 Hz), 128.4 (d, J = 2.1 Hz), 128.0, 126.4, 125.1 (d, J = 2.9 Hz), 116.1 (d, J = 21.4 Hz), 113.6 (d, J = 21.0 Hz), 89.9 (CC(CH₃)₃), 74.8 (CCH₃), 39.1 (NMe), 37.6 (NMe), 36.9, 31.1, 26.4((CH₃)₃C), 15.9 (CH₃C=CH); ¹⁹F NMR (471 MHz, CDCl₃) δ -113.67 (m); HRMS (ESI⁺): m/z calcd. forC₂₅H₃₁FN₂O[M+H]⁺ 394.2420, found: 394.2496.

4.4.19. (2*S*,5*S*)-5-benzyl-2-(*tert*-butyl)-5-((*E*)-1-(4-chlorophenyl)prop-1-en-2-yl)-1,3dimethylimidazolidin-4-one (3s)

Following the general procedure D, (2R,5S)-5-benzyl-2-(tert-butyl)-1,3-dimethylimidazolidin-

4-one (52 mg, 0.2 mmol),1-chloro-4-(prop-1-yn-1-yl)benzene (30 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (73 mg, 90%). TLC (SiO₂): $R_f = 0.35$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H, Ph), 7.24 – 7.21 (m, 4H, Ph), 7.20 – 7.12 (m, 3H, Ph), 6.69 (s, 1H,CH=C), 3.77 (s, 1H,CHC(CH₃)₃), 3.41 (d, J = 13.1 Hz, 1H, CH₂Ph), 3.02 (d, J = 13.2 Hz, 1H, CH₂Ph), 2.90 (s,

3H, NMe), 2.50 (s, 3H, NMe), 1.55 (d, J = 0.9 Hz, 3H, CH₃C=CH), 0.48 (s, 9H, (CH₃)₃C); ¹³C **NMR** (126 MHz, CDCl₃) δ 173.4 (C=O), 140.0, 138.1, 136.1, 132.5, 131.7, 130.6, 128.3, 128.3, 128.0, 126.4, 89.9 (CC(CH₃)₃), 74.8 (CCH₃), 39.1 (NMe), 37.6 (NMe), 36.9, 31.1, 26.4 ((CH₃)₃C), 15.8 CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. for C₂₅H₃₁FN₂O [M+H]⁺ 410.2125, found: 410.2204.

4.4.20. (2R,5S)-2-(tert-butyl)-1,3-dimethyl-5-(2-(methylthio)ethyl)-5-((E)-1-phenylprop-1en-2-yl)imidazolidin-4-one(3t)

D,

(2R,5S)-2-(tert-butyl)-1,3-dimethyl-5-(2-

procedure

general

(methylthio)ethyl)imidazolidin-4-one(52 mg, 0.2 mmol),1-Phenyl-1-propyne (24 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (63 mg, 87%).TLC (SiO₂): $R_f = 0.2$ (hexanes:ethylacetate = 5:1).¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H, Ph), 7.25 – 7.20 (m, 3H, Ph), 6.60 (s, 1H,CH=C), 3.86 (s, 1H,CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.88 (td, J = 12.3, 4.9 Hz, 1H, CH₂CH₂S), 2.54 (td, J = 12.4, 4.5 Hz, 1H, CH₂CH₂S), 2.45 (s, 3H, NMe), 2.32 - 2.18 (m, 2H, CH₂S), 2.15 (s, 3H, SMe), 1.56 (d, J = 0.8 Hz, 3H, CH₃C=CH), 1.05(s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (C=O), 137.5, 137.0, 130.1, 129.3, 128.2, 126.8, 90.4 (CC(CH₃)₃), 73.1 (CCH₃), 38.4 (NMe), 37.7 (NMe), 35.3, 31.4, 30.2, 27.3 (CH₃)₃C), 16.0, 15.6 ;**HRMS** (ESI⁺): m/z calcd. for C₂₁H₃₂N₂OS [M+H]⁺360.2235, found: 360.2309.

4.4.21. (2S,5S)-2-(tert-butyl)-5-((E)-1-(4-chlorophenyl)prop-1-en-2-yl)-1,3-dimethyl-5-(2-(methylthio)ethyl)imidazolidin-4-one (3u)

Following procedure D, (2R,5S)-2-(tert-butyl)-1,3-dimethyl-5-(2the general (methylthio)ethyl)imidazolidin-4-one (52 mg, 0.2 mmol),1-chloro-4-(prop-1yn-1-yl)benzene (49 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (70 mg, 88%).TLC (SiO₂): $R_f = 0.3$ Me (hexanes:ethylacetate = 5:1).¹**H** NMR (500 MHz, CDCl₃) δ 7.30 – 7.27 (m, 2H, Ph), 7.22 - 7.10 (m, 2H, Ph), 6.53 (s, 1H,CH=C), 3.85 (s, 3u 1H,CHC(CH₃)₃), 3.01 (s, 3H, NMe), 2.86 (td, J = 12.4, 4.8 Hz, 1H,CH₂CH₂S), 2.54 - 2.47 (m, 1H, CH_2CH_2S), 2.43 (s, 3H, NMe), 2.24 (ddd, J = 21.1, 15.1, 4.6 Hz, 2H, CH_2S), 2.14 (s, 3H, SMe), 1.53 (d, J = 0.8 Hz, 3H, CH₃C=CH), 1.04 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 174.1 (C=O), 137.9, 135.8, 132.6, 130.5, 128.8, 128.4, 90.3 (CC(CH₃)₃), 73.1(CCH₃), 38.3

(NMe), 37.7 (NMe), 35.2, 31.4, 30.2, 27.3 ((CH₃)₃C), 16.0, 15.6 (CH₃C=CH);**HRMS** (ESI⁺): m/z calcd. for C₂₁H₃₁ClN₂OS [M+H]⁺ 394.1846, found: 394.1919.

4.4.22. (2S,5S)-2-(tert-butyl)-5-isobutyl-1,3-dimethyl-5-((E)-1-phenylprop-1-en-2yl)imidazolidin-4-one (3v)

Following the general procedure D, (2S,5S)-2-(tert-butyl)-5-isobutyl-1,3-dimethylimidazolidin-

4-one(46 mg, 0.2 mmol),1-Phenyl-1-propyne (24 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (50 mg, 73%).TLC (SiO₂): $R_f = 0.33$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H, Ph), 7.24 – 7.17 (m, 3H, Ph), 6.57 (s, 1H,CH=C), 3.88 (s, 1H,CHC(CH₃)₃), 3.02 (s, 3H, NMe), 2.46 (s, 3H, NMe), 1.97 - 1.88 (m, 1H, CH(CH₃)₂), 1.84 (d, J = 5.0 Hz, 2H, CH₂CH(CH₃)₂), 1.53 (s, 3H, CH₃C=CH), 1.06 (s, 9H, (CH₃)₃C), 1.05 - 0.99 (m, 6H, (CH₃)₂CH₂); ¹³C NMR (101 MHz, CDCl₃) & 175.2 (C=O), 138.5, 138.0, 129.7, 129.3, 128.1, 126.6, 90.6 (CC(CH₃)₃), 73.8 (CCH₃), 42.6 (NMe), 38.4 (NMe), 37.7, 31.4, 29.8, 27.3, 25.6, 24.8, 24.3, 16.0 (CH₃C=CH), 1.08; HRMS (ESI⁺): m/z calcd. forC₂₂H₃₄N₂O [M+H]⁺ 342.2671, found: 342.2634.

4.4.23. (2S,5S)-2-(tert-butyl)-5-((E)-1-(4-chlorophenyl)prop-1-en-2-yl)-5-isobutyl-1,3dimethylimidazolidin-4-one(3w)

Following the general procedure D, (2S,5S)-2-(tert-butyl)-5-isobutyl-1,3-dimethylimidazolidin-

4-one(46 mg, 0.2 mmol),1-chloro-4-(prop-1-yn-1-yl)benzene (49 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (58 mg, 76%).TLC (SiO₂): $R_f = 0.28$ (hexanes:ethylacetate = 5:1).¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H, Ph), 7.16 – 7.11 (m, 2H, Ph), 6.51 (s, 1H,CH=C), 3.88 (s, 1H,CHC(CH₃)₃), 3.02 (s, 3H, NMe),

2.45 (s, 3H, NMe), 1.96 – 1.86 (m, 1H, CH(CH₃)₂), 1.85 – 1.81 (m, 2H,CH₂CH(CH₃)₂), 1.51 (s, 3H, CH₃C=CH), 1.06 (s, 9H, (CH₃)₃C), 1.02 (dd, J = 18.4, 6.6 Hz, 6H, (CH₃)₂CH); ¹³C NMR (101 MHz, CDCl₃) δ 175.0 (C=O), 139.4, 136.3, 132.4, 130.6, 128.5, 128.3, 90.6 (CC(CH₃)₃), 73.8 (CCH₃), 42.5 (NMe), 38.4 (NMe), 37.7, 31.4, 27.3 ((CH₃)₃C), 25.5, 24.7, 24.3, 15.9 (CH₃C=CH), 1.1; **HRMS** (ESI⁺): m/z calcd. forC₂₂H₃₃ClN₂O [M+H]⁺ 376.2281, found: 342.2634.

4.4.24. (2S,5S)-2-(tert-butyl)-5-((E)-1-(3-fluorophenyl)prop-1-en-2-yl)-5-isobutyl-1,3dimethylimidazolidin-4-one (3x)

Following the general procedure D, (2S,5S)-2-(tert-butyl)-5-isobutyl-1,3-dimethylimidazolidin-

4-one (46 mg, 0.2 mmol), 1-fluoro-3-(prop-1-yn-1-yl)benzene (27 mg, 0.2

mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (56 mg, 78%).TLC (SiO₂): $R_f = 0.3$ (hexanes:ethylacetate = 5:1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H, Ph), 6.98 (d, J = 7.7 Hz, 1H, Ph), 6.94 - 6.88 (m, 2H, Ph), 6.53 (s, 1H,CH=C), 3.88 (s, 1H,CHC(CH₃)₃), 3.02 (s, 3H, NMe), 2.45 (s, 3H, NMe), 1.96 – 1.86 (m, 1H, CH(CH₃)₂), 1.83 (d, J = 5.2 Hz, 2H, CH₂CH(CH₃)₂), 1.53 (s, 3H, CH₃C=CH), 1.06 (s, 9H, (CH₃)₃C), 1.02 (dd, J =23.0, 6.6 Hz, 6H, (CH₃)₂CH). ¹³C NMR (126 MHz, CDCl₃) δ 163.6 (C=O), 161.7, 129.5 (d, J = 8.5 Hz),125.1 (d, J = 2.7 Hz),116.0 (d, J = 21.4 Hz),113.5 (d, J = 21.1 Hz), 90.6 (CC(CH₃)₃), 42.4 (NMe), 38.4 (NMe), 31.4, 27.3, 25.5, 24.7, 24.3, 16.0 (CH₃C=CH), 1.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -113.97 - -115.34 (m); HRMS (ESI⁺): m/z calcd. forC₂₂H₃₃FN₂O [M+H]⁺ 360.2577, found: 360.2651.

4.4.25. (2S,5S)-2-(tert-butyl)-5-(4-methoxybenzyl)-1,3-dimethyl-5-((E)-1-phenylprop-1-en-2yl)imidazolidin-4-one (3y)

(2S,5S)-2-(tert-butyl)-5-(4-methoxybenzyl)-1,3dimethylimidazolidin-4-one (60 mg, 0.2 mmol), 1-Phenyl-1propyne (24 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (62 mg, 76%).TLC (SiO₂): $R_f = 0.23$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, J = 7.6 Hz, 2H, Ph), 7.26 – 7.21 (m, 3H, Ph), 7.17 – 7.13 (m, 2H, Ph), 6.80 – 6.77 (m, 2H, Ph), 6.75 (s, 1H, CH=C), 3.78 (s, 1H,CHC(CH₃)₃), 3.76 (s, 3H, OMe),

3.36 (d, J = 13.3 Hz, 1H, CH₂Ar), 2.99 (d, J = 13.3 Hz, 1H, CH₂Ar), 2.91 (s, 3H,NMe), 2.50 (s, 3H, NMe), 1.57 (d, J = 0.7 Hz, 3H, CH₃C=CH), 0.53 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) & 173.7 (C=O), 158.4, 139.0, 137.8, 132.6, 130.4, 129.4, 129.3, 128.1, 128.1, 126.7, 113.5, 89.9 (CC(CH₃)₃), 74.8 (CCH₃), 55.4 (OMe), 38.2 (NMe), 37.6 (NMe), 36.9, 31.1, 26.5
((CH₃)₃C), 15.9 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. forC₂₆H₃₄N₂O₂ [M+H]⁺406.2620, found: 406.2692.

4.4.26. (2*S*,5*S*)-2-(*tert*-butyl)-5-((*E*)-1-(3-fluorophenyl)prop-1-en-2-yl)-5-(4-methoxybenzyl)-1,3-dimethylimidazolidin-4-one(3z)

Following the general **procedure D**, (2S,5S)-2-(tert-butyl)-5-(4methoxybenzyl)-1,3-dimethylimidazolidin-4-one (60 mg, 0.2 mmol),1fluoro-3-(prop-1-yn-1-yl)benzene (27 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (65 mg, 78%).TLC (SiO₂):R_f= 0.2 (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz,

CDCl₃) δ 7.31 – 7.27 (m, 1H, Ph), 7.16 – 7.12 (m, 2H, Ph), 7.02 (d, J = 7.7 Hz, 1H, Ph), 6.98 – 6.90 (m, 2H, Ph), 6.80 – 6.76 (m, 2H, Ph), 6.70 (s, 1H,CH=C), 3.78 (s, 1H,CHC(CH₃)₃), 3.76 (s, 3H, OMe), 3.34 (d, J = 13.3 Hz, 1H, CH₂Ar), 2.96 (d, J = 13.4 Hz, 1H, CH₂Ar), 2.90 (s, 3H, NMe), 2.49 (s, 3H, NMe), 1.56 (d, J = 0.8 Hz, 3H, CH₃C=CH), 0.53 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 173.5 (C=O), 162.6 (d, J = 245.3 Hz), 158.5, 140.4, 140.0 (d, J = 7.7 Hz), 132.5, 130.2, 129.6 (d, J = 8.4 Hz), 128.3 (d, J = 2.1 Hz), 125.1 (d, J = 2.8 Hz), 116.1, 116.0, 113.6, 113.5, 89.9 (CC(CH₃)₃), 74.8 (CCH₃), 55.4 (OMe), 38.2 (NMe), 37.6 (NMe), 36.9, 31.1, 26.4 ((CH₃)₃C), 15.9 (CH₃C=CH); ¹⁹F NMR (471 MHz, CDCl₃) δ -113.69 (dd, J = 9.0, 6.2 Hz); HRMS (ESI⁺): m/z calcd. forC₂₆H₃₃FN₂O₂ [M+H]⁺424.2526, found: 424.2597.

4.4.27. (2*S*,5*S*)-2-(*tert*-butyl)-5-(4-methoxybenzyl)-1,3-dimethyl-5-((*E*)-1-(4-(prop-1-yn-1-yl)phenyl)prop-1-en-2-yl)imidazolidin-4-one (3aa)

Following the general **procedure D**, (2S,5S)-2-(tert-butyl)-5-(4methoxybenzyl)-1,3-dimethylimidazolidin-4-one (60 mg, 0.2 mmol), 1,4di(prop-1-yn-1-yl)benzene (31 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (65 mg, 74%). TLC (SiO₂): $R_f = 0.18$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35

(d, J = 8.2 Hz, 2H, Ph), 7.18 (s, 1H, Ph), 7.14 (dt, J = 4.9, 3.9 Hz, 3H, Ph), 6.80 – 6.75 (m, 2H, Ph), 6.69 (s, 1H,CH=C), 3.77 (s, 1H,CHC(CH₃)₃), 3.76 (s, 3H, OMe), 3.34 (d, J = 13.3 Hz, 1H, CH₂Ar), 2.90 (s, 3H, NMe), 2.98 (d, J = 13.3 Hz, 1H, CH₂Ar), 2.90 (s, 3H, NMe), 2.98 (d, J = 13.3 Hz, 1H, CH₂Ar), 2.90 (s, 3H, NMe), 2.06 (d, J = 5.0 Hz, 3H, CH₃CC), 1.57 (t, J = 2.4 Hz, 3H, CH₃C=CH), 0.53 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 173.7 (C=O), 158.5, 139.7, 137.0, 132.6, 131.3, 130.4, 129.2, 129.0, 122.3,

113.6, 90.0 (CC(CH₃)₃), 86.1 (C_{SP}), 79.8 (C_{SP}), 74.9 (CCH₃), 55.5 (OMe), 38.3 (NMe), 37.6 (NMe), 37.0, 31.1, 29.8, 26.5 ((CH₃)₃C), 16.0 (CH₃C=CH), 4.4 (MeCC); **HRMS** (ESI⁺): m/z calcd. forC₂₉H₃₆N₂O₂[M+H]⁺ 444.2777, found: 444.2853.

4.4.28. (2*S*,5*S*)-2-(*tert*-butyl)-5-(4-methoxybenzyl)-1,3-dimethyl-5-((*E*)-1-(naphthalen-1-yl)prop-1-en-2-yl)imidazolidin-4-one (3ab)

Following the general **procedure D**, (2S,5S)-2-(tert-butyl)-5-(4methoxybenzyl)-1,3-dimethylimidazolidin-4-one (60 mg, 0.2 mmol),1-(prop-1-yn-1-yl)naphthalene (33 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (69 mg, 75%).TLC (SiO₂):R_f= 0.25 (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz,

CDCl₃) δ 7.94 (dd, J = 6.5, 3.0 Hz, 1H, Ar), 7.89 – 7.83 (m, 1H, Ar), 7.77 (d, J = 8.2 Hz, 1H, Ar), 7.54 – 7.48 (m, 1H, Ar), 7.47 – 7.43 (m, 1H, Ar), 7.33 (d, J = 7.0 Hz, 1H, Ar), 7.24 – 7.19 (m, 1H, Ar), 7.10 (s, 1H,CH=C), 6.84 – 6.79 (m, 1H, Ar), 3.80 (s, 1H,CHC(CH₃)₃), 3.78 (s, 3H, OMe), 3.50 (d, J = 13.4 Hz, 1H, CH₂Ar), 3.14 (d, J = 13.4 Hz, 1H, CH₂Ar), 2.92 (s, 3H, NMe), 2.63 (s, 3H, NMe), 1.43 (d, J = 0.8 Hz, 3H, CH₃C=CH), 0.56 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 173.7 (C=O), 158.5, 140.9, 135.4, 133.7, 132.6, 132.0, 130.5, 128.4, 127.8, 127.3, 126.8, 126.1, 125.9, 125.4, 125.4, 113.6, 89.9 (CC(CH₃)₃), 74.8 (CCH₃), 55.5 (OMe), 38.3 (NMe), 37.7 (NMe), 37.2, 31.1, 29.8, 26.5((CH₃)₃C), 16.1 (CH₃C=CH); HRMS (ESI⁺): m/z calcd. forC₃₀H₃₆N₂O₂ [M+H]⁺456.2777, found: 456.2849.

