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Materials. All solvents were dried using standard procedures; all other reagents were reagent grade quality

obtained from commercial suppliers and used without further purification. Melting points are uncorrected. NMR

spectra were recorded at 600, 400, and 300 MHz for 1H and 100 MHz for 13C. Chemical shifts are expressed in ppm

() using the residual solvent signal as an internal reference (7.16 ppm for C6H6; 7.26 ppm for CHCl3 and 3.31 for

CD2HOD). Mass spectra were recorded in the ESI mode. Compounds CX,1 1a,b,2 2b,3 3a,b4 and 4a,b5 were

synthesised according to published procedures.

Methods.

UV/Vis Spectroscopy. All spectroscopic measurements were performed on air-equilibrated CH2Cl2 (Uvasol) solutions at

room temperature. UV/Vis spectra were recorded with a Cary 300 (Agilent) spectrophotometer.

Electrochemical measurements. Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) experiments were

carried out in argon-purged CH2Cl2 (Sigma-Aldrich) with an Autolab 30 multipurpose instrument interfaced to a PC. The

working electrode was a glassy carbon electrode (Amel, 0.07 cm2), carefully polished with an alumina-water slurry on a felt

surface immediately before use. The counter electrode was a Pt wire, separated from the solution by a frit, and an Ag wire

was employed as a quasi-reference electrode, and ferrocene was present as an internal standard. The concentration of the

examined compounds was ranging from 0.05 to 0.3 mM. Tetrabutylammonium hexafluorophosphate (TBAPF6) was added

in a 100-fold proportion with respect to the sample concentration, as supporting electrolyte. Cyclic voltammograms were

obtained at scan rates varying from 50 to 1000 mV s−1. Differential pulse voltammetries were performed with a scan rate of

20 mV s−1 (pulse height 75 mV). The IR compensation was used, and every effort was made throughout the experiments in

order to minimise the resistance of the solution. The electrochemical reversibility of the voltammetric wave of ferrocene

was taken as an indicator of the absence of uncompensated resistance effects.

Synthetic Procedures

Bis(pyridylpyridinium) ditosylate 5b (DC-4): in a 100 mL round bottomed flask, a solution of ditosylate 2b (0.50 g,

0.98 mmol) and 4,4'-bipyridyl (0.38 g, 2.45 mmol) in dry CH3CN (40 mL) was refluxed under stirring for 24 h. After

this period, the solution was cooled to room temperature