4.4.29. (2*S*,5*R*)-2-(*tert*-butyl)-1,3-dimethyl-5-phenyl-5-((*E*)-1-phenylprop-1-en-2yl)imidazolidin-4-one (3ac)

Following the general **procedure D**, (2S,5S)-2-(tert-butyl)-1,3-dimethyl-5phenylimidazolidin-4-one (50 mg, 0.2 mmol),1-Phenyl-1-propyne (24 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (61 mg, 85%).TLC (SiO₂): $R_f = 0.33$ (hexanes:ethylacetate = 5:1).n¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 5.5 Hz, 2H, Ph), 7.34 (t, J

= 7.9 Hz, 2H, Ph), 7.29 – 7.23 (m, 3H, Ph), 7.17 (t, J = 7.4 Hz, 1H, Ph), 7.13 (d, J = 7.3 Hz, 2H, Ph), 5.92 (s, 1H,CH=C), 3.96 (s, 1H,CHC(CH₃)₃), 3.04 (s, 3H, NMe), 2.67 (s, 3H, NMe), 1.73 (d, J = 1.1 Hz, 3H, CH₃C=CH), 0.95 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 173.6 (C=O), 141.2, 139.6, 137.6, 133.6, 129.0, 129.0, 128.4, 128.0, 128.0, 127.5, 127.0, 126.6, 90.4

 $(CC(CH_3)_3)$, 39.2 (NMe), 39.1 (NMe), 31.6, 26.7 ((CH_3)_3C), 16.5(CH_3C=CH); **HRMS** (ESI⁺): m/z calcd. forC₂₄H₃₀N₂O [M+H]⁺ 362.2358, found: 362.2394.

4.4.30. (2*S*,5*R*)-2-(*tert*-butyl)-1,3-dimethyl-5-phenyl-5-((E)-1-(p-tolyl)prop-1-en-2yl)imidazolidin-4-one (3ad)

Following the general **procedure D**, (2S,5S)-2-(*tert*-butyl)-1,3dimethyl-5-phenylimidazolidin-4-one (50 mg, 0.2 mmol),1-methyl-4-(prop-1-yn-1-yl)benzene (26 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (61 mg, 80%). TLC (SiO₂): $R_f = 0.37$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.3 Hz, 1H, Ph), 7.33 (t, J = 7.9 Hz, 1H, Ph), 7.26 – 7.21 (m, 1H, Ph), 7.05 (dd, J = 20.6, 8.1 Hz, 1H, Ph), 5.87 (s,

1H,CH=C), 3.95 (s, 1H,CHC(CH₃)₃), 3.03 (s, 3H, NMe), 2.66 (s, 3H, NMe), 2.30 (s, 3H, MeAr), 1.72 (d, J = 1.1 Hz, 3H, , CH₃C=CH), 0.95 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 173.7 (C=O), 141.3, 138.9, 136.4, 134.7, 133.5, 129.0, 128.8, 127.5, 126.9, 90.4 (CC(CH₃)₃), 39.2 (NMe), 39.1 (NMe), 31.6, 26.8 ((CH₃)₃C), 21.2, 16.5 (CH₃C=CH), 3.1, 1.1; HRMS (ESI⁺): m/z calcd. forC₂₅H₃₂N₂O [M+H]⁺ 376.2515, found: 376.2589.

4.4.31. (2*S*,5*R*)-2-(*tert*-butyl)-1,3-dimethyl-5-((*E*)-1-(naphthalen-2-yl)prop-1-en-2-yl)-5-phenylimidazolidin-4-one(3ae)

Following the general **procedure D**, (2S,5S)-2-(*tert*-butyl)-1,3dimethyl-5-phenylimidazolidin-4-one (50 mg, 0.2 mmol),2-(prop-1-yn-1-yl)naphthalene (35 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol)to give title compound (72 mg, 88%). TLC (SiO₂): R_f= 0.24 (hexanes:ethylacetate = 5:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 7.4 Hz, 2H, Ar), 7.79 – 7.70 (m, 3H, Ar), 7.60 (s, 1H, Ar), 7.46 – 7.34 (m, 4H, Ar), 7.31 – 7.24 (m, 2H, Ar), 6.08 (s, 1H,CH=C), 3.98 (s, 1H,CHC(CH₃)₃),

3.06 (s, 3H, NMe), 2.72 (s, 3H, NMe), 1.80 (d, J = 1.2 Hz, 3H, CH₃C=CH), 0.97 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 173.6 (C=O), 141.2, 140.1, 135.2, 133.7, 133.3, 132.2, 128.5, 127.9, 127.7, 127.6, 127.5, 127.5, 127.4, 127.0, 126.1, 125.8, 90.4 (CC(CH₃)₃),

39.3 (NMe), 39.1 (NMe), 31.7, 26.8 ((CH₃)₃C), 16.6 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. forC₂₈H₃₂N₂O [M+H]⁺412.2515, found: 412.2587.

4.4.32. (2*S*,5*R*)-2-(*tert*-butyl)-1,3-dimethyl-5-((*E*)-1-(naphthalen-1-yl)prop-1-en-2-yl)-5-phenylimidazolidin-4-one(3af)

Following the general **procedure D**, (2S,5S)-2-(*tert*-butyl)-1,3dimethyl-5-phenylimidazolidin-4-one (50 mg, 0.2 mmol),1-(prop-1-yn-1-yl)naphthalene (35 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (64 mg, 78%). TLC (SiO₂): R_f= 0.34 (hexanes:ethylacetate = 5:1). ¹H **NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.3 Hz, 2H, Ar), 7.83 – 7.77 (m, 1H, Ar), 7.73 – 7.67 (m, 2H, Ar), 7.48 – 7.35 (m, 5H, Ar), 7.29 – 7.23 (m, 3H, Ar), 6.33 (s, 1H,CH=C), 3.99 (s, 1H,

CHC(CH₃)₃), 3.05 (s, 3H, NMe), 2.82 (s, 3H, NMe), 1.59 (d, J = 1.1 Hz, 3H, CH₃C=CH), 0.99 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 173.5 (C=O), 141.3, 141.3, 135.3, 133.6, 132.3, 131.9, 128.4, 128.3, 127.6, 127.2, 127.1, 126.3, 126.0, 125.8, 125.3, 125.2, 90.3 (CC(CH₃)₃), 39.4 (NMe), 39.1 (NMe), 31.7, 29.8, 26.8 ((CH₃)₃C), 16.5 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. forC₂₈H₃₂N₂O [M+H]⁺ 412.2515, found: 412.2593.

4.4.33. (2S,5R)-2-(tert-butyl)-1,3-dimethyl-5-phenyl-5-((E)-1-(4-(phenylethynyl)phenyl)prop-1-en-2-yl)imidazolidin-4-one(3ag)

Following the general **procedure D**, (2S,5S)-2-(*tert*butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one (50 mg, 0.2 mmol),1-(phenylethynyl)-4-(prop-1-yn-1yl)benzene(45 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (71 mg, 77%). TLC (SiO₂): $R_f = 0.24$ (hexanes:ethylacetate = 5:1).¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.4 Hz, 2H, Ph), 7.54 – 7.48 (m, 2H, Ph), 7.46 – 7.40 (m, 2H,

Ph), 7.38 – 7.23 (m, 6H, Ph), 7.12 (d, J = 8.2 Hz, 2H, Ph), 5.91 (s, 1H,CH=C), 3.97 (s, 1H,CHC(CH₃)₃), 3.04 (s, 3H, NMe), 2.68 (s, 3H, NMe), 1.74 (d, J = 1.1 Hz, 3H, CH₃C=CH), 0.95 (s, 9H, (CH₃)₃C); ¹³C NMR (101 MHz, CDCl₃) δ 173.5 (C=O), 141.1, 140.6, 137.7, 133.1,

131.7, 131.3, 129.0, 128.4, 128.4, 128.3, 127.6, 127.1, 123.4, 121.5, 90.4 (CC(CH₃)₃), 89.8 (C_{SP}), 89.5 (C_{SP}), 39.3 (NMe), 39.1 (NMe), 31.6, 29.8, 26.7 ((CH₃)₃C), 16.6 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. forC₃₂H₃₄N₂O [M+H]⁺ 462.2671, found: 462.2647.

4.4.34.(2*S*,5*R*)-2-(*tert*-butyl)-5-((*E*)-1-(4-butyl-2,3,5,6-tetrafluorophenyl)prop-1-en-2-yl)-1,3dimethyl-5-phenylimidazolidin-4-one(3ah)

Following the general **procedure D**, (2S,5S)-2-(*tert*-butyl)-1,3dimethyl-5-phenylimidazolidin-4-one (50 mg, 0.2 mmol), 1butyl-2,3,5,6-tetrafluoro-4-(prop-1-yn-1-yl)benzene (50 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (80 mg, 82%). TLC (SiO₂): $R_f = 0.24$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.3 Hz, 2H, Ph), 7.35 (t, J = 7.9 Hz, 2H, Ph), 7.26 (d, J =14.6 Hz, 1H , Ph), 5.57 (s, 1H, CH=C), 3.96 (s, 1H, CHC(CH₃)₃),

3.03 (s, 3H, NMe), 2.68 (s, 5H, NMe and CH₂Ar), 2.71 – 2.65 (m, 2H, CH₂CH₂CH₃), 1.56 (d, J = 1.3 Hz, 3H, CH₃C=CH), 1.34 (dq, J = 14.7, 7.3 Hz, 2H, CH₂CH₃), 0.97 (s, 9H, (CH₃)₃C), 0.92 (t, J = 7.3 Hz, 3H CH₃CH₂); ¹³C NMR (126 MHz, CDCl₃) δ 172.9 (C=O), 146.7, 140.4, 128.4 (d, J = 2.6 Hz), 127.6, 127.3, 119.1 (d, J = 2.2 Hz), 90.0 (CHC(CH₃)₃), 39.1 (NMe), 38.9 (NMe), 31.7, 31.4, 26.8 ((CH₃)₃C), 22.6, 22.4, 17.1 ((CH₃)₃C), 13.8, 1.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -140.57 (dd, J = 22.7, 12.5 Hz), -145.98 (dd, J = 22.7, 12.6 Hz); HRMS (ESI⁺): m/z calcd. forC₂₈H₃₄F₄N₂O [M+H]⁺490.2607, found: 490.2683.

4.4.35. (2*S*,5*R*)-5-((*E*)-1-(benzo[d][1,3]dioxol-5-yl)prop-1-en-2-yl)-2-(*tert*-butyl)-1,3dimethyl-5-phenylimidazolidin-4-one(3ai)

Following the general **procedure D**, (2S,5S)-2-(*tert*-butyl)-1,3dimethyl-5-phenylimidazolidin-4-one (50 mg, 0.2 mmol),5-(prop-1-yn-1-yl)benzo[d][1,3]dioxole (33 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (66 mg, 80%). TLC (SiO₂): $R_f = 0.2$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 2H, Ph), 7.35 (t, J = 7.9 Hz, 2H, Ph), 7.29 – 7.25 (m, 1H, Ph), 6.74 (d, J = 8.0 Hz, 1H, Ph), 6.68 (d, J = 1.5 Hz, 1H), Ph, 6.60 (dd, J = 8.1, 1.4 Hz, 1H, Ph), 5.93 (s, 2H, OCH₂O), 5.83 (s, 1H, CH=C), 3.97 (s, 1H,CHC(CH₃)₃), 3.05 (s, 3H, NMe), 2.68 (s, 3H, NMe), 1.73 (d, J = 1.0 Hz, 3H, CH₃C=CH), 0.97 (s, 9H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 173.6 (C=O), 147.4, 146.2, 141.21, 138.6, 133.2, 131.6, 128.4, 127.5, 127.0, 122.8, 109.3, 108.0, 101.0, 90.4 (CH(CH₃)₃), 39.2 (NMe), 39.1 (NMe), 31.6, 26.7 ((CH₃)₃C), 16.6 (CH₃C=CH); **HRMS** (ESI⁺): m/z calcd. forC₂₅H₃₀N₂O₃ [M+H]⁺406.2256, found: 406.2329.

4.4.36. (2S,5S)-2-(tert-butyl)-5-((E)-1,3-diphenylprop-1-en-2-yl)-1,3,5trimethylimidazolidin-4-one (3aj)

Following the general procedure D, (2S,5S)-2-(tert-butyl)-1,3,5-(37 trimethylimidazolidin-4-one mg, 0.2 mmol), 1,3diphenylpropa-1,2-diene (39 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (56 mg, 74%). TLC (SiO₂): $R_f = 0.25$ (hexanes:ethylacetate = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.21 (m, 6H, Ph), 7.20 – 7.10 (m, 4H, Ph), 6.81 (s, 1H, CH=C), 3.88 (s, 1H, CHC(CH₃)₃), 3.84 (d, J =

16.3 Hz, 1H, CH₂Ph), 3.09 (d, J = 16.3 Hz, 1H, CH₂Ph), 2.51 (s, 3H, MeN-CO), 2.46 (s, 3H, Me-N), 1.52 (s, 3H, MeC=CH), 0.96 (s, 1H, (CH₃)₃C); ¹³C NMR (126 MHz, CDCl₃) δ 174.2 (C=O), 139.5 (Ph), 138.2 (Ph), 137.1 (Ph), 132.8 (Ph), 128.6 (Ph, 2C), 128.3 (Ph), 128.0 (Ph), 127.1 (Ph), 126.0 (Ph), 89.6 ((CH₃)₃C), 70.0 (MeCNMe(CO)), 38.7 (NMe), 36.8 (NMe), 35.5, 31.4, 29.8 (PhCH₂), 26.7 ((CH₃)₃C), 23.4.

4.4.37. (2S,5R)-2-(tert-butyl)-1,3-dimethyl-5-phenyl-5-((Z)-4-phenylbut-2-en-2yl)imidazolidin-4-one (3ak)

Following the general procedure D, (2S,5S)-2-(tert-butyl)-1,3dimethyl-5-phenylimidazolidin-4-one (50 mg, 0.2 mmol), buta-1,2-dien-1-ylbenzene (26 mg, 0.2 mmol) and LiHMDS (0.4 mL, 1.0 M in THF, 0.4 mmol) to give title compound (56 mg, 71%). TLC (SiO₂): $R_f = 0.28$ (hexanes:ethylacetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.5 Hz, 2H, Ph), 7.39 – 7.09 (m, 8H, Ph), 5.22 (qd, J = 6.9, 1.2 Hz, 1H, C=C<u>H</u>), 3.81 (s, 1H, C<u>H</u>C(CH₃)₃), 3.43 (d, J = 16.3 Hz, 1H, PhCH₂), 3.12 (d, J = 16.3 Hz, 1H, PhCH₂), 2.84 (s, 3H, CH₃N-CO), 2.59 (s, 3H, <u>CH₃-N</u>), 1.48 (dd, J = 6.9, 0.5 Hz, 3H, <u>CH₃C=CH</u>), 0.89 (s, 5H).; ¹³C NMR (101 MHz, CDCl₃) δ 173.0 (C=O), 142.1 (Ph), 139.7 (<u>C</u>=CH), 139.1 (Ph), 131.4 (Ph), 128.7 (Ph), 128.5 (Ph), 128.1 (Ph), 127.3 (Ph), 126.7 (Ph), 125.8 (Ph), 90.0 ((CH₃)₃C), 76.7 (MeCNMe(CO)), 39.8 (NMe), 39.1 (NMe), 35.6, 31.6, 26.8 ((<u>CH₃)₃C</u>), 14.8 (C=C<u>CH₃</u>).

5. General procedure for the hydrolysis of imidazolidinone derivatives to synthesis amino acids

Procedure F: Based on a known and available procedure in the literature², a sealed microwave tube was charged with synthesized alpha-alkenylated imidazolidinone derivative (**3**) (1.0 eq), HCl (6.0 M, aq.)/EtOH (10:1, 0.2 M) and heated in a microwave reactor at 160 °C for 3 h. The cooled reaction mixture was diluted with water and washed with dichlorometane (3 times) and then concentrated under vacuum. Furthre hydrolyze did under basic conditions using NaOH (10% w/w, aq.)/DMSO (5:1) at 100 °C for 6h. After acidifying and extraction with dichlorometane a crude product was obtained. To purified the resulting crude product an ion-exchange chromatography (Dowex®50W8-200, 100 –200 mesh) was used, and cholumn was washed with deionised water and the product was eluted with NH₃ (3.5% w/w, aq.). The aqueous fractions which are ninhydrin-positive were combined and concentrated under vacuum. The obtained solid was dissolved in methanol, filtered and concentrated in vacuo. More drying under high vacuum afforded the pure amino acid derivative.

5.1. (S,E)-2,3-dimethyl-2-(methylamino)-4-phenylbut-3-enoic acid (4a)

Following the general **procedure F**, 0.2 mmol of imidazolidinone was used. (32 mg, 74%). ¹**H NMR** (400 MHz, MeOD) δ 7.37-7.19 (m, 5H, ArH), 6.62 (s, 1H, C<u>H</u>=C), 2.44 (s, 3H, NMe), 1.73 (d, *J* = 3.0 Hz, 3H CH=C<u>Me</u>), 1.59 (s, 3H, CMe); ¹³C NMR (126 MHz, MeOD) δ 171.9 (C=O), 137.2 (Ar), 135.7 (Ar), 130.3 (Ar), 130.1 (Ar), 129.5 (Ar), 129.0 (Ar), 70.7 (<u>C</u>-C=C), 27.0 (NMe), 18.4 (C=C<u>Me</u>), 14.48 (Me).; **HRMS** (ESI⁺): m/z calcd. For C₁₃H₁₇NO₂ [M+H]⁺ 220.1259, found: 220.1295.

5.2. (R,E)-3-methyl-2-(methylamino)-2,4-diphenylbut-3-enoic acid (4b)

Following the general procedure F, 0.2 mmol of imidazolidinone was used. (43 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.71 (m, 4H, ArH), 7.46-7.34 (m, 6H, ArH), 6.63 (s, 1H, CH=C), 2.84 (s, 3H, NMe), 1.74 (d, J = 1.5Hz, 3H. $CH_3C=C$); HRMS (ESI^{+}) : m/z calcd. forC15H20N2O2 [M+H]⁺260.1525, found: 260.1541.

5.3. (S,E)-2-benzyl-3-methyl-2-(methylamino)-4-phenylbut-3-enoic acid (4c)

Following the general procedure F, 0.2 mmol of imidazolidinone was used. (42 mg, 72%). ¹H NMR (400 MHz, MeOD) δ 7.49 – 7.03 (m, 10H, ArH), 6.64 (s, 1H, C=C<u>H</u>), 3.34 (d, J = 14.0 Hz, 1H, C<u>H₂</u>Ph), 3.23 (d, J = 13.2 Hz, 1H, CH₂Ph), 2.33 (s, 3H, NMe), 1.28 (s, 3H, C=CCH₃); HRMS (ESI⁺): m/z calcd. For C₁₉H₂₁NO₂ [M+H]⁺296.1572, found: 296.1601.

5.4. (S,E)-2-(1-phenylprop-1-en-2-yl)pyrrolidine-2-carboxylic acid (4d)

Following the general procedure F, 0.2 mmol of imidazolidinone was used. (35 mg, 75%). ¹H NMR (400 MHz, MeOD) δ 7.34-7.23 (m, 5H, ArH), 6.62 (s, 1H, CH=C), 3.48-3.46 (m, 1H, CH₂N), 3.13-3.11 (m, 1H, <u>CH</u>₂N), 2.20-2.17 (m, 2H, C<u>CH</u>₂CH₂CH₂N), 1.89 (d, J = 4.0 Hz, 3H, <u>CH</u>₃C=C), 0.90-0.82 (m, 2H, CCH₂<u>CH</u>₂CH₂N); **HRMS** (ESI⁺): m/z calcd.

For C₁₄H₁₈NO₂ [M+H]⁺ 232.1259, found: 232.1332.

5.5. (S,E)-3-methyl-2-(methylamino)-2-(2-(methylthio)ethyl)-4-phenylbut-3-enoic acid (4t)

Following the general procedure F, 0.2 mmol of imidazolidinone was used. (35 mg, 63%). ¹H NMR (400 MHz, MeOD) & 7.36 - 7.29 (m, 2H, Ph), 7.29 – 7.19 (m, 3H, Ph), 6.63 (s, 1H, CH=C), 4.39 (ddd, J= 9.0, 8.2, 3.3 Hz, 1H, MeS-CH₂), 4.23 (td, J = 9.1, 6.5 Hz, 1H, MeS-CH₂), 2.56 (ddd, J = 13.3, 6.5, 3.3 Hz, 1H, MeS-CH₂-CH₂), 2.39 – 2.31 (m, 1H, MeS-CH₂-CH₂), 2.37 (s, 3H, NCH₃), 1.90 (d, J = 1.3 Hz, 3H, SCH₃), 1.39

- 1.21 (m, 3H, C=C<u>CH₃</u>); **HRMS** (ESI⁺): m/z calcd. For C₁₅H₂₁NO₂S [M+H]⁺ 280.1293, found: 280.1312.

6. Deuterium labeling experiments

6.1. Synthesis of 2-(tert-butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one-5-d (1d-d1)

In order to synthesize **1d-d1**, a sealed Schlenk tube was charged with **1d** (0.5 mmol, 123 mg) and dry THF (1.0 mL). The reaction mixture was cold down to -78 °C using a mixture of acetone and dry ice. Then n-BuLi (2.5 M in hexanes, 0.2 mL), was added to the reaction mixture via syringe under Ar flow. The tube was sealed with a screw-cap and the resulting mixture was stirred at -78 °C for 10 min. Then D_2O (0.25 mL, excess) was added to the reaction mixture and cooling bath removed to increase the temperature to room temperature, under this conditions reaction mixture was stirred for 15 minutes. Afterward, the mixture was diluted dry THF (5 mL) and organic layer was separated, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting product is containing **1D-d₁** with >99% deuterium labeling.

6.2. Reaction of 2-(tert-butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one-5-d (1d-d₁) with 1-phenyl-1-propyneunder optimized conditions

Same to general **procedure D**: A flame-dried sealed Schlenk tube was charged with imidazolidinone derivative (**1d-d**₁) (0.2 mmol, 50 mg) and it was evacuated and backfilled with argon. Then 1.0 mL of THF, 1-phenyl-1-propyne**2a** (0.2 mmol, 27 μ L) and LiHMDS (0.4 mL, 1.0 M in THF) were added while maintaining an argon counter flow. The tube was sealed with a screw-cap and the resulting mixture was stirred at 80 °C for 20h. After completion of the reaction the mixture was allowed to cool down to r.t. Then, it was quenched by adding aq. sat. NH₄Cl (5 mL) and extracted with ethyl acetate (3x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography using hexanes/ethyl acetate eluents to afford the pure **3a-d**.

6.3. Reaction of 2-(tert-butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one-5-d (1d-d₁) with (prop-1-yn-1-yl-d3)benzene under optimized conditions

Same to the general **procedure D**: A flame-dried sealed Schlenk tube was charged with imidazolidinone derivative (**1d-d**₁) (0.2 mmol, 50 mg) and it was evacuated and backfilled with argon. Then 1.0 mL of THF, (prop-1-yn-1-yl-d3)benzene**2a-d**₃ (0.2 mmol, 27 μ L) and LiHMDS (0.4 mL, 1.0 M in THF) were added while maintaining an argon counter flow. The tube was sealed with a screw-cap and the resulting mixture was stirred at 80 °C for 20h. After completion of the reaction the mixture was allowed to cool down to r.t. In this step the quenching process was done using both D₂O and H₂O in order to find more information about the reaction mechanism. For each case, the product was extracted with ethyl acetate (3x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure.

The crude product was purified by flash column chromatography using hexanes/ethyl acetate eluents to afford the pure **3a-d**.

6.4. Reaction of 2-(tert-butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one-5-d (1d-d₁) with (prop-1-yn-1-yl-d3)benzene under optimized conditions

Same to the general **procedure D**: A flame-dried sealed Schlenk tube was charged with imidazolidinone derivative (1d) (0.2 mmol, 50 mg) and it was evacuated and backfilled with argon. Then 1.0 mL of THF, 1-phenyl-1-propyne2a (0.2 mmol, 27 μ L)and LiHMDS (0.4 mL, 1.0 M in THF) were added while maintaining an argon counter flow. The tube was sealed with a screw-cap and the resulting mixture was stirred at 80 °C for 20h. The workup procedure is according to general procedure **D**. The crude product was purified by flash column chromatography using hexanes/ethyl acetate eluents to afford the pure 3a-d.

7. In situ IR (React IR) experiments

A three-neck Schlenk tube equipped with a stirrer bar, IR probe and argon inlet and a neck for the addition of reagents was used for React IR experiment.

1. First, 4.5 mL of anhydrous toluene was added to the IR reaction vessel and it was heated to 80 °C in order to have a background spectrum from tolueneat this temperature prior the in situ IR analysis.

2. Substrate1a(1.0 mmol) was added to the reaction tube and IR of starting material was recorded.

3. Then, LiHMDS solution in toluene (1M, 1.0 mmol, 1.0 mL) was added to the reaction mixture and it was stirred for 5 minutes to observe the peaks related to the enolate.

4. Afterward, a solution of 2a (1.0 mmol) was injected to the reaction tube.

5. Another equivalent of LiHMDS solution in toluene (1M, 1.0 mmol, 1.0 mL) was added

6. Finally, the reaction was quenched after 8h using methanol.

8. Computational details

All the DFT calculations have been carried out with the Gaussian 09 package of program⁶ and visualization of computed structures were generated usingCYLView.⁷Full geometryoptimization and Gibbs free energycorrection were performed with the B3LYP-D3(BJ)/6-31G(d) level^{8,9,10} in the gas phase (T=298 K, P=1 bar).⁸ The correctness of the optimized transition states (TS) and stable structures have been verified by intrinsic reaction coordinate (IRC) and the analytical frequency calculations respectively. Single point energies and solvation energy corrections were calculated with the M06-2X/6- 311+G(d,p) level¹¹ and using the SMD model¹² (with THF as the solvent) based on the gas-phaseoptimized structures respectively. In this work, the free energy for each was calculated using the formula: $G = E_{M06}^{SP} + G_{B3LYP}^{Corre} + \Delta G^{1atm \rightarrow 1M}$; where $\Delta G^{1atm \rightarrow 1M} = 1.89$ kcal/mol is the free-energy change for compression of 1 mol of an ideal gas from 1 atm to the 1 M solution-phase standard state. In the case of THF as a solvent and ligand, the free energy of the dimethyl ether (as a model of THF) is described as $G = E_{M06}^{SP} + G_{B3LYP}^{Corre} + \Delta G^{1atm \rightarrow 1M} + RT ln (12.2);$ where the last term corresponds to the free energy required to change the standard state of THF from 12.2 to 1 M.

Based on previous reports which revealed that LiHMDS exist as tri- and tetrasolvated monomer (LiHMDS .3THF) at high concentration of THF,LiHMDS .3DME was used as a model of LiHMDS.¹³

⁶Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
⁷CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (<u>http://www.cylview.org</u>)
⁸Becke, D. J. *Chem. Phys.*1993, 98, 5648-5652.

⁹Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B: Condens. Matter Mater. Phys.***1988**, 37, 785-789.

¹⁰ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.***2010**, 132, 154104-154119.

¹¹Zhao, Y.; Truhlar, D. G. Theor. *Chem. Acc.***2008**, 120, 215-241.

¹²Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B**2009**, 113, 6378-6396.

¹³McNeil, A. J.;CollumD. B. J. Am. Chem. Soc.**2005**, 127, 15, 5655–5661.

To compare the transition states, 4-Imidazolidinone X, 1-Phenyl-1-propyne, and 3×LiHMDS .3DME were selected as starting materials energy reference, for instance $\Delta\Delta G^{\dagger}$ for TS-Di-All. DME was obtained from following equations:

 $\Delta\Delta G^{\ddagger} = 30.8 \text{ kcal/mol} - 22.2 \text{ kcal/mol} = 8.6 \text{ kcal/mol}$

Scheme S1. Relative Gibbs free energies (in kcal.mol⁻¹) and optimized structures of transition states of nucleophilic attack of 4-imidazolidinone to the alkyne.

9. HPLCdata

9.1. Starting materials

Sample ID:	pa.Ala-Me-rac
------------	---------------

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Acquired: 18.03.2019 09:45:01 (GMT +01:00)

Vial: P1-E1

Peak Nullber	Recención IIme	Alea Percent	Alea
1	8,328	50,289	741721063
2	8,925	49,711	733205326
Totals			
		100,000	1474926389

Sample ID: pa.Ala-Me-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Acquired:	18.03.2019 10:01:28 (GMT +01:00)	X
Vial:	P1-E2	Me N N-Me
Injection Volum	e: 2μL	OMe

2: 236,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	8,308	100,000	646934360
2	8,825	0,000	6
3	8,825	0,000	6
Totals			
		100,000	646934372

Sample ID: pa.Proline-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90 10, 0,5ml, 22°C.met

Vial: P1-B3

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,362	49,767	437346431
2	13,182	50,233	441433240
Totals			
		100,000	878779671

Sample ID: pa.Proline-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-B7

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,350	98,824	1184281099
2	13,275	1,176	14096872
Totals			
		100,000	1198377971

Sample ID: pa.Leucin-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_IPA 95_5, 0,5ml, 22°C.met

Vial: P1-B4

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,185	49,862	501855085
2	7,358	50,138	504623217
Totals			
		100,000	1006478302

Sample ID: pa.Leucin-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_IPA 95_5, 0,5ml, 22°C.met

Vial: P1-B8

Injection Volume: $5\mu L$

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,203	0,002	43209
2	7,280	99,998	2251390383
Totals			
		100,000	2251433592

Sample ID: pa.Thyrosin-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

4: 228,0 nm, 4,0 nm Results Peak Number	Retention Time	Area Percent	Area
1 2	10,665 22,342	50,584 49,416	1254515664 1225570791
Totals		100,000	2480086455

Sample ID: pa.Thyrosin-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

4: 228,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	10,650	99,879	1464923562
2	22,588	0,121	1777002
Totals			
		100,000	1466700564

Sample ID: pa.PhGly-Me-rac

Method:C:\Enterprise\Methods\HPLC2\4_Chiralcel OD-3\System2, OD-3.Hep_EtOH 85_15, 0,5ml, 22°C.met

Vial: P1-A1

4: 228,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,307	49,767	1490724081
2	8,553	50,233	1504697018
Totals			
		100,000	2995421099

Sample ID: pa.PhGly-Me-ee-2

Method:C:\Enterprise\Methods\HPLC2\4_Chiralcel OD-3\System2, OD-3.Hep_EtOH 90_10, 0,5mL, 22°C.met

Vial: P1-C5

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,345	12,884	1121684749
2	10,945	87,116	7584199480
Totals			
		100,000	8705884229

9.2. Products

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Acquired: 12.03.2019 12:18:11 (GMT +01:00)

Vial: P1-B5

3: 248,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,897	50,008	2146675913
2	7,272	49,992	2146018761
Totals			
		100,000	4292694674

Sample ID: pa.P2-R33-ee

C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Method: Hep_EtOH 90_10, 0,5ml, 22°C.met

Acquired:	22.03.2019 09:18:11 (GMT +01:00)	t-Bu
Vial:	P1-F7	MeN
Injection Volu	me: 2μL	Mê CH ₃

1: 212,0 nm, 4,0 nm Results	Detertion Mime	Awaa Dawgaat	D 1200
Peak Nulliber	Recención IIme	Alea Percent	Alea
1	5,745	0,441	4381376
2	7,137	99,559	989995740
Totals			
		100,000	994377116

Sample ID: pa.3b-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C1

Injection Volume: 5µL

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,382	50,312	549001478
2	6,987	49,688	542196330
Totals			
		100.000	1091197808

0.4.0

. .

Sample ID: pa.3b-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C5

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,383	0,409	8994012
2	6,977	99,591	2191676053
Totals			
		100,000	2200670065

Sample ID: pa.3d-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C2

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,930	49,827	364064189
2	8,048	50,173	366587256
Totals			
		100,000	730651445

Sample ID: pa.3d-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-B2

Spectrum Max Plot Results			
Peak Number	Retention Time	Area Percent	Area
1	6,770	0,940	12090422
2	8,052	99,060	1274226686
Totals			
		100,000	1286317108

Sample ID: pa.3e-ee

Vial: P1-C5

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,037	0,676	21529135
2	6,907	99,324	3163140687
Totals			
		100,000	3184669822

Sample ID: pa.3e-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C1

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,995	49,081	2349734725
2	6,877	50,919	2437697857
Totals			
		100,000	4787432582
Sample ID: pa.3g-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-B2

8: 278,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,028	50,081	161092245
2	5,700	49,919	160570386
Totals			
		100,000	321662631

Sample ID: pa.3g-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-C2

8: 278,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,027	3,972	41821594
2	5,692	96,028	1010897778
Totals			
		100,000	1052719372

Sample ID: pa.3j-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C4

8: 278,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,032	49,826	686602720
2	9,165	50,174	691409361
Totals			
		100,000	1378012081

Sample ID: pa.3j-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-B4

8: 278,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1 2	7,040 9,168	0,533 99,467	3086642 576472721
Totals		100,000	579559363

Sample ID: pa.3m-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C3

3: 250,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	4,330	50,794	256276087
2	4,573	49,206	248260007
Totals			
		100,000	504536094

Sample ID: pa.3m-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-B3

3: 250,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	4,333	3,286	31381691
2	4,575	96,714	923567485
	-		
Totals			
		100,000	954949176

Sample ID: pa.3o-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_IPA, 90_10, 0.5ml, 22°C.met

Vial: P1-B3

3: 250,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,047	50,003	167614270
2	6,333	49,997	167595499
Totals			
		100,000	335209769

Sample ID: pa.30-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_IPA, 90_10, 0.5ml, 22°C.met

Vial: P1-B7

3: 250,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,047	96,913	607049340
2	6,333	3,087	19335381
Totals			
		100,000	626384721

Sample ID: pa.3p-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_IPA, 90_10, 0.5ml, 22°C.met

Vial: P1-B5

3: 250,0 nm, 4,0 nm Results Peak Number	Retention Time	Area Percent	Area
I Can Mandel	Recención iime	nied rerectile	111 Ca
1	7,293	49,922	305701803
2	9,493	50,078	306661972
Totals			
		100,000	612363775

Sample ID: pa.3p-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_IPA, 90_10, 0.5ml, 22°C.met

Vial: P1-B6

3: 250,0 nm, 4,0 nm Results Deak Number	Patention Time	Area Dercent	Area
FEAR MUNDEL	Recencton IIme	ALEA FEICEIL	ALEa
1	7,293	97,190	501941867
2	9,500	2,810	14510036
Totals			
		100,000	516451903

Sample ID: pa.3r-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Vial: P1-C1

6: 218,0 nm, 4,0 nm Results Peak Number	Retention Time	Area Percent	Area
1	9,357 9,893	46,923 53,077	4294004615 4857108158
Totals		100,000	9151112773

Sample ID: pa.3r-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Vial: P1-C5

6: 218,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	9,382	0,625	25076355
2	9,885	99,375	3985323656
Totals			
		100,000	4010400011

Sample ID: P2-89-99-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Acquired: 02.07.2019 08:04:46 (GMT +02:00)

Vial: P1-E1

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,965	55,660	4485511222
2	8,575	44,340	3573273203
Totals			
		100,000	8058784425

Sample ID: pa.3r-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Vial: P1-C5

6: 218,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	9,382	0,625	25076355
2	9,885	99,375	3985323656
Totals			
		100,000	4010400011

Sample ID: P2-89-99-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Acquired: 02.07.2019 08:04:46 (GMT +02:00)

Vial: P1-E1

1: 212,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,965	55,660	4485511222
2	8,575	44,340	3573273203
Totals			
		100,000	8058784425

Sample ID: P2-R-99-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Acquired: 02.07.2019 08:38:47 (GMT +02:00)

Vial: P1-E1

3: 254,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	8,068	0,344	18904356
2	8,623	99,656	5474498181
Totals			
		100,000	5493402537

Sample ID: pa.3t-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-B5

10: 267,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,957	50,548	59748079
2	14,855	49,452	58452878
Totals			
		100,000	118200957

Sample ID: pa.3t-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-B6

10: 267,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,950	5,223	30464885
2	14,793	94,777	552786889
Totals			
		100,000	583251774

Sample ID: pa.3u-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-B1

4: 228,0 nm, 4,0 nm Results Peak Number	Retention Time	Area Percent	Area
1	10,033 18,498	50,841 49,159	862581093 834053077
Totals		100,000	1696634170

Sample ID: pa.3u-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-B2 Injection Volume: 5µL $400 \frac{1}{9a.3u-ee}$ $400 \frac{1}{9a.3u-ee}$ $400 \frac{1}{9a.3u-ee}$

4: 228,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	10,045	5,172	90098669
2	18,395	94,828	1652027550
Totals			
		100,000	1742126219

Sample ID: pa.3v-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Vial: P1-C2

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,562	49,850	125188286
2	5,940	50,150	125943746
Totals			
		100,000	251132032

Sample ID: pa.3v-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Vial: P1-C6

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	5,558	0,377	2725237
2	5,932	99,623	719535563
Totals			
		100,000	722260800

Sample ID: pa.3w-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Vial: P1-C3

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,218	49,814	493919674
2	6,590	50,186	497616987
Totals			
		100,000	991536661

Sample ID: pa.3w-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 95_5,0,5ml, 22°C.met

Vial: P1-C7

5: 240,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,212	0,956	402768
2	6,602	99,044	41730278
Totals			
		100,000	42133046

Sample ID: pa.3y-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C4

4: 228,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,657	50,328	826165711
2	11,378	49,672	815397788
Totals			
		100,000	1641563499

Sample ID: pa.3y-ee

4: 228,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,667	98,931	6029611299
2	10,902	1,069	65147713
Totals			
		100,000	6094759012

Sample ID: pa.3z-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C4

6: 218,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,728	49,280	3143849447
2	11,423	50,720	3235760276
Totals			
		100,000	6379609723

Sample ID: pa.3z-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

t-Bu Vial: P1-C8 MeN NMe 0″ Injection Volume: 5µL T CH₃ 6: 218,0 nm, 4,0 nm pa.3z-ee 3000 3000 2000 2000 MAU mAU 1000 1000 0 0 0 2 4 6 8 10 12 14 16 Minutes

6: 218,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,722	99,787	4745665393
2	11,463	0,213	10117139
Totals			
		100,000	4755782532

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met t-Bu

Vial: P1-C3

8: 278,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,828	49,936	1390894722
2	10,377	50,064	1394442401
Totals			
		100,000	2785337123

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met ______t-Bu

MeN

Ó

NMe

8: 278,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	7,810	99,910	5982455469
2	10,422	0,090	5416473
Totals			
		100,000	5987871942

Vial:

P1-C7

Sample ID: pa.3ad-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-C1

3: 250,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	6,247	50,659	547914460
2	7,542	49,341	533659026
Totals			
		100,000	1081573486

Sample ID: pa.3ad-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 85_15 0,5ml, 22°C.met

Vial: P1-B1

3: 250,0 nm, 4,0 nm Results Peak Number	Petention Time	Area Dercent	Area
Feak Mulliber	Recenction Time	Alea Feicent	ALEa
1	6,272	85,601	1309898904
2	7,553	14,399	220343797
Totals			
		100,000	1530242701

Sample ID: pa.3ag-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

7: 295,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	9,413	49,667	5436747104
2	12,870	50,333	5509625233
Totals			
		100,000	10946372337

Sample ID: pa.3ag-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-C1

7: 295,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	9,445	86,796	2341348698
2	12,922	13,204	356184463
Totals			
		100,000	2697533161

Sample ID: pa.3ai-rac

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-B2

6: 218,0 nm, 4,0 nm Results			
Peak Number	Retention Time	Area Percent	Area
1	12,087	50,894	350121922
2	14,095	49,106	337816582
Totals			
		100,000	687938504

Sample ID: pa.3ai-ee

Method: C:\Enterprise\Methods\HPLC2\5_ChiralPAK AD-3\System2, AD-3, Hep_EtOH 90_10, 0,5ml, 22°C.met

Vial: P1-C2

6: 218,0 nm, 4,0 nm Results Peak Number	Retention Time	Area Percent	Area
I Call Maileer	Recención Time	med rereeme	mea
1	12,035	85,023	4091120000
2	14,088	14,977	720648958
Totals			
		100,000	4811768958
10. X-ray crystallography of compound 3aa

X-ray and derived ORTEP structures provided by Dr. Daniel Kratzert, Krossing Group, Inorganic Chemistry Department, Albert-Ludwigs-University Freiburg.

Table 1. Crystal data and structure refinement for BreitPZ_R_122_0m_a-finalcif.cif

CCDC number	1050247
	1950247
Empirical formula	$C_{24}H_{30}N_2O$
Formula weight	362.50
Temperature [K]	100.0
Crystal system	orthorhombic
Space group (number)	$P2_{1}2_{1}2_{1}(19)$
a[Å]	9.1380(11)
b [Å]	13 8136(18)
~ L ~ J	
	15 8299(19)
	13.0257(17)

α[Å]	90
β[Å]	90
γ [Å]	90
Volume [Å ³]	1998.2(4)
Z	4
$\rho_{\rm calc} \left[g/{\rm cm}^3 \right]$	1.205
μ [mm ⁻¹]	0.073
F(000)	784
Crystal size [mm ³]	0.060×0.050×0.030
Crystal colour	colourless
Crystal shape	block
Radiation	Μο <i>K</i> _α (λ=0.71073)
20 range [°]	3.91 to 53.61
Index ranges	$-11 \le h \le 11$
	$-17 \le k \le 17$
	$-20 \le 1 \le 20$
Reflections collected	53072
Independent reflections	4271
	$R_{\rm int} = 0.1058$
	$R_{\mathrm{sigma}} = 0.0495$
Completeness to $\theta = 25.242^{\circ}$	100.00
Data / Restraints / Parameters	4271/0/250
Goodness-of-fit on F^2	1.058
Final <i>R</i> indexes	$R_1 = 0.0431$

[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.0843$
Final <i>R</i> indexes	$R_1 = 0.0609$
[all data]	$wR_2 = 0.0917$
Largest peak/hole [eÅ ³]	0.17/-0.22
Flack X parameter	not applicable

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for BreitPZ_R_122_0m_a-finalcif.cif. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	x	У	Z	U _{eq}
01	0.5124(2)	0.85334(12)	0.41435(11)	0.0204(4)
N1	0.3887(2)	0.62361(15)	0.34405(12)	0.0162(5)
C1	0.4460(3)	0.71970(18)	0.31825(15)	0.0152(5)
N2	0.3975(2)	0.71742(15)	0.46348(12)	0.0162(5)
C2	0.3331(3)	0.77670(18)	0.26566(15)	0.0166(5)
C3	0.2042(3)	0.8138(2)	0.31513(16)	0.0220(6)
НЗА	0.119768	0.820921	0.277448	0.033
НЗВ	0.228520	0.876858	0.339870	0.033
НЗС	0.180320	0.767966	0.360292	0.033
C004	0.4600(3)	0.77257(18)	0.40347(16)	0.0166(6)
C4	0.3457(3)	0.78406(18)	0.18152(15)	0.0169(5)
H4	0.431934	0.757006	0.157766	0.020
C5	0.2426(3)	0.82885(18)	0.12077(15)	0.0157(5)
С9	0.1402(3)	0.82717(19)	-0.02071(16)	0.0231(6)
Н9	0.132705	0.797399	-0.074633	0.028

S111 | Page

C8	0.0583(3)	0.9090(2)	-0.00294(17)	0.0257(6)
H8	-0.004262	0.936103	-0.044605	0.031
C7	0.0688(3)	0.9508(2)	0.07631(17)	0.0241(6)
H7	0.012957	1.006941	0.088968	0.029
C6	0.1598(3)	0.91162(18)	0.13734(16)	0.0190(6)
H6	0.165938	0.941515	0.191271	0.023
C10	0.2332(3)	0.78838(19)	0.03975(15)	0.0200(6)
H10	0.291413	0.733596	0.026026	0.024
C11	0.5959(3)	0.71192(19)	0.27506(14)	0.0166(5)
C12	0.6731(3)	0.79632(19)	0.25633(14)	0.0177(5)
H12	0.631321	0.857496	0.269352	0.021
C13	0.8105(3)	0.7920(2)	0.21886(16)	0.0215(6)
H13	0.862702	0.850018	0.207405	0.026
C14	0.8717(3)	0.7030(2)	0.19809(15)	0.0238(6)
H14	0.965287	0.699770	0.172081	0.029
C15	0.7947(3)	0.6193(2)	0.21575(17)	0.0248(6)
H15	0.835875	0.558299	0.201539	0.030
C16	0.6578(3)	0.62321(19)	0.25407(15)	0.0208(6)
H16	0.606385	0.564995	0.265928	0.025
C17	0.2818(3)	0.5794(2)	0.28746(17)	0.0249(6)
H17A	0.257962	0.514201	0.307606	0.037
H17B	0.322752	0.575434	0.230364	0.037
H17C	0.192708	0.618937	0.286434	0.037

C18	0.3490(3)	0.62224(17)	0.43447(14)	0.0159(5)
H18	0.240195	0.617566	0.440090	0.019
C19	0.3658(3)	0.75702(19)	0.54704(15)	0.0204(6)
H19A	0.270980	0.732574	0.566643	0.031
H19B	0.362495	0.827836	0.543856	0.031
H19C	0.442492	0.737211	0.586681	0.031
C20	0.4217(3)	0.53753(18)	0.48371(15)	0.0181(6)
C21	0.5872(3)	0.55282(19)	0.48789(16)	0.0205(6)
H21A	0.633088	0.496952	0.515374	0.031
H21B	0.608511	0.611511	0.520440	0.031
H21C	0.626251	0.559816	0.430548	0.031
C22	0.3916(3)	0.44183(19)	0.43823(17)	0.0240(6)
H22A	0.436097	0.388519	0.469997	0.036
H22B	0.433792	0.444170	0.381339	0.036
H22C	0.285756	0.431522	0.434215	0.036
C23	0.3579(3)	0.5288(2)	0.57344(16)	0.0249(6)
H23A	0.387122	0.466641	0.598125	0.037
H23B	0.250889	0.532325	0.570731	0.037
H23C	0.395082	0.581753	0.608568	0.037

Table 3. Bond lengths and angles for BreitPZ_R_122_0m_a-finalcif.cif.

Atom - Atom	Length [Å]
O1 - C004	1.226(3)

N1 - C17	1.460(3)
N1 - C18	1.477(3)
N1 - C1	1.484(3)
C1 - C11	1.535(3)
C1 - C004	1.539(3)
C1 - C2	1.542(3)
N2 - C004	1.345(3)
N2 - C19	1.460(3)
N2 - C18	1.462(3)
C2 - C4	1.341(3)
C2 - C3	1.505(3)
С3 - НЗА	0.9800
С3 - НЗВ	0.9800
С3 - НЗС	0.9800
C4 - C5	1.481(3)
C4 - H4	0.9500
C5 - C6	1.396(3)
C5 - C10	1.402(3)
C9 - C8	1.384(4)
C9 - C10	1.388(4)
С9 - Н9	0.9500
C8 - C7	1.384(4)
С8 - Н8	0.9500

C7 - C6	1.385(4)
С7 - Н7	0.9500
С6 - Н6	0.9500
С10 - Н10	0.9500
C11 - C16	1.390(4)
C11 - C12	1.395(4)
C12 - C13	1.390(3)
С12 - Н12	0.9500
C13 - C14	1.390(4)
С13 - Н13	0.9500
C14 - C15	1.382(4)
С14 - Н14	0.9500
C15 - C16	1.392(4)
С15 - Н15	0.9500
С16 - Н16	0.9500
С17 - Н17А	0.9800
С17 - Н17В	0.9800
С17 - Н17С	0.9800
C18 - C20	1.555(3)
C18 - H18	1.0000
С19 - Н19А	0.9800
С19 - Н19В	0.9800
С19 - Н19С	0.9800

C20 - C21	1.529(3)
C20 - C22	1.530(4)
C20 - C23	1.540(3)
C21 - H21A	0.9800
C21 - H21B	0.9800
С21 - Н21С	0.9800
C22 - H22A	0.9800
С22 - Н22В	0.9800
С22 - Н22С	0.9800
С23 - Н23А	0.9800
С23 - Н23В	0.9800
С23 - Н23С	0.9800
Atom - Atom - Atom	Angle [°]
C17 - N1 - C18	115.1(2)
C17 - N1 - C1	116.18(19)
C18 - N1 - C1	111.40(19)
N1 - C1 - C11	112.0(2)
N1 - C1 - C004	102.27(18)
C11 - C1 - C004	110.42(19)
N1 - C1 - C2	111.70(19)
C11 - C1 - C2	113.11(19)
C004 - C1 - C2	106.67(19)

C004 - N2 - C19	120.8(2)
C004 - N2 - C18	114.61(19)
C19 - N2 - C18	124.1(2)
C4 - C2 - C3	124.0(2)
C4 - C2 - C1	121.2(2)
C3 - C2 - C1	114.6(2)
С2 - С3 - НЗА	109.5
С2 - С3 - НЗВ	109.5
H3A - C3 - H3B	109.5
C2 - C3 - H3C	109.5
H3A - C3 - H3C	109.5
H3B - C3 - H3C	109.5
O1 - C004 - N2	125.6(2)
O1 - C004 - C1	126.0(2)
N2 - C004 - C1	108.3(2)
C2 - C4 - C5	128.5(2)
C2 - C4 - H4	115.8
С5 - С4 - Н4	115.8
C6 - C5 - C10	117.7(2)
C6 - C5 - C4	124.4(2)
C10 - C5 - C4	117.8(2)
C8 - C9 - C10	120.4(3)
С8 - С9 - Н9	119.8

С10 - С9 - Н9	119.8
C9 - C8 - C7	119.2(3)
С9 - С8 - Н8	120.4
С7 - С8 - Н8	120.4
C8 - C7 - C6	120.7(3)
С8 - С7 - Н7	119.6
С6 - С7 - Н7	119.6
C7 - C6 - C5	121.0(2)
С7 - С6 - Н6	119.5
С5 - С6 - Н6	119.5
C9 - C10 - C5	121.0(2)
С9 - С10 - Н10	119.5
С5 - С10 - Н10	119.5
C16 - C11 - C12	118.7(2)
C16 - C11 - C1	122.1(2)
C12 - C11 - C1	119.2(2)
C13 - C12 - C11	120.8(2)
С13 - С12 - Н12	119.6
С11 - С12 - Н12	119.6
C12 - C13 - C14	120.2(2)
С12 - С13 - Н13	119.9
С14 - С13 - Н13	119.9
C15 - C14 - C13	119.2(2)

C15 - C14 - H14	120.4
C13 - C14 - H14	120.4
C14 - C15 - C16	120.9(3)
С14 - С15 - Н15	119.5
С16 - С15 - Н15	119.5
C11 - C16 - C15	120.3(2)
С11 - С16 - Н16	119.9
С15 - С16 - Н16	119.9
N1 - C17 - H17A	109.5
N1 - C17 - H17B	109.5
H17A - C17 - H17B	109.5
N1 - C17 - H17C	109.5
H17A - C17 - H17C	109.5
Н17В - С17 - Н17С	109.5
N2 - C18 - N1	102.60(18)
N2 - C18 - C20	112.94(19)
N1 - C18 - C20	113.0(2)
N2 - C18 - H18	109.4
N1 - C18 - H18	109.4
C20 - C18 - H18	109.4
N2 - C19 - H19A	109.5
N2 - C19 - H19B	109.5
Н19А - С19 - Н19В	109.5

N2 - C19 - H19C	109.5
Н19А - С19 - Н19С	109.5
Н19В - С19 - Н19С	109.5
C21 - C20 - C22	108.5(2)
C21 - C20 - C23	110.2(2)
C22 - C20 - C23	107.3(2)
C21 - C20 - C18	109.9(2)
C22 - C20 - C18	109.7(2)
C23 - C20 - C18	111.1(2)
C20 - C21 - H21A	109.5
C20 - C21 - H21B	109.5
H21A - C21 - H21B	109.5
C20 - C21 - H21C	109.5
H21A - C21 - H21C	109.5
H21B - C21 - H21C	109.5
C20 - C22 - H22A	109.5
С20 - С22 - Н22В	109.5
H22A - C22 - H22B	109.5
C20 - C22 - H22C	109.5
H22A - C22 - H22C	109.5
H22B - C22 - H22C	109.5
С20 - С23 - Н23А	109.5
С20 - С23 - Н23В	109.5

H23A - C23 - H23B	109.5
С20 - С23 - Н23С	109.5
H23A - C23 - H23C	109.5
H23B - C23 - H23C	109.5

11. Copy of ¹HNMR and ¹³CNMR of synthesized compounds

11.1.Aryl-methyl alkynes derivative

11.1.1. 1-Fluoro-3-(prop-1-yn-1-yl)benzene (2b)

11.1.2. 1-Methoxy-3-(prop-1-yn-1-yl)benzene (2d)

S124 | Page

11.1.3.1-(Prop-1-yn-1-yl)-3-(trifluoromethyl)benzene (2e)

11.1.4. 1-Chloro-4-(prop-1-yn-1-yl)benzene (2g)

11.1.5.2-(Prop-1-yn-1-yl)naphthalene (2h)

11.1.6.1-(Prop-1-yn-1-yl)naphthalene (2i)

11.1.7. 2-(Prop-1-yn-1-yl)thiophene (2j)

11.1.8. 3-(Prop-1-yn-1-yl)thiophene (2k)

11.1.9. 1,4-Di(prop-1-yn-1-yl)benzene (2l)

S131 | Page

11.1.10. 1-Butyl-2,3,5,6-tetrafluoro-4-(prop-1-yn-1-yl)benzene (2m)

11.1.11. (E)-Pent-1-en-3-yn-1-ylbenzene (2n)

S134 | Page

11.1.12. 1-(Phenylethynyl)-4-(prop-1-yn-1-yl)benzene (20)

S135 | Page

11.1.13. 5-(Prop-1-yn-1-yl)benzo[d][1,3]dioxole (2p)

S136 | Page

11.2. Iimidazolidinone derivatives

11.2.1 (2R,5S)-2-(tert-butyl)-1,3,5-trimethylimidazolidin-4-one

11.2.2. (2R,5S)-5-((S)-sec-butyl)-2-(tert-butyl)-1,3-dimethylimidazolidin-4-one

11.2.3. (2R,5S)-2-(tert-butyl)-5-(4-methoxybenzyl)-1,3-dimethylimidazolidin-4-one

11.2.4. (2R,5S)-2-(tert-butyl)-5-(4-hydroxybenzyl)-1,3-dimethylimidazolidin-4-one

S140 | Page

11.2.5. (2R,5S)-5-benzyl-2-(tert-butyl)-1,3-dimethylimidazolidin-4-one

S141 | P a g e

11.2.6.(2S,5S)-5-benzyl-2-(tert-butyl)-1,3-dimethylimidazolidin-4-one

S142 | Page

11.2.7. (2R,5S)-2-(tert-butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one

S143 | Page

11.2.8. (2R,5S)-2-(tert-butyl)-5-isopropyl-1,3-dimethylimidazolidin-4-one

11.2.9. (2R,5S)-2-(tert-butyl)-5-isobutyl-1,3-dimethylimidazolidin-4-one

S145 | Page

11.2.10. (2S,5S)-1-benzoyl-2-(tert-butyl)-3,5-dimethylimidazolidin-4-one

11.2.11. (5S)-2-(tert-butyl)-1,3-dimethyl-5-(2-(methylthio)ethyl)imidazolidin-4-one

S147 | Page

11.3. α-alkenylated imidazolidinones

11.3.1. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-phenylprop-1-en-2-yl)imidazolidin-4-one (3a)

S149 | Page

11.3.2. (2R,5R)-2-(tert-butyl)-5-((E)-1-(3-fluorophenyl)prop-1-en-2-yl)-1,3,5-trimethylimidazolidin-4-one (3b)

11.3.3. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(m-tolyl)prop-1-en-2-yl)imidazolidin-4-one (3c)

11.3.4. (2R,5R)-2-(tert-butyl)-5-((E)-1-(3-methoxyphenyl)prop-1-en-2-yl)-1,3,5-trimethylimidazolidin-4-one (3d)

11.3.5. (2R,5R)-5-((E)-1-(4-bromophenyl)prop-1-en-2-yl)-2-(tert-butyl)-1,3,5-trimethylimidazolidin-4-one (3e)

S158 | Page

11.3.6. (2R,5R)-2-(tert-butyl)-5-((E)-1-(4-chlorophenyl)prop-1-en-2-yl)-1,3,5-trimethylimidazolidin-4-one (3f)

11.3.7. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(3-(trifluoromethyl)phenyl)prop-1-en-2-yl)imidazolidin-4-one (3g)

11.3.8. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(naphthalen-2-yl)prop-1-en-2-yl)imidazolidin-4-one (3h)

11.3.9. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(naphthalen-1-yl)prop-1-en-2-yl)imidazolidin-4-one (3i)

11.3.10. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(thiophen-2-yl)prop-1-en-2-yl)imidazolidin-4-one (3j)

11.3.11. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(thiophen-3-yl)prop-1-en-2-yl)imidazolidin-4-one(3k)

11.3.12. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(4-(prop-1-yn-1-yl)phenyl)prop-1-en-2-yl)imidazolidin-4-one(3l)

11.3.13. (2R,5R)-2-(tert-butyl)-1,3,5-trimethyl-5-((E)-1-(4-(prop-1-yn-1-yl)phenyl)prop-1-en-2-yl)imidazolidin-4-one(3m)

S176 | Page

11.3.14. (28,58)-2-(tert-butyl)-1,3,5-trimethyl-5-((2E,4E)-5-phenylpenta-2,4-dien-2-yl)imidazolidin-4-one(3n)

11.3.15. (3R,7aS)-3-(tert-butyl)-7a-((Z)-1-(3-fluorophenyl)prop-1-en-2-yl)-2-methylhexahydro-1H-pyrrolo[1,2-c]imidazol-1-one (30)

11.3.16. (3R,7aS)-3-(tert-butyl)-7a-((Z)-1-(4-chlorophenyl)prop-1-en-2-yl)-2-methylhexahydro-1H-pyrrolo[1,2-c]imidazol-1-one (3p)

11.3.17. (28,58)-5-benzyl-2-(tert-butyl)-1,3-dimethyl-5-((E)-1-phenylprop-1-en-2-yl)imidazolidin-4-one (3q)

11.3.18. (28,58)-5-benzyl-2-(tert-butyl)-5-((E)-1-(3-fluorophenyl)prop-1-en-2-yl)-1,3-dimethylimidazolidin-4-one(3r)

11.3.19. (28,58)-5-benzyl-2-(tert-butyl)-5-((E)-1-(4-chlorophenyl)prop-1-en-2-yl)-1,3-dimethylimidazolidin-4-one(3s)

11.3.20. (2R,5S)-2-(tert-butyl)-1,3-dimethyl-5-(2-(methylthio)ethyl)-5-((E)-1-phenylprop-1-en-2-yl)imidazolidin-4-one(3t)

11.3.21. (28,58)-2-(tert-butyl)-5-((E)-1-(4-chlorophenyl)prop-1-en-2-yl)-1,3-dimethyl-5-(2-(methylthio)ethyl)imidazolidin-4-one(3u)

11.3.22. (28,58)-2-(tert-butyl)-5-isobutyl-1,3-dimethyl-5-((E)-1-phenylprop-1-en-2-yl)imidazolidin-4-one(3v)

11.3.24. (28,58)-2-(tert-butyl)-5-((E)-1-(3-fluorophenyl)prop-1-en-2-yl)-5-isobutyl-1,3-dimethylimidazolidin-4-one (3x)

11.3.25. (28,58)-2-(tert-butyl)-5-(4-methoxybenzyl)-1,3-dimethyl-5-((E)-1-phenylprop-1-en-2-yl)imidazolidin-4-one (3y)

11.3.26. (28,58)-2-(tert-butyl)-5-((E)-1-(3-fluorophenyl)prop-1-en-2-yl)-5-(4-methoxybenzyl)-1,3-dimethylimidazolidin-4-one(3z)

$11.3.27.\ (2S,5S)-2-(tert-butyl)-5-(4-methoxybenzyl)-1, 3-dimethyl-5-((E)-1-(4-(prop-1-yn-1-yl)phenyl)prop-1-en-2-yl) imidazolidin-4-one-2-yl) i$

(3aa)

11.3.28. (28,58)-2-(tert-butyl)-5-(4-methoxybenzyl)-1,3-dimethyl-5-((E)-1-(naphthalen-1-yl)prop-1-en-2-yl)imidazolidin-4-one(3ab)

11.3.29. (2S,5R)-2-(tert-butyl)-1,3-dimethyl-5-phenyl-5-((E)-1-phenylprop-1-en-2-yl)imidazolidin-4-one (3ac)

S214 | Page

11.3.30. (2S,5R)-2-(tert-butyl)-1,3-dimethyl-5-phenyl-5-((E)-1-(p-tolyl)prop-1-en-2-yl)imidazolidin-4-one (3ad)

11.3.31. (28,5R)-2-(tert-butyl)-1,3-dimethyl-5-((E)-1-(naphthalen-2-yl)prop-1-en-2-yl)-5-phenylimidazolidin-4-one (3ae)

11.3.32. (28,5R)-2-(tert-butyl)-1,3-dimethyl-5-((E)-1-(naphthalen-1-yl)prop-1-en-2-yl)-5-phenylimidazolidin-4-one (3af)

11.3.33. (28,5R)-2-(tert-butyl)-1,3-dimethyl-5-phenyl-5-((E)-1-(4-(phenylethynyl)phenyl)prop-1-en-2-yl)imidazolidin-4-one(3ag)

11.3.34.(28,5R)-2-(tert-butyl)-5-((E)-1-(4-butyl-2,3,5,6-tetrafluorophenyl)prop-1-en-2-yl)-1,3-dimethyl-5-phenylimidazolidin-4-one(3ah)

11.3.35. (28,5R)-5-((E)-1-(benzo[d][1,3]dioxol-5-yl)prop-1-en-2-yl)-2-(tert-butyl)-1,3-dimethyl-5-phenylimidazolidin-4-one(3ai)

4.4.36. (28,58)-2-(tert-butyl)-5-((E)-1,3-diphenylprop-1-en-2-yl)-1,3,5-trimethylimidazolidin-4-one (3aj)

4.4.37. (2S,5R)-2-(tert-butyl)-1,3-dimethyl-5-phenyl-5-((Z)-4-phenylbut-2-en-2-yl)imidazolidin-4-one (3ak)

12. Z-Matrix

TS-MO. DME

Li	1.83241100	-2.38744200	-0.49238800
0	3.40152300	-2.38061600	0.59066200
С	3.09999800	-2.52142100	1.98353300
С	4.46983600	-1.45995600	0.34444700
Н	2.20778700	-3.14594500	2.05163000
Н	3.94048600	-2.99379800	2.50801100
Н	2.89373500	-1.53963200	2.43123400
Н	4.66238400	-1.47409300	-0.72987500
Н	5.37325500	-1.77412500	0.88269100
Н	4.17491900	-0.44738500	0.64598200
С	-0.71575500	-1.35584000	-1.36521000
С	-0.47851700	-1.86461400	-0.07175700
N	-1.07834400	-1.02795600	0.83749000
С	-1.90192800	-0.01290000	0.17202700
N	-1.66126300	-0.28975800	-1.25928500
С	-0.70790900	-2.20354100	-2.59772600
С	-1.42519600	0.87284100	-2.11235500
0	0.26759900	-2.84920100	0.28536900
С	-3.42415300	-0.09198200	0.54582300
С	-4.22516700	0.82261200	-0.39954900
С	-3.92113700	-1.53708100	0.39262800

S237 | P a g e

С	-3.65084900	0.40793200	1.98676500
С	-0.78310600	-1.06134800	2.24978000
Н	-1.52937000	0.99089200	0.44264000
Н	-1.70924100	-2.61156000	-2.80468900
Н	-0.39611100	-1.65398600	-3.49536200
Н	-0.02476500	-3.05147200	-2.47168400
Н	-0.52012400	1.43473600	-1.84115100
Н	-1.32348800	0.53279800	-3.14746400
Н	-2.27915100	1.55196800	-2.07153400
Н	-3.87518000	1.86161300	-0.34752500
Н	-4.15038800	0.47968000	-1.43508600
Н	-5.28436600	0.81679400	-0.11636000
Н	-3.41139600	-2.21256200	1.08804900
Н	-3.73509300	-1.89482400	-0.62573700
Н	-4.99845500	-1.59683300	0.58831100
Н	-3.23348000	-0.26679000	2.73797500
Н	-3.20803300	1.40111600	2.13723200
Н	-4.72494600	0.49136600	2.19052600
Н	-0.68999100	-0.04131900	2.64065200
Н	0.16011000	-1.59505100	2.38897500
Н	-1.55198800	-1.58715400	2.83011500
С	2.10497700	-0.51099900	-2.31387700
Н	1.60953800	-0.96176100	-3.17045200

S238 | Page

С	1.47096800	-0.22039700	-1.17644700
С	1.52112900	0.47870900	-0.00971600
Н	1.34876200	-0.06180500	0.91961900
Н	3.15792900	-0.24840200	-2.44992000
С	1.43426000	1.92398400	0.09682700
С	1.10774100	2.51617700	1.33959200
С	1.61362100	2.79132100	-1.00662100
С	0.97817400	3.89526900	1.47436400
Н	0.96018400	1.87308800	2.20549000
С	1.47543900	4.16895300	-0.86694300
Н	1.86567500	2.36573200	-1.97395900
С	1.15958800	4.73629200	0.37206800
Н	0.72939200	4.31755900	2.44544800
Н	1.61916200	4.80910800	-1.73458100
Н	1.05719100	5.81284500	0.47636200

TS-MO-A.2DME

Li	-2.64357300	0.05640100	-0.29380500
0	-3.03845800	1.51045000	-1.53211400
С	-2.54471400	1.31906600	-2.85758800
С	-3.02439000	2.87996300	-1.12820600
Н	-2.49676800	0.24162400	-3.02280500

S239 | Page

Н	-3.21825800	1.78800300	-3.58803500
Н	-1.53911000	1.74794500	-2.96306300
Н	-3.48940200	2.92650100	-0.14125400
Н	-3.60380100	3.49309200	-1.83186800
Н	-1.99267700	3.24612100	-1.05835200
С	-0.31291900	-1.32284300	0.99360900
С	-0.55942900	-1.35723400	-0.39450300
Ν	0.65008800	-1.28848900	-1.04655300
С	1.77352400	-1.38986400	-0.11222000
Ν	1.09900600	-1.45369700	1.19955600
С	-1.23686300	-1.89769100	2.02123000
С	1.67430600	-0.62335400	2.25515200
0	-1.67738100	-1.33041500	-1.02574700
С	2.69492900	-2.63589800	-0.36885700
С	3.66237800	-2.80485000	0.81701500
С	1.83189600	-3.89981300	-0.49932100
С	3.54096200	-2.42563200	-1.64056500
С	0.77142500	-0.96588500	-2.44723200
Н	2.39441200	-0.47974100	-0.18954900
Н	-1.08196800	-2.98196600	2.14199500
Н	-1.09039200	-1.44521400	3.01065400
Н	-2.27934500	-1.73156100	1.73670600
Н	1.60682300	0.45292000	2.04566600

S240 | Page

Н	1.14642900	-0.82681200	3.19220500
Н	2.72444100	-0.88091100	2.40730600
Н	4.28137600	-1.91023800	0.96253200
Н	3.11581700	-3.00630400	1.74235700
Н	4.33872400	-3.64766000	0.63093000
Н	1.16487900	-3.84214500	-1.36623300
Н	1.21448300	-4.02939700	0.39618900
Н	2.46409200	-4.78865200	-0.61429000
Н	2.93979800	-2.43295700	-2.55301700
Н	4.08674100	-1.47393600	-1.60061700
Н	4.28252400	-3.22788900	-1.73646100
Н	1.60481200	-0.27067900	-2.60247600
Н	-0.15991400	-0.49829000	-2.77370500
Н	0.93769200	-1.85183000	-3.07408000
С	-1.57052800	1.34984500	1.81528900
Н	-1.84250500	0.62237600	2.57569600
С	-0.69967100	1.09580000	0.84154300
С	0.08200100	1.63184900	-0.13674800
Н	-0.04854900	1.25701000	-1.14939500
Н	-2.02199300	2.34183500	1.91287400
С	1.29836700	2.38598200	0.09192500
С	2.23599300	2.54423800	-0.95701000
С	1.63333800	2.95136400	1.34613800

S241 | Page

С	3.43257600	3.22840100	-0.76576200
Н	2.00692800	2.12153800	-1.93377300
С	2.83433100	3.62884600	1.53244300
Н	0.93180400	2.85187800	2.16993300
С	3.74631400	3.77694000	0.48190100
Н	4.12870200	3.33127800	-1.59548300
Н	3.06141700	4.05035000	2.50942200
Н	4.68117700	4.30975500	0.63225200
0	-4.23022400	-0.62470400	0.57954100
С	-4.63410500	-1.95542700	0.25407800
С	-5.10543200	0.04120200	1.47757700
Н	-3.84437700	-2.36641400	-0.37709300
Н	-4.73194600	-2.55988600	1.16643600
Н	-5.59331200	-1.94719200	-0.28167800
Н	-4.67553000	1.02635800	1.67302300
Н	-5.18606300	-0.51157700	2.42415300
Н	-6.10733300	0.15609300	1.04051600

TS-MO-B.2DME

Li	0.18510100	2.31480400	-0.12476900
0	-1.47447000	1.83440400	0.49286700
С	-1.58435700	0.56343100	0.39730300

S242 | Page

С	-0.74861800	-0.44534700	0.91218900
Ν	-1.27053200	-1.72483500	0.50658800
С	-2.46246500	-1.48567700	-0.32777600
Ν	-2.57708800	-0.02370900	-0.38480400
С	-0.05007500	-0.38205100	2.22812700
С	-3.73007700	-2.18500400	0.26403400
С	-4.95169700	-1.93049600	-0.63766400
С	-3.47001900	-3.70069100	0.33041300
С	-4.00791600	-1.65082200	1.67779900
С	-3.12318700	0.66505000	-1.53557600
С	-0.29363200	-2.65055000	-0.06081300
С	2.30639000	-0.18561500	0.17750500
С	1.17557500	0.10979500	-0.50623000
С	0.68293900	0.51229400	-1.68026300
Н	-2.30421700	-1.87438400	-1.35196600
Н	-0.66204600	-0.82955500	3.02465800
Н	0.90733500	-0.92235800	2.20207400
Н	0.16950400	0.65597200	2.49292100
Н	-5.27956600	-0.88792400	-0.58793100
Н	-4.73834800	-2.17528000	-1.68678200
Н	-5.79597500	-2.55268800	-0.31744200
Н	-4.35988000	-4.22209400	0.70280000
Н	-3.23322100	-4.11285900	-0.65958800

S243 | Page

Н	-2.63964700	-3.92428300	1.00621600
Н	-4.19995600	-0.57277300	1.65754300
Н	-3.14837800	-1.83527500	2.32992500
Н	-4.88512900	-2.14755500	2.11012700
Н	-4.21266900	0.58970200	-1.58593600
Н	-2.85417700	1.71922700	-1.44236300
Н	-2.71397500	0.26564100	-2.47916600
Н	0.56601100	-2.72585200	0.60984000
Н	-0.73436500	-3.64567000	-0.16911300
Н	0.08437400	-2.32092400	-1.04394800
Н	2.46567500	0.28329500	1.14670200
Н	1.33741400	0.96541700	-2.43033800
Н	-0.35660200	0.36562700	-1.96206000
С	3.22340800	-1.26523100	-0.16508500
С	5.03388600	-3.37080900	-0.74601900
С	3.13692300	-1.99409000	-1.37307700
С	4.24522900	-1.62939700	0.74042800
С	5.13642500	-2.65860400	0.45283500
С	4.02476400	-3.02878000	-1.65186800
Н	2.36340500	-1.73542200	-2.08995400
Н	5.72704700	-4.17704300	-0.97004800
Н	3.93051300	-3.57363600	-2.58870300
Н	5.91326000	-2.91119600	1.17112700

S244 | Page

Η	4.32840800	-1.09175200	1.68332200
0	1.32690200	2.95620800	1.31122500
С	2.73505300	3.15666700	1.28534900
С	0.70153100	3.36318200	2.52619400
Н	3.10231100	2.72054100	0.35438700
Н	2.97915500	4.22814400	1.32446800
Н	3.21443800	2.64630600	2.13159400
Н	-0.35458100	3.10478900	2.42714500
Н	0.81924100	4.44557700	2.68179700
Н	1.13577500	2.82767200	3.38108300
0	0.12894600	3.88570100	-1.34788900
С	-0.67839200	3.73534600	-2.51431400
С	-0.11760800	5.11740100	-0.67320700
Н	-0.43103500	2.76676200	-2.95100500
Н	-1.74599700	3.75866600	-2.25674800
Η	-0.45927600	4.53202100	-3.23847800
Н	0.55828000	5.14921600	0.18249200
Н	-1.15804500	5.16954200	-0.32230200
Н	0.08748000	5.96929600	-1.33585600

TS-Di-All

Li 1.24924800 -0.80422800 -0.74394900

S245 | Page

Ν	2.84822500	-0.91081300	0.39937400
Li	1.46736900	-1.78680000	1.40821500
Si	3.25207100	0.50669200	1.29265600
Si	3.91858600	-1.83626100	-0.58273200
С	1.87749400	0.78305200	2.59339400
С	3.27909200	2.07473200	0.22787000
С	4.89693800	0.37473000	2.23269800
С	4.81037300	-3.19326600	0.40144200
С	2.86905300	-2.70045800	-1.92554300
С	5.22768200	-0.80975000	-1.49753000
Н	1.70383000	-0.08863400	3.24684100
Н	0.93084600	1.04754600	2.10525500
Н	2.13551100	1.61373600	3.26183100
Н	2.28510600	2.27132100	-0.19370300
Н	3.56743100	2.95985800	0.80901300
Н	3.98744600	1.97594200	-0.60383600
Н	4.90301000	-0.50018300	2.89563200
Н	5.74649100	0.26972800	1.54687100
Н	5.08002400	1.26366500	2.84948800
Н	4.09090000	-3.89606800	0.84432800
Н	5.39078500	-2.75428300	1.22259900
Н	5.49925800	-3.77720400	-0.22202500
Н	2.07101100	-3.32157900	-1.49561400

S246 | Page

Н	3.49108400	-3.35765000	-2.54580300
Н	2.40254300	-1.97755200	-2.61274100
Н	5.84316200	-1.44295100	-2.14899800
Н	5.90334300	-0.29479000	-0.80422800
Н	4.75671500	-0.04374900	-2.12667800
С	-1.69968300	-1.21020500	-1.23758500
С	-1.18082300	-1.42933500	0.03930500
Ν	-2.12461700	-1.09523200	0.98366500
С	-3.41822700	-0.83404400	0.33577800
Ν	-3.08616800	-0.85665600	-1.10078900
С	-1.26526500	-1.95123400	-2.46260400
С	-3.55634400	0.28756600	-1.88269200
0	0.01397300	-1.82393200	0.36860200
С	-4.52419700	-1.87957600	0.69990300
С	-5.77449100	-1.57611800	-0.14515900
С	-4.02513800	-3.29844100	0.38744200
С	-4.89740800	-1.76680300	2.18964600
С	-1.81156100	-0.80025600	2.36422900
Н	-3.77980600	0.16480100	0.63549300
Н	-1.46577100	-1.38563300	-3.38044000
Н	-0.19171800	-2.16308200	-2.43573100
Н	-1.79193100	-2.91291200	-2.54846200
Н	-3.16574700	1.24999700	-1.52550100

S247 | Page

Н	-3.23698700	0.15680500	-2.92058700
Н	-4.64945700	0.31957000	-1.87228900
Н	-6.13884900	-0.55500600	0.02869000
Н	-5.56085600	-1.69126100	-1.21152200
Н	-6.58506700	-2.26619500	0.11628100
Н	-3.14693100	-3.55329900	0.99133900
Н	-3.75101400	-3.38221400	-0.66925100
Н	-4.80828500	-4.03564900	0.60005400
Н	-4.08155600	-2.08496900	2.84514800
Н	-5.17231600	-0.73816900	2.45853200
Н	-5.75950700	-2.40634300	2.41201300
Н	-2.54004700	-0.08580900	2.75881100
Н	-0.81745700	-0.34647100	2.43548200
Н	-1.82988200	-1.69316100	3.00364400
С	0.56130900	0.66449200	-2.35929400
Н	0.30601800	0.20209800	-3.30908700
С	-0.32490500	0.83048100	-1.36351700
С	-0.75080300	1.57799600	-0.33342500
Н	-1.20063800	1.08687000	0.52450900
Н	1.57354100	1.06639400	-2.26414500
С	-0.79631900	3.04208400	-0.30483000
С	-1.45312500	3.67966100	0.76711900
С	-0.21563000	3.85494300	-1.29924700

S248 | Page

С	-1.52433100	5.06824700	0.84666200
Н	-1.90866200	3.06969400	1.54505000
С	-0.29487400	5.24210200	-1.22068100
Н	0.29592900	3.38519200	-2.13364500
С	-0.94606100	5.86001600	-0.14811900
Н	-2.03370100	5.53367900	1.68698100
Н	0.16093500	5.84802500	-1.99996100
Н	-0.99817300	6.94362100	-0.08751700

TS-Di-All. DME

Li	-1.01645100	-0.08087300	1.19232000
Ν	-2.69172400	-0.26311300	0.21028700
Li	-1.52607200	-1.63324800	-0.55792100
Si	-3.04139400	0.95312600	-0.95566900
Si	-3.77920800	-0.88626600	1.38594500
С	-1.72258400	0.89756700	-2.33138800
С	-2.98243100	2.70541200	-0.23048000
С	-4.72754000	0.71788700	-1.81023500
С	-4.79514700	-2.34974000	0.71512900
С	-2.74927400	-1.54991900	2.85244400
С	-4.98993200	0.38759900	2.10531800
0	-1.75933000	-3.04428300	-1.78338200

S249 | Page

С	-2.95699600	-3.28897200	-2.51846600
С	-0.78372600	-4.07942800	-1.89250800
Н	-1.62735700	-0.09980300	-2.78639100
Н	-0.74115200	1.19487900	-1.94204500
Н	-1.97349200	1.59568500	-3.13978900
Н	-1.97154700	2.93725700	0.12917600
Н	-3.24470400	3.46864100	-0.97424700
Н	-3.67445200	2.80795600	0.61447000
Н	-4.77872000	-0.24763600	-2.33169800
Н	-5.55589700	0.74245400	-1.09150700
Н	-4.91273200	1.50346100	-2.55392500
Н	-4.13414900	-3.16239500	0.38297500
Н	-5.39504400	-2.03724000	-0.14901200
Н	-5.47869000	-2.76542400	1.46627700
Н	-2.02683900	-2.31678900	2.54081700
Н	-3.39567100	-2.00104400	3.61579800
Н	-2.18756700	-0.74597800	3.35249100
Н	-5.62446500	-0.05788000	2.88199600
Н	-5.65143600	0.80394600	1.33613100
Н	-4.44665800	1.22609900	2.55933500
Н	-3.62444000	-2.44768500	-2.32376000
Н	-2.74260000	-3.35503300	-3.59344400
Н	-3.43491900	-4.21787200	-2.18045900

S250 | Page

Н	0.05730900	-3.78312500	-1.26243400
Н	-0.45171300	-4.18915100	-2.93378300
Н	-1.19338100	-5.03498100	-1.53813300
С	1.94450900	-0.71654200	1.65381100
С	1.26064700	-1.18028000	0.52968500
Ν	2.11701900	-1.20300100	-0.55527500
С	3.48903700	-0.91012500	-0.11873200
Ν	3.33153300	-0.56492600	1.30656200
С	1.58787600	-1.07637100	3.06107500
С	3.98111400	0.67387400	1.73630500
0	0.01256100	-1.51621800	0.42268400
С	4.47379100	-2.10727100	-0.33012400
С	5.83648100	-1.73548600	0.28132600
С	3.92515700	-3.36178900	0.36562600
С	4.66456400	-2.37666100	-1.83395300
С	1.66327900	-1.12781700	-1.92801000
Н	3.87589900	-0.04619500	-0.68803300
Н	1.91299100	-0.31451800	3.78010700
Н	0.50483700	-1.19071300	3.16797500
Н	2.05721100	-2.02643500	3.35614600
Н	3.61392800	1.56388700	1.20711200
Н	3.79493000	0.81372600	2.80510500
Н	5.06274300	0.59556500	1.59534000

S251 | Page

Н	6.24100300	-0.81739500	-0.16498400
Н	5.75022100	-1.58632400	1.36138700
Н	6.56324600	-2.53729400	0.10562600
Н	2.96296400	-3.66243300	-0.06461300
Н	3.77807100	-3.17103400	1.43361300
Н	4.62410400	-4.19953100	0.25648400
Н	3.75222400	-2.75621200	-2.30346600
Н	4.97144900	-1.46823700	-2.36915500
Н	5.44675300	-3.12924300	-1.98785600
Н	2.34347800	-0.49595700	-2.50974500
Н	0.66531100	-0.68228400	-1.96298800
Н	1.61516300	-2.11004400	-2.41622000
С	-0.05551800	1.58794600	2.46087500
Н	0.25816400	1.35826600	3.47550200
С	0.74239300	1.43361400	1.39240300
С	1.10620900	1.86750500	0.17556400
Н	1.45237000	1.14825300	-0.56021700
Н	-1.05609100	2.01283800	2.34063700
С	1.18413500	3.26944500	-0.24318800
С	1.71468500	3.56902200	-1.51416800
С	0.74482400	4.34285800	0.55780200
С	1.79797900	4.88250500	-1.96977800
Н	2.05752200	2.75371700	-2.14846800

S252 | Page
С	0.83686100	5.65470400	0.10291300
Н	0.33162400	4.13434600	1.53984200
С	1.36029300	5.93559100	-1.16335500
Н	2.20601400	5.08473000	-2.95713200
Н	0.49082700	6.46597800	0.73874800
Н	1.42160600	6.96103400	-1.51744000

TS-Di-All-B. DME

Li	-0.76305400	-0.68925600	0.06807500
N	-2.71248800	-0.86459400	-0.00258400
Li	-2.39474700	0.99468700	-0.53205600
Si	-3.43789300	-0.91342400	1.55737300
Si	-3.16827500	-1.87210000	-1.32467000
С	-2.95819300	0.67072600	2.50964400
С	-2.83760600	-2.37650100	2.60746300
С	-5.34008700	-0.97800000	1.52901500
С	-4.68064000	-1.17571900	-2.25120900
С	-1.73633500	-1.92135300	-2.57993300
С	-3.56315500	-3.66579800	-0.84418000
0	-3.48376600	2.54433500	-0.66482000
С	-4.90029100	2.50745900	-0.48780100
С	-2.89538900	3.80309500	-0.33499100

S253 | Page

Н	-3.21323800	1.58339800	1.95241500
Н	-1.88053300	0.69640100	2.71666800
Н	-3.47655400	0.72290300	3.47522600
Н	-1.74506500	-2.35584600	2.71756400
Н	-3.27381600	-2.36824600	3.61467700
Н	-3.09994500	-3.33054000	2.13522600
Н	-5.76702300	-0.11309000	1.00575500
Н	-5.70489100	-1.87924900	1.02118300
Н	-5.75108700	-0.98540400	2.54660400
Н	-4.47727400	-0.16516800	-2.63378800
Н	-5.55092500	-1.11061200	-1.58592400
Н	-4.96348600	-1.79822500	-3.10961200
Н	-1.48343300	-0.91828900	-2.94973400
Н	-1.99700900	-2.53273100	-3.45292500
Н	-0.82547400	-2.35633200	-2.14500100
Н	-3.81340200	-4.26983600	-1.72548300
Н	-4.41282900	-3.72355000	-0.15259400
Н	-2.70417700	-4.13603200	-0.34945200
Н	-5.23143600	1.51213100	-0.78842900
Н	-5.16330000	2.68009100	0.56450800
Н	-5.38492800	3.26441200	-1.11786600
Н	-1.81985700	3.69651600	-0.48863800
Н	-3.09487700	4.05954400	0.71482300

S254 | Page

Н	-3.28993200	4.59404500	-0.98583700
С	1.75772400	0.82707800	-0.95681300
С	0.65387500	1.48577000	-0.38703500
Ν	1.08232700	2.46692900	0.47512300
С	2.54780400	2.58634300	0.41164400
Ν	2.94637000	1.51997500	-0.52580100
С	1.76171400	0.27074300	-2.34489400
С	4.03876800	0.66446700	-0.06439300
0	-0.58787400	1.16994900	-0.48863600
С	3.03734800	3.99556200	-0.05536200
С	4.56919300	3.95926500	-0.20447600
С	2.40030100	4.34463200	-1.40896900
С	2.67170500	5.06333400	0.99238500
С	0.29631200	2.90453600	1.61301700
Н	2.96083700	2.39430600	1.41950400
Н	2.45934900	-0.57184300	-2.43367700
Н	0.76640700	-0.09407600	-2.61767900
Н	2.06977800	1.03671000	-3.06936900
Н	3.81423900	0.16983000	0.89556900
Н	4.21657700	-0.11968800	-0.80402000
Н	4.95580500	1.24895400	0.04505200
Н	5.05770400	3.66552200	0.73373600
Н	4.86840000	3.25639000	-0.98674900

S255 | Page

Н	4.94563800	4.95177500	-0.47776600
Н	1.30895600	4.40425800	-1.32872000
Н	2.64840900	3.58191900	-2.15410100
Н	2.76775300	5.31298100	-1.76866500
Н	1.59311700	5.23738100	1.04379000
Н	3.02128400	4.78167600	1.99426400
Н	3.14162400	6.02002300	0.73603300
Н	0.87119700	2.78871800	2.54134200
Н	-0.60206800	2.28816000	1.67415100
Н	-0.00975300	3.95348400	1.53330400
С	1.89601800	-2.16502300	-0.43374700
Н	1.54031700	-2.25675000	-1.45809600
С	1.51334300	-1.09641600	0.30929600
С	1.07800000	-0.76512800	1.53886200
Н	1.17457700	0.23704400	1.94922200
С	2.92376800	-3.12813400	-0.04250400
С	3.35459100	-4.09525500	-0.97685400
С	3.54130000	-3.13042500	1.22733600
С	4.34245400	-5.02226700	-0.65732400
Н	2.90033800	-4.11116000	-1.96573700
С	4.53625400	-4.05241800	1.53886200
Н	3.23068900	-2.39943300	1.96767400
С	4.94474600	-5.00841700	0.60369900

S256 | Page

Н	4.64684200	-5.75769600	-1.39850000
Н	4.99505700	-4.02827600	2.52482700
Н	5.71687200	-5.73071100	0.85428700

Н	0.66281800	-1.52811100	2.20113200

TS-Tr-All. A

Li	-2.71057400	-1.15798400	0.13917500
Li	0.24130800	-0.59214100	0.53238600
Li	-1.82776200	1.32482200	-0.65807700
0	-0.17639900	1.19800200	-0.02567800
N	-3.53056100	0.46807700	-0.57821800
N	-1.06530200	-2.02687000	0.69918600
С	0.94245300	1.85629900	-0.06125300
С	2.06092500	1.60942000	-0.86896900
Ν	3.05560400	2.59824300	-0.53063200
С	2.55332600	3.39634600	0.60438100
N	1.22821400	2.81271500	0.86811500
С	1.96600400	1.19407600	-2.30282500
С	2.50913200	4.92642200	0.28330600
С	2.11260600	5.72804100	1.53744900
С	3.91347800	5.37691600	-0.15927400
С	1.50895800	5.18839900	-0.85346300

S257 | Page

С	0.49376300	2.96335700	2.10963500
С	4.41947900	2.09317600	-0.37877000
Si	-3.86135000	0.10014100	-2.23886600
Si	-4.64581000	1.23562800	0.50569700
Si	-1.44011800	-2.25700300	2.37365900
Si	-0.61651600	-3.33556800	-0.35400200
С	-4.27210700	-1.74368900	-2.45602500
С	-5.27216300	1.06720100	-3.05423200
С	-2.28569200	0.50724100	-3.23973900
С	-6.21947000	0.20620700	0.76568900
С	-5.17094400	2.97219100	-0.06129500
С	-3.81525600	1.48434800	2.19734900
С	-0.91626600	-0.72365900	3.37150100
С	-3.33027600	-2.46714800	2.57998400
С	-0.64323300	-3.74893500	3.22852000
С	-1.95834800	-4.68434000	-0.42943500
С	1.01525200	-4.17663800	0.11112900
С	-0.39290700	-2.65829300	-2.11853100
С	3.05265300	-1.22826000	-0.74284700
С	2.59624600	-0.34450700	0.17776900
С	2.38715600	-0.22715100	1.50284700
Н	3.18795100	3.24777100	1.49758400
Н	1.92346600	2.07307300	-2.95980000

S258 | P a g e

Н	2.83380800	0.59308100	-2.60233200
Н	1.07028600	0.58597200	-2.46974500
Н	1.07558200	5.55065800	1.83493300
Н	2.75957400	5.48409800	2.39007700
Н	2.21396200	6.80210500	1.34402800
Н	3.92077600	6.45735900	-0.34321100
Н	4.66525800	5.16692300	0.61235900
Н	4.21185000	4.87301500	-1.08249900
Н	0.48805000	4.92421100	-0.55343400
Н	1.77342200	4.59754400	-1.73685300
Н	1.51401200	6.24822500	-1.13300200
Н	-0.19425100	3.81679500	2.08787500
Н	-0.08788000	2.05777300	2.29124100
Н	1.19422500	3.10870400	2.93956700
Н	4.66732700	1.47070900	-1.24173800
Н	5.12722600	2.92494700	-0.34062800
Н	4.54457400	1.47498400	0.52568600
Н	-3.51034700	-2.41555900	-2.04072300
Н	-5.22110800	-1.97256400	-1.95318200
Н	-4.38423200	-2.01120800	-3.51430000
Н	-6.22568900	0.92877800	-2.53129400
Н	-5.41067800	0.72674800	-4.08821500
Н	-5.06085300	2.14230000	-3.08393000

S259 | P a g e

Н	-1.38058900	0.03212600	-2.83865400
Н	-2.11134900	1.59382100	-3.28209600
Н	-2.37731800	0.16883600	-4.27919900
Н	-6.77096000	0.08827200	-0.17562700
Н	-6.89831500	0.67252200	1.49061200
Н	-5.98240600	-0.80090800	1.13312300
Н	-5.75180700	3.47515100	0.72238700
Н	-5.78707500	2.94879300	-0.96611600
Н	-4.29579500	3.60245900	-0.27354600
Н	-4.46566700	2.07446800	2.85515600
Н	-3.60425700	0.54062200	2.71103600
Н	-2.86523500	2.02961000	2.10824000
Н	-1.27457700	-0.78528200	4.40687200
Н	0.17713700	-0.63223500	3.40698600
Н	-1.31606900	0.20309800	2.94423200
Н	-3.61551500	-2.51034300	3.63884900
Н	-3.92611800	-1.65432800	2.13910300
Н	-3.65659400	-3.40456300	2.11000800
Н	-0.92689100	-4.69998600	2.76324900
Н	0.45073300	-3.68068600	3.20484300
Н	-0.95279200	-3.78964400	4.28072200
Н	-2.09445000	-5.16091100	0.54972200
Н	-1.69256400	-5.47299400	-1.14460400

S260 | P a g e

Η	-2.93334700	-4.28050100	-0.73311700
Н	1.83042500	-3.44628500	0.17698900
Н	1.29947100	-4.91287800	-0.65184700
Н	0.95118800	-4.70199000	1.06972900
Н	-1.33199200	-2.31424100	-2.56533400
Н	0.31208600	-1.81733700	-2.14097200
Н	0.01507500	-3.43617100	-2.77597000
Н	2.51968000	-1.34720300	-1.68258600
Н	2.32053100	-1.12271300	2.12381900
Н	2.35222700	0.72976700	2.01754400
С	4.29474600	-1.99065000	-0.63294500
С	6.68898700	-3.50338500	-0.52857100
С	5.14562300	-1.93479600	0.49219200
С	4.68328400	-2.82645100	-1.70241100
С	5.85607700	-3.57403700	-1.64835800
С	6.32336300	-2.67487600	0.53693000
Н	4.87137900	-1.30336600	1.33175600
Н	7.60504400	-4.08612700	-0.48488500
Н	6.96055200	-2.60951700	1.41603600
Н	6.12286600	-4.21395100	-2.48626800
Н	4.04558500	-2.88679900	-2.58211300

TS-Tr-All-A.2DME

S261 | P a g e

Li	-2.86963600	0.87827600	-0.05038100
Li	0.11032800	1.03843200	0.33435600
Li	-1.10078900	-1.76234000	-0.06267400
0	0.46149000	-0.78708200	0.03607600
Ν	-3.01002300	-1.17670800	0.08463400
Ν	-1.36911000	2.26912500	-0.05313000
С	1.68697700	-1.18232700	0.24410000
С	2.45910600	-1.02827000	1.39335900
Ν	3.70965700	-1.68524900	1.19319500
С	3.72938100	-2.24812900	-0.16320200
Ν	2.42825100	-1.84316000	-0.73609700
С	1.89888900	-0.94002100	2.78020700
С	3.94586000	-3.79548600	-0.15867200
С	3.94297000	-4.33287700	-1.60072200
С	5.31679100	-4.10122700	0.47134900
С	2.83735500	-4.46795000	0.66373800
С	2.30878800	-1.47138900	-2.13674600
С	4.93178500	-1.06579500	1.70737500
Si	-3.46038300	-1.81538500	1.62842300
Si	-3.89731200	-1.59597300	-1.33882500
Si	-0.80593400	2.91800200	-1.55913700
Si	-1.85893700	3.32550100	1.22746300

S262 | Page

С	-4.86379200	-0.89647500	2.52791100
С	-4.09843300	-3.61208400	1.59845300
С	-1.93771100	-1.75551900	2.77349400
С	-5.76739200	-1.26526200	-1.21965200
С	-3.81098700	-3.42086100	-1.87928400
С	-3.14316800	-0.62034400	-2.79448700
С	0.24707100	1.60503400	-2.44700100
С	-2.17439400	3.42556800	-2.78013100
С	0.31133200	4.44821800	-1.39411100
С	-3.14739200	4.61493700	0.67575000
С	-0.52411500	4.36369000	2.10402200
С	-2.56254800	2.24655600	2.63110800
0	-4.77762400	1.80214200	-0.29337400
0	-0.59577900	-3.63951700	-0.52341600
С	-0.88527500	-4.82447600	0.21582700
С	-0.12551300	-3.91886500	-1.83997100
С	-5.70027200	2.10634300	0.75137600
С	-5.27238300	2.23673400	-1.55889100
Н	4.54614300	-1.80134200	-0.75941200
Н	1.79744600	-1.94375900	3.21793000
Н	2.53613600	-0.35291800	3.45113000
Н	0.90629900	-0.48301900	2.76476600
Н	2.95881500	-4.24193900	-2.06857200

S263 | P a g e

Η	4.66734000	-3.79916900	-2.22997000
Н	4.21399500	-5.39507900	-1.61199500
Н	5.53240000	-5.17442200	0.40912000
Н	6.12513500	-3.56834500	-0.04631700
Н	5.34071000	-3.81769600	1.52662200
Н	1.85369400	-4.19583000	0.27220400
Н	2.88477900	-4.13931200	1.70687400
Н	2.93958100	-5.55981300	0.63778900
Н	2.38448400	-2.34281700	-2.79170600
Н	1.33554500	-1.00161200	-2.27971700
Н	3.08046400	-0.74766700	-2.44006700
Н	4.66813900	-0.23502100	2.36565400
Н	5.53306200	-1.78177700	2.27983700
Н	5.56062200	-0.65371400	0.90619800
Н	-4.55203500	0.05931800	2.95983100
Н	-5.70099000	-0.70813900	1.84575900
Н	-5.24150000	-1.51462600	3.35277300
Н	-5.10572900	-3.65392600	1.16495600
Н	-4.17101300	-4.00258900	2.62190900
Н	-3.47057700	-4.29479700	1.02010600
Н	-1.58059300	-0.72418200	2.88623800
Н	-1.08783200	-2.35222400	2.41279200
Н	-2.18557100	-2.12877900	3.77518300

S264 | Page

Н	-6.23104100	-1.99266400	-0.54086800
Н	-6.25883400	-1.37085200	-2.19537300
Н	-5.98136400	-0.26881300	-0.82882900
Н	-4.20816500	-3.52709200	-2.89743700
Н	-4.40868300	-4.06287900	-1.22373500
Н	-2.78791000	-3.80417600	-1.87624100
Н	-3.78731100	-0.64416800	-3.68236700
Н	-2.94088500	0.43193800	-2.56312600
Н	-2.17866800	-1.06171100	-3.08188100
Н	0.51555200	1.95676400	-3.45127600
Н	1.18948400	1.39999400	-1.92136700
Н	-0.29629600	0.65878700	-2.56021100
Н	-1.74244100	3.99908300	-3.61041300
Н	-2.68400800	2.56026600	-3.21898800
Н	-2.92893700	4.05565900	-2.29647300
Н	-0.21596800	5.30865800	-0.96466400
Н	1.18837000	4.24604000	-0.76763800
Н	0.67956500	4.74977200	-2.38309700
Н	-2.67070300	5.38437100	0.05463400
Н	-3.60411700	5.12570200	1.53312600
Н	-3.94224700	4.15974900	0.08037500
Н	0.14673100	3.75247000	2.71712100
Н	-1.02300700	5.07188400	2.77980800

S265 | Page

Н	0.09060900	4.95114900	1.41422400
Н	-3.21308300	1.43624500	2.28849200
Н	-1.73565800	1.77193200	3.17586900
Н	-3.13358100	2.83768400	3.35801300
Н	-1.16322700	-4.51593500	1.22428100
Н	-1.71880700	-5.37173600	-0.24340600
Н	-0.00158400	-5.47274400	0.26468100
Н	0.84139800	-4.43216400	-1.80034400
Н	-0.00447500	-2.96288700	-2.34973000
Н	-0.84699300	-4.53732000	-2.38991900
Н	-5.92028000	3.18167600	0.77227200
Н	-6.63495100	1.54541800	0.61439100
Н	-5.24244100	1.81619700	1.69382200
Н	-5.34087000	3.33195700	-1.59249200
Н	-4.57487400	1.89761100	-2.32124200
Н	-6.26176700	1.80329200	-1.75677900
С	1.90541500	1.97597200	1.48605400
Н	1.60759400	1.76156200	2.50961300
С	2.75358400	1.20679700	0.78824500
С	3.72267400	1.18519500	-0.14467500
Н	3.77957800	0.34298400	-0.82229600
Н	1.56849600	2.92254500	1.06770100
С	4.84907300	2.11484300	-0.21807400

S266 | P a g e

С	5.91293800	1.82661200	-1.09876400
С	4.94848800	3.28125500	0.56901700
С	7.02136600	2.66497800	-1.19446500
Н	5.85743600	0.93238900	-1.71716600
С	6.06003100	4.11277300	0.47553500
Н	4.14391600	3.52397600	1.25646300
С	7.10418300	3.81524600	-0.40697700
Н	7.82383400	2.41809300	-1.88566400
Н	6.11139400	5.00605400	1.09369500
Н	7.96627000	4.47254300	-0.48137500

TS-Tr-All-B.2DME

Li	-2.66305000	-1.00231000	0.01362000
Li	0.34912500	-0.82229900	0.61190800
Li	-1.19818600	1.75336300	-0.22034200
0	0.39717000	1.04155700	0.37067300
Ν	-2.93038500	0.92044200	-0.70899500
Ν	-1.14434300	-2.04036500	0.90719800
С	1.60453900	1.49829000	0.29951800
С	2.60886400	1.13915300	-0.62137600
Ν	3.80618600	1.86634600	-0.26395700
С	3.51509500	2.66661300	0.93575700

S267 | Page

Ν	2.12341300	2.31866300	1.27602600
С	2.36158800	0.97463500	-2.08917800
С	3.71752300	4.19308400	0.67096500
С	3.35984100	5.00769000	1.92678400
С	5.19705000	4.43836400	0.32483000
С	2.83707600	4.63493700	-0.50924300
С	1.66151700	2.27269700	2.65269200
С	5.03934200	1.08293700	-0.21046700
Si	-2.97905200	1.06367900	-2.43401000
Si	-4.23563300	1.55233300	0.23356300
Si	-1.22014100	-2.21690500	2.62851100
Si	-0.93950400	-3.43902200	-0.09924300
С	-3.96955600	-0.28765100	-3.33283800
С	-3.72855200	2.68914000	-3.09320700
С	-1.20839000	0.96727700	-3.11952300
С	-5.94720800	0.94856300	-0.33939800
С	-4.37271700	3.45182800	0.27079100
С	-3.96276900	1.06757500	2.05577000
С	-0.73889900	-0.57384400	3.46280300
С	-2.93051500	-2.70340700	3.30722400
С	-0.04112000	-3.52224600	3.35562300
С	-2.23309400	-4.79220400	0.24893600
С	0.74513700	-4.30303600	0.01292800

S268 | Page

С	-1.06240600	-2.85991500	-1.91395200
0	-4.44692500	-2.16355800	-0.16758000
0	-0.86581200	3.71753700	-0.14861200
С	-1.03339600	4.64013000	-1.22322900
С	-0.76275600	4.36087800	1.11914400
С	-4.79699000	-2.97256900	-1.28995200
С	-5.41069600	-2.29143200	0.87663600
С	3.13794000	-1.75550600	-1.03732700
С	2.79625600	-0.97769500	0.02465600
С	2.58664100	-1.08408300	1.34905900
Н	4.16652000	2.36943000	1.77647600
Н	2.35104200	1.94940600	-2.59477200
Н	3.15162200	0.36762600	-2.54669700
Н	1.40933200	0.47263400	-2.27246800
Н	2.28578700	4.98187500	2.13391900
Н	3.88809800	4.63660400	2.81469200
Н	3.64034800	6.05849000	1.79009800
Н	5.37780500	5.50850900	0.16938900
Н	5.86047300	4.10272500	1.13253400
Н	5.47590800	3.91326100	-0.59302200
Н	1.78469400	4.40359900	-0.31748400
Н	3.13574400	4.11279200	-1.42308800
Н	2.93201900	5.71443000	-0.67741700

S269 | Page

Н	1.51940600	3.27358000	3.06736400
Н	0.71074000	1.74023100	2.67784800
Н	2.38046100	1.73974900	3.29325100
Н	5.14892700	0.51804500	-1.13911200
Н	5.89919300	1.75095900	-0.11002200
Н	5.05112100	0.35899800	0.62087100
Н	-3.45933300	-1.25620700	-3.33094000
Н	-4.95653700	-0.42244600	-2.87687200
Н	-4.12122100	-0.00502100	-4.38254800
Н	-4.80989200	2.73632800	-2.91599400
Н	-3.57514500	2.75017200	-4.17860500
Н	-3.28515600	3.58285600	-2.64264000
Н	-0.73863800	0.01394700	-2.85046400
Н	-0.55209500	1.76981900	-2.75646700
Н	-1.21395600	1.03230800	-4.21479400
Н	-6.24851100	1.47165000	-1.25589700
Н	-6.72232800	1.13580000	0.41454300
Н	-5.93347700	-0.12082700	-0.56533700
Н	-5.11077500	3.76455600	1.02120700
Н	-4.68817200	3.86083100	-0.69465900
Н	-3.41587800	3.91483200	0.53176900
Н	-4.85945800	1.25752900	2.65912900
Н	-3.68533300	0.01790500	2.20183300

S270 | Page

Н	-3.14994200	1.66589400	2.48925100
Н	-0.99610100	-0.58856400	4.52946800
Н	0.34238000	-0.40142000	3.39146200
Н	-1.25038300	0.28263600	3.00824800
Н	-2.84966600	-2.95533000	4.37261600
Н	-3.67071400	-1.90154600	3.22070800
Н	-3.32223200	-3.58408500	2.78550300
Н	-0.32544600	-4.54170100	3.06828900
Н	0.99425800	-3.36570300	3.03316100
Н	-0.06127200	-3.47378500	4.45229400
Н	-1.96616400	-5.33576000	1.16409800
Н	-2.29235200	-5.52822300	-0.56285300
Н	-3.22589800	-4.36151400	0.40327800
Н	1.57693500	-3.61203700	-0.16710100
Н	0.80730700	-5.09052200	-0.75051700
Н	0.90199800	-4.77742300	0.98724400
Н	-1.89238700	-2.17134400	-2.11246200
Н	-0.13998500	-2.33117200	-2.19090300
Н	-1.16662400	-3.70583900	-2.60494800
Н	-1.04563000	4.05940000	-2.14635200
Н	-1.98071100	5.18576500	-1.12209200
Н	-0.19751600	5.35082000	-1.25134800
Н	0.12644600	5.00198400	1.15491200

S271 | Page

Н	-0.67058000	3.57639200	1.87084900
Н	-1.65667300	4.96447600	1.32550700
Н	-4.99765500	-4.00524000	-0.97702100
Н	-5.68223300	-2.56425800	-1.79478000
Н	-3.95306100	-2.97062300	-1.97692700
Н	-5.35392200	-3.28784100	1.33293600
Н	-5.18933400	-1.53506900	1.62763600
Н	-6.42493000	-2.12230100	0.49108400
Н	2.57355300	-1.67100000	-1.96333800
Н	2.42935900	-2.06614100	1.79629800
Н	2.65059000	-0.23949300	2.02995600
С	4.32131000	-2.60540900	-1.10185700
С	6.61793100	-4.25506700	-1.33991400
С	5.19452600	-2.80889100	-0.00971600
С	4.64024500	-3.25488500	-2.31559800
С	5.76325300	-4.06869000	-2.43006000
С	6.32242500	-3.61460500	-0.13240800
Н	4.97397500	-2.32912600	0.93885200
Н	7.49554300	-4.88963900	-1.42840700
Н	6.97580100	-3.74982300	0.72679200
Н	5.97518800	-4.55834000	-3.37794300
Н	3.98792100	-3.11276000	-3.17511700

TS-Tr-All. B

Li	3.12601000	0.61254600	0.23727800
Li	0.12813800	0.47337700	0.92086100
Li	1.50819100	-1.09695400	-1.17837900
0	0.04343400	-1.11391700	-0.16088200
Ν	3.38722700	-0.75449300	-1.13163400
Ν	1.75058000	1.47507100	1.30288600
С	-1.20606800	-1.46199700	-0.23928400
С	-2.26829500	-0.69448400	-0.77964300
Ν	-3.45424600	-1.54377500	-0.70218900
С	-3.09203100	-2.81685400	-0.04255600
Ν	-1.68117600	-2.60174900	0.33300400
С	-1.98178500	0.10363300	-2.02688500
С	-4.04004400	-3.22459700	1.13777700
С	-5.50365900	-3.08842700	0.67256000
С	-3.81356000	-4.70346800	1.51998900
С	-3.82939000	-2.32310500	2.36089500
С	-0.81692300	-3.62847600	0.87414300
С	-4.17703900	-1.72631600	-1.95871100
Si	3.64035700	0.12168800	-2.60428600
Si	4.32210800	-2.11871100	-0.60831300
Si	2.29711800	0.95748000	2.86070900

S273 | P a g e

Si	1.47417300	3.13582300	0.87603000
С	4.38654100	1.83574600	-2.25495800
С	4.74819800	-0.69760500	-3.90426200
С	1.93207700	0.36563900	-3.42472300
С	6.13164600	-1.66063900	-0.26350600
С	4.31050600	-3.55837800	-1.84908100
С	3.57304500	-2.82423900	0.98981600
С	1.43326300	-0.67371000	3.33101400
С	4.18325800	0.63773400	2.79395600
С	2.02572700	2.15126200	4.30616300
С	3.06275400	4.17666900	0.99730600
С	0.16127700	3.98949600	1.94821500
С	0.85361100	3.22092400	-0.91869700
С	-2.73996400	2.08685100	0.12786400
С	-2.33616900	0.88078000	0.64784700
С	-1.93710000	0.43790900	1.85559000
Н	-3.12428700	-3.64751200	-0.77920700
Н	-1.96251400	-0.52156700	-2.92837900
Н	-2.70070300	0.91179700	-2.17153700
Н	-1.00016200	0.57142700	-1.92139300
Н	-5.73820900	-2.05469800	0.40489900
Н	-5.71886100	-3.73541900	-0.18695700
Н	-6.17532200	-3.38979600	1.48416800

S274 | Page

Н	-4.57586900	-5.01857200	2.24144500
Н	-3.89736500	-5.36012500	0.64446000
Н	-2.84127100	-4.88186900	1.98559100
Н	-3.97210600	-1.27216700	2.09845800
Н	-2.82116000	-2.42925600	2.77562900
Н	-4.54347400	-2.58827300	3.14933100
Н	-0.97634500	-4.57952300	0.35025400
Н	0.21835700	-3.31064300	0.74043600
Н	-0.99051800	-3.78500700	1.94331900
Н	-4.47295800	-0.75145300	-2.35164000
Н	-3.58535700	-2.25894200	-2.72555900
Н	-5.08843100	-2.29799800	-1.78079300
Н	3.80585300	2.42825700	-1.53660000
Н	5.40320400	1.73009800	-1.85312700
Н	4.45432000	2.43535700	-3.17145700
Н	5.73966000	-0.94340900	-3.50601200
Н	4.89315300	-0.01817700	-4.75365400
Н	4.30464900	-1.62234100	-4.29036400
Н	1.19466500	0.84005300	-2.76284700
Н	1.51458800	-0.59185800	-3.77364200
Н	2.00345500	1.01069300	-4.30908700
Н	6.61221700	-1.26354000	-1.16649100
Н	6.71684000	-2.52687000	0.06965500

S275 | Page

Н	6.21065400	-0.88957000	0.51395700
Н	4.77372000	-4.45149200	-1.41071400
Н	4.85467800	-3.32161400	-2.76912800
Н	3.28378400	-3.82909700	-2.13321600
Н	4.13608400	-3.70799800	1.31549300
Н	3.57525400	-2.11177200	1.82079500
Н	2.53284100	-3.14278500	0.83861900
Н	1.95818000	-1.18090300	4.15020000
Н	0.40774200	-0.48067500	3.67316500
Н	1.37987900	-1.37922700	2.49235300
Н	4.54255200	0.19035600	3.72944000
Н	4.50991200	-0.04207800	1.99365200
Н	4.71747800	1.58780000	2.65663800
Н	2.51842900	3.11729400	4.14583000
Н	0.95864100	2.34399200	4.46592800
Н	2.43042000	1.72189600	5.23161800
Н	3.44890500	4.17630700	2.02477500
Н	2.88457900	5.22145000	0.71312700
Н	3.86069100	3.79180800	0.34860700
Н	-0.73659800	3.36766300	2.04951600
Н	-0.14452100	4.94401300	1.50114500
Н	0.53304000	4.20064300	2.95659000
Н	1.58068600	2.82434300	-1.63613600

S276 | Page

Η	-0.08759100	2.67146200	-1.05229100
Н	0.65494900	4.26226000	-1.20241500
Н	-2.06182700	2.92851700	0.25779200
Н	-2.15289300	1.01114200	2.75605300
Н	-1.51007600	-0.54980400	2.02198100
С	-3.97346600	2.34800100	-0.58189700
С	-6.39114900	2.90834400	-1.96456900
С	-5.01394600	1.38986600	-0.66530300
С	-4.19738200	3.60092800	-1.19978400
С	-5.38239800	3.87361000	-1.87554600
С	-6.19371500	1.66738000	-1.34952200
Н	-4.87826900	0.42518800	-0.18465800
Н	-7.31396400	3.12140800	-2.49716900
Н	-6.97326000	0.90929100	-1.39551400
Н	-5.52043300	4.84692000	-2.34143500
Н	-3.42040700	4.36088700	-1.14339000

TS-Tr-Alk

Li	2.44856300	-0.68414000	0.38728500
Li	0.11724400	1.10080000	0.65337000
Li	0.18109700	-1.58872800	-0.85523900
0	-0.89400500	-0.46368500	-0.00318800

S277 | Page

N	1.99726300	-2.18264100	-0.80309100
Ν	1.97717600	0.93068000	1.36037600
С	-2.17675100	-0.30566500	0.09230700
С	-2.95066200	0.75046400	-0.45717300
Ν	-4.32228100	0.44494900	-0.09681900
С	-4.37072800	-0.75395100	0.74662800
Ν	-2.94925800	-1.12028800	0.85984300
С	-2.73972600	1.16286000	-1.89501300
С	-5.26661100	-1.89682600	0.15068000
С	-5.51089100	-3.00447700	1.19489400
С	-6.63308400	-1.29852000	-0.23183100
С	-4.60000200	-2.47475900	-1.10737600
С	-2.42229500	-2.13086300	1.75216400
С	-5.18773600	1.55777500	0.27156400
Si	2.16327700	-2.23134500	-2.52794100
Si	2.43179100	-3.50977300	0.21998800
Si	1.64271000	0.95659700	3.06600200
Si	3.21358800	1.98623200	0.73210000
С	3.88298000	-1.79212700	-3.17866900
С	1.65862800	-3.89979200	-3.28914000
С	0.91427500	-0.97251200	-3.24928800
С	3.94855100	-4.49273500	-0.35522300
С	0.97943500	-4.70918300	0.47325700

S278 | Page

С	2.87940300	-2.82023800	1.93751800
С	0.10594400	-0.11082400	3.42717000
С	3.00194200	0.24782500	4.18757800
С	1.25896500	2.70855300	3.69542600
С	4.81420600	2.00363400	1.76179800
С	2.71273000	3.79834400	0.53132800
С	3.75660800	1.28567200	-0.96097500
Н	-4.75820900	-0.50915200	1.75463600
Н	-3.34202200	0.52210100	-2.55240200
Н	-3.02772000	2.20331000	-2.06732300
Н	-1.68922200	1.07458200	-2.18085400
Н	-4.60506600	-3.55961700	1.44971300
Н	-5.92671500	-2.58979100	2.12218900
Н	-6.23408700	-3.73116300	0.80701500
Н	-7.30534300	-2.09148400	-0.57863800
Н	-7.11223400	-0.80931600	0.62564600
Н	-6.52858600	-0.56605600	-1.03633000
Н	-3.65716400	-2.98118600	-0.86931400
Н	-4.38807800	-1.67662300	-1.82742300
Н	-5.25869300	-3.20538700	-1.59041900
Н	-2.51627800	-3.14059600	1.33432300
Н	-1.36666000	-1.92430700	1.92516200
Н	-2.95102500	-2.10000900	2.71086800

S279 | Page

Н	-4.79468600	2.46858500	-0.18712300
Н	-6.21033000	1.41012300	-0.08923500
Н	-5.23488800	1.71843700	1.36126000
Н	4.16812700	-0.76938800	-2.91141000
Н	4.63653500	-2.47058600	-2.76011500
Н	3.92693700	-1.87997300	-4.27156000
Н	2.33819900	-4.71345700	-3.01282100
Н	1.64908800	-3.83855600	-4.38478100
Н	0.65026100	-4.19325800	-2.96704900
Н	1.08731600	0.05648200	-2.91433300
Н	-0.14520400	-1.20634800	-3.04745300
Н	0.99892100	-0.96881700	-4.34310500
Н	3.78720200	-5.00722800	-1.30872900
Н	4.21938900	-5.25362700	0.38757700
Н	4.81388600	-3.82937900	-0.48055900
Н	1.23979800	-5.53984100	1.14108900
Н	0.65439100	-5.13881000	-0.48264400
Н	0.11761900	-4.19040100	0.91730200
Н	3.12784900	-3.64308100	2.61931400
Н	3.76035200	-2.16181200	1.91597800
Н	2.05649700	-2.26386200	2.40234300
Н	-0.16979700	-0.01340300	4.48478600
Н	-0.77698900	0.16711100	2.84223400

S280 | Page

Н	0.30692100	-1.17243300	3.23890400
Н	2.63981500	0.19838800	5.22305000
Н	3.28991900	-0.76642500	3.88977900
Н	3.90550100	0.86529400	4.18384000
Н	2.16612200	3.32445500	3.72830300
Н	0.54548300	3.22070000	3.03719200
Н	0.83849800	2.68828600	4.70899600
Н	4.68210200	2.52545300	2.71695200
Н	5.60662000	2.52757700	1.21166400
Н	5.17360400	0.99088000	1.98414000
Н	2.57734400	4.26530400	1.51378400
Н	1.78168300	3.92490600	-0.02647500
Н	3.49906100	4.35476300	0.00463600
Н	4.28269100	0.32412600	-0.86228500
Н	2.93342400	1.14426300	-1.67054500
Н	4.46885700	1.97403400	-1.43239600
С	-1.19031100	3.01600700	0.01678100
С	-2.00093300	2.23737000	0.62761100
С	-2.52084200	2.13895100	2.03397200
Н	-2.85417300	1.12825000	2.29040800
Н	-1.75713900	2.44765000	2.75605800
Н	-3.38046300	2.80625100	2.16506700
С	-0.61945800	3.40395900	-1.23106100

S281 | Page

С	-1.04197600	4.59441100	-1.87554900
С	0.41342900	2.66835300	-1.86384300
С	-0.48105200	4.99772900	-3.08127400
Н	-1.81841400	5.19222200	-1.40656500
С	0.98552500	3.08966800	-3.06086700
Н	0.77984600	1.75461000	-1.40328300
С	0.54058500	4.25511500	-3.68729300
Н	-0.83652200	5.91156600	-3.55183500
Н	1.78222400	2.49853000	-3.50682700
Н	0.98466100	4.58467500	-4.62197500

LiHMDS

Ν	0.01392800	0.68602100	-0.02632700
Li	-0.58734700	2.38091500	-0.01172200
Si	-1.52313200	-0.03479700	-0.00285200
Si	1.59592800	0.04037100	-0.00583000
С	2.01986000	-0.81227000	1.64002400
С	1.90053600	-1.22933500	-1.38774600
С	-2.76031300	1.46433500	0.06492900
С	-1.91256200	-1.10571100	1.51376300
С	-1.99714400	-1.02262600	-1.55113400
Н	1.34992900	-1.66140900	1.82650900

S282 | Page

Н	3.04975400	-1.19228000	1.65306900
Н	1.90693800	-0.11813100	2.48243700
Н	1.68243900	-0.79829500	-2.37267400
Н	2.93921400	-1.58441000	-1.39657900
Н	1.25292000	-2.10726700	-1.26504900
Н	-2.66834200	2.07203300	0.98293900
Н	-3.79356600	1.09857600	0.06735700
Н	-2.70104400	2.13179100	-0.81494400
Н	-1.72124000	-0.55675900	2.44379400
Н	-2.95513200	-1.44877200	1.52619500
Н	-1.27097500	-1.99591200	1.52582200
Н	-1.33926100	-1.89278500	-1.66749900
Н	-3.03082900	-1.38960400	-1.50888400
Н	-1.88854000	-0.41254800	-2.45636900
С	2.83927300	1.46244200	-0.24602000
Н	3.87876600	1.11144600	-0.22792300
Н	2.67929500	1.96565700	-1.20939900
Н	2.73717000	2.21472600	0.54931200

LiHMDS.3DME

Ν	0.93683400	0.10766000	-0.11050600
Li	-0.96018700	-0.17573000	-0.00712600

S283 | P a g e

Si	1.89705800	-1.26818200	0.16349900
Si	1.46016400	1.71343900	-0.28635100
С	1.22161400	2.72226800	1.31969300
С	3.28414900	1.94942200	-0.79290700
С	0.80104800	-2.80186800	0.49334900
С	3.05492600	-1.14088900	1.67854000
С	3.01562300	-1.75496900	-1.30389300
0	-1.52780100	-0.50314900	1.89704200
С	-0.57832200	-0.34144300	2.95092100
С	-2.78105400	-0.99926300	2.33452100
Η	1.82818600	2.29860300	2.13101300
Η	1.50615500	3.77679600	1.20660800
Η	0.17371700	2.69464500	1.64874000
Η	3.48616200	1.48817700	-1.76771300
Η	3.53766100	3.01500700	-0.87095100
Η	3.97409200	1.49889900	-0.06842000
Η	0.09344100	-2.62394200	1.31300600
Η	1.41421100	-3.67104300	0.76341200
Η	0.21328600	-3.07337000	-0.39191300
Η	2.48766400	-1.01574200	2.61018000
Η	3.67833800	-2.03809800	1.79049100
Η	3.72869500	-0.27909000	1.59093300
Н	3.75316100	-0.97138000	-1.51582800

S284 | Page

Н	3.56516600	-2.68539700	-1.10727700
Н	2.42618100	-1.90338200	-2.21821800
Н	0.31609800	0.07625900	2.48939100
Н	-0.34412500	-1.30854100	3.41625900
Н	-0.97046600	0.34462000	3.71562200
Н	-3.21956700	-0.34420600	3.10208700
Н	-3.44076500	-1.01526300	1.46382000
Н	-2.68521400	-2.01425700	2.74640600
С	0.44130000	2.61782000	-1.62469100
Н	0.71855600	3.67608800	-1.71495000
Н	0.58908800	2.14815200	-2.60628200
Н	-0.63003700	2.57062500	-1.39751200
0	-1.56392100	-1.38344200	-1.49811600
0	-2.54812900	1.12304000	-0.24709900
С	-2.69497700	2.19970400	0.67352100
Н	-2.22403600	3.11385200	0.28838900
Н	-3.75810300	2.39535700	0.87578700
Н	-2.19646200	1.89324400	1.59331500
С	-3.19440100	1.36874700	-1.49133600
Н	-2.99851400	0.49932100	-2.11905500
Н	-4.27796700	1.49034700	-1.34753300
Н	-2.79198300	2.26909800	-1.97481700
С	-2.51213500	-2.43751800	-1.47931800

S285 | Page

Н	-3.11965900	-2.31218900	-0.57974100
Н	-3.16393300	-2.40013500	-2.36484200
Н	-2.01318300	-3.41595900	-1.44240100
С	-0.69381700	-1.42298000	-2.63128000
Н	-1.26401700	-1.25340000	-3.55612300
Н	0.04630000	-0.63732800	-2.47262800
Н	-0.18141700	-2.39216600	-2.69173700

4-Imidazolidinone

С	1.51189900	-0.57302400	0.62785500
С	1.45981600	0.91603400	0.27319500
N	0.26677400	1.12813000	-0.35781500
С	-0.50415800	-0.10735100	-0.54239400
Ν	0.43520100	-1.19222700	-0.18197300
С	2.92225200	-1.13237500	0.47105400
С	0.86780800	-1.94774200	-1.35521000
0	2.31878900	1.75577200	0.50068300
С	-1.83616300	-0.19857100	0.26241600
С	-2.49672500	-1.54143700	-0.10221800
С	-1.57119600	-0.14577400	1.77494300
С	-2.78638600	0.94691700	-0.13406300
С	-0.02719900	2.39543400	-0.99914600

S286 | P a g e

Η	1.23575600	-0.65706900	1.68854800
Н	-0.76604200	-0.18666700	-1.60865100
Н	3.28190900	-1.06424300	-0.55970300
Η	3.59002700	-0.52885900	1.09210000
Η	2.97921000	-2.17502400	0.79889000
Н	1.38956900	-1.34323100	-2.11986500
Н	1.52970500	-2.76236900	-1.05177500
Н	-0.01349200	-2.39918000	-1.82176700
Н	-2.73854900	-1.58851700	-1.17239100
Н	-1.83189400	-2.37606900	0.13877600
Н	-3.43234900	-1.67030800	0.45410800
Н	-1.02852900	0.76598000	2.05027400
Н	-0.98767800	-1.01286700	2.09892900
Н	-2.51847800	-0.15117300	2.32671000
Н	-2.43918200	1.91423000	0.24013600
Η	-2.90006200	1.02073600	-1.22332800
Η	-3.78174400	0.77136600	0.29014500
Η	-0.48939700	2.22047000	-1.97687700
Η	0.91738100	2.93096200	-1.12596700
Н	-0.69997500	3.02167500	-0.40382000

Alkyne

С	-2.14537600	1.20796400	0.00004700
С	-0.75263000	1.21241700	-0.00004300
С	-0.03537200	0.00027700	-0.00009000
С	-0.75204500	-1.21221400	-0.00004600
С	-2.14479700	-1.20842500	0.00004800
С	-2.84677300	-0.00039800	0.00009400
Н	-2.68559300	2.15100700	0.00008300
Н	-0.20486000	2.14998500	-0.00006600
Н	-0.20374400	-2.14946800	-0.00006900
Н	-2.68458100	-2.15171600	0.00008700
Н	-3.93341100	-0.00065900	0.00017000
С	1.39355600	0.00052100	-0.00016700
С	2.60556700	0.00068600	-0.00021600
С	4.06490500	-0.00028000	0.00018300
Н	4.46329500	-0.49124100	0.89717800
Н	4.46368800	-0.53273900	-0.87260400
Н	4.46300000	1.02154600	-0.02364000

DME

0	0.00000300	0.59018800	0.00001000
С	-1.17201800	-0.19528900	0.00000300
Н	-1.23534800	-0.83961000	0.89356500

S288 | P a g e
Н	-2.02288000	0.49169300	-0.00106100
Н	-1.23437100	-0.84109400	-0.89255800
С	1.17201300	-0.19529100	-0.00000500
Н	1.23493300	-0.84018100	-0.89318200
Н	2.02287000	0.49169900	0.00021700
Н	1.23479600	-0.84052800	0.89294600

(TMS)₂NH

N	-0.00005000	0.03199200	-0.81647600
Si	-1.59218100	0.01161900	-0.08845800
Si	1.59199900	-0.00537300	-0.08846900
С	2.07537700	1.68060000	0.61895100
С	1.62118400	-1.26981600	1.31684400
С	-2.81839500	0.64216000	-1.38056700
С	-1.60690500	1.13379100	1.43286400
С	-2.09229900	-1.72981100	0.45447000
Н	1.35487800	2.00727900	1.37829300
Н	3.06655800	1.65138900	1.08931300
Н	2.09753400	2.44683400	-0.16536700
Н	1.37962400	-2.27333600	0.94802000
Н	2.60964300	-1.31034400	1.79102100
Н	0.89463700	-1.02040400	2.09997600

S289 | P a g e

Η	-2.59279400	1.67462700	-1.67242800
Η	-3.84384200	0.62035300	-0.99206500
Η	-2.80009200	0.02458100	-2.28756300
Η	-1.35542600	2.16624000	1.16424600
Η	-2.59502100	1.13707300	1.90939500
Η	-0.88317500	0.80179000	2.18734000
Н	-1.37583300	-2.13292000	1.18031100
Η	-3.08406700	-1.73668100	0.92464300
Η	-2.11993900	-2.41842000	-0.39868800
С	2.82127400	-0.49413000	-1.43798300
Η	3.84584200	-0.51284300	-1.04711400
Η	2.59880200	-1.48954300	-1.84026100
Η	2.80344000	0.21806800	-2.27267700
Н	0.00070700	0.05809000	-1.83156400

TS-Di-All.C.DME

Li	-1.00877500	0.00931500	1.23848500
Ν	-2.61503400	0.21392800	0.15062600
Li	-1.76429000	-1.35970600	-0.61278900
Si	-2.58160000	1.35748000	-1.13358400
Si	-3.91162400	-0.10613400	1.22893300
С	-1.23987200	0.79135300	-2.37565700
С	-2.14102700	3.10966800	-0.57032600
С	-4.21269800	1.44523900	-2.11264100

С	-5.15692800	-1.35149200	0.50304900
С	-3.19153400	-0.92153800	2.79844500
С	-4.87113200	1.43395700	1.78574900
0	-2.37524200	-2.83371100	-1.66396900
С	-3.45344400	-2.74187100	-2.59635300
С	-2.27601800	-4.11088000	-1.03013700
Н	-1.44736600	-0.19864900	-2.81221400
Н	-0.25158000	0.75138800	-1.90175800
Н	-1.16606600	1.49271100	-3.21594200
Н	-1.17004100	3.12633300	-0.06161500
Н	-2.08279000	3.81343200	-1.41038800
Н	-2.89553100	3.48729600	0.13149900
Н	-4.51434000	0.45490800	-2.47887000
Н	-5.03320200	1.82328700	-1.49040900
Н	-4.12634600	2.11026000	-2.98140600
Н	-4.64960700	-2.29559500	0.26075500
Н	-5.59942200	-0.96492000	-0.42341500
Н	-5.97533000	-1.58366600	1.19620700
Н	-2.63695000	-1.84096600	2.56347000
Н	-3.98737600	-1.19222500	3.50374800
Н	-2.50705500	-0.24722800	3.33418900
Н	-5.63975700	1.18747200	2.52926100
Н	-5.37172900	1.92656600	0.94322300
Н	-4.19119700	2.16782000	2.23669300
Н	-3.43399800	-1.73088400	-3.00732300
Н	-3.32164500	-3.47220600	-3.40538600
Н	-4.41478100	-2.91091300	-2.09542600
Н	-1.44680300	-4.04298600	-0.32291900

S291 | P a g e

Н	-2.07286800	-4.89305400	-1.77323500
Н	-3.20365700	-4.34846900	-0.49199800
С	1.71460500	-1.35391500	1.73965400
С	0.95866300	-1.65577100	0.60070200
N	1.80751700	-1.79315100	-0.48781100
С	3.18998800	-1.96862500	-0.00665600
Ν	3.11642400	-1.45340000	1.38138200
С	1.23184600	-1.69733900	3.11682800
С	3.91922200	-2.22960100	2.32550700
0	-0.32853100	-1.69058700	0.48814900
С	4.29352900	-1.31807500	-0.91813100
С	4.53902600	-2.20684700	-2.15882600
С	3.90785100	0.09820800	-1.36294000
С	5.63014100	-1.22963600	-0.15534800
С	1.34844300	-2.39052900	-1.72418900
Н	3.41119700	-3.06214400	0.02039600
Н	1.69591500	-1.07851200	3.89267900
Н	0.15224800	-1.53739800	3.17035300
Н	1.41869200	-2.74867400	3.37476600
Н	3.61802400	-3.29331900	2.37076700
Н	4.97278800	-2.19089000	2.05608300
Н	3.82481400	-1.80069300	3.32516300
Н	4.75167900	-3.24473400	-1.87249200
Н	3.69638900	-2.21351300	-2.85403600
Н	5.40767900	-1.83287000	-2.71268300
Н	3.75857400	0.75194300	-0.50098000
Н	2.98548500	0.09961000	-1.95191800
Н	4.70278500	0.52389700	-1.98677200

S292 | P a g e

Н	5.53936800	-0.58757500	0.72481700
Н	5.99159200	-2.21759000	0.15505300
Н	6.39389800	-0.79564500	-0.81074100
Н	1.61337800	-1.78090300	-2.59298900
Н	0.26114200	-2.47858300	-1.69067800
Н	1.77705600	-3.39487700	-1.85847800
С	0.30906100	1.18832400	2.78385300
Н	0.56571900	0.84906200	3.78242600
С	1.02383700	0.89473700	1.67964000
С	1.33623400	1.35425400	0.45158400
Н	1.43442900	0.64267700	-0.36287500
Н	-0.53045800	1.88622700	2.71312300
С	1.61627100	2.74780200	0.10037300
С	1.90057800	3.07001500	-1.24345500
С	1.59583400	3.80304400	1.03622500
С	2.14719700	4.38335200	-1.63549400
Н	1.91497500	2.27565400	-1.98526500
С	1.85186000	5.11277200	0.64232800
Н	1.37829900	3.58013200	2.07620900
С	2.12681400	5.41579700	-0.69527900
Н	2.35631900	4.60126000	-2.68021300
Н	1.83187500	5.90693800	1.38500000
Н	2.31765300	6.44147000	-0.99926300

TS-Di-Alk.DME

Li	0.83649800	0.45047500	0.23275400
Ν	2.35120800	-0.79711100	0.11388100
Li	0.84482300	-1.97983500	-0.21348600

Si	3.01264300	-1.21452800	1.64526300
Si	3.24079300	-0.54615100	-1.34101100
С	1.64656400	-2.08531700	2.66169000
С	3.57155300	0.30067000	2.63693000
С	4.47067200	-2.43635900	1.56121900
С	3.68479500	-2.20151300	-2.17792900
С	2.16099800	0.41201200	-2.57987000
С	4.85623900	0.42602400	-1.10981900
0	0.52708500	-3.80233000	-0.65662200
С	1.50884000	-4.83580500	-0.56721300
С	-0.49067200	-4.06203400	-1.62430400
Н	1.25240700	-2.98030900	2.15549800
Н	0.80102700	-1.41363300	2.85958700
Н	2.02919200	-2.41575700	3.63546500
Н	2.74043000	1.00582700	2.76999100
Н	3.94968500	0.03332900	3.63196600
Н	4.37028400	0.83410500	2.10656300
Н	4.19521500	-3.35746200	1.03051900
Н	5.32952000	-2.00452200	1.03339300
Н	4.80985600	-2.72111000	2.56537400
Н	2.77428300	-2.76083200	-2.43658800
Н	4.28224700	-2.83181600	-1.50773100
Н	4.25544200	-2.05848800	-3.10437600
Н	1.18143800	-0.06457100	-2.72434900
Н	2.64664200	0.46649800	-3.56256800
Н	1.98848700	1.44342600	-2.24654400
Н	5.33660600	0.63729100	-2.07363700
Н	5.57764400	-0.12620800	-0.49505800

S294 | Page

Н	4.67034100	1.38561600	-0.61294200
Н	2.22335100	-4.53123700	0.19951800
Н	1.03844000	-5.78460300	-0.27770600
Н	2.03286800	-4.95775500	-1.52357200
Н	-1.16349700	-3.20233100	-1.60952800
Н	-1.04462100	-4.97387500	-1.36439800
Н	-0.05328300	-4.17355900	-2.62585300
С	-2.03571000	1.06675800	-0.16946800
С	-1.72380400	-0.32137400	-0.12211500
Ν	-2.79214300	-1.03438400	0.33704200
С	-3.97849000	-0.16754800	0.45175300
Ν	-3.46499300	1.15541800	0.06438600
С	-1.51926900	1.90892900	-1.31098100
С	-3.92847000	2.30496600	0.83173900
0	-0.57278100	-0.83902300	-0.33695800
С	-5.16724300	-0.65121200	-0.44544900
С	-6.29649600	0.39365500	-0.39458700
С	-4.69130700	-0.81287400	-1.89724600
С	-5.72049500	-1.98829000	0.08366600
С	-2.64008300	-2.29777200	1.03367000
Н	-4.32132500	-0.16961800	1.50494600
Н	-1.57238200	2.97399500	-1.07944700
Н	-0.47117000	1.68674300	-1.53143100
Н	-2.10698600	1.71643700	-2.21778100
Н	-3.78210400	2.20035100	1.91913300
Н	-3.37008000	3.18527600	0.50501000
Н	-4.98896000	2.49311100	0.64984300
Н	-6.61198200	0.59870200	0.63662400

Н	-5.98339700	1.33357400	-0.85673100
Н	-7.17214500	0.02654000	-0.94211000
Н	-3.92307200	-1.58989100	-1.98042100
Н	-4.26827300	0.12757400	-2.26535300
Н	-5.52889900	-1.09303400	-2.54653500
Н	-5.01010700	-2.81031100	-0.04108400
Н	-5.98384500	-1.92252200	1.14748600
Н	-6.62949100	-2.26216000	-0.46409200
Н	-3.28128300	-2.30985300	1.92152000
Н	-1.59824100	-2.40877600	1.34741600
Н	-2.90160600	-3.15841500	0.40747900
С	0.05757200	2.45224500	1.31058000
С	-0.88575400	1.59283500	1.43116300
С	-1.39361300	0.79268000	2.59990000
Н	-1.14456400	-0.27180200	2.50214300
С	0.79404700	3.35433800	0.49816200
С	2.10876100	3.04169800	0.05862100
С	0.27941000	4.62851300	0.13581300
С	2.82816200	3.91891000	-0.74978200
Н	2.57175700	2.11133000	0.38031700
С	1.01596000	5.50078000	-0.65462800
Н	-0.71141900	4.90930700	0.48342000
С	2.29243600	5.15457100	-1.11893300
Н	3.82432100	3.63548500	-1.08175300
Н	0.58799100	6.46525100	-0.91978800
Н	2.85978400	5.84134100	-1.74026700
Н	-0.93759100	1.15790300	3.52475600
Н	-2.48154800	0.84948100	2.70235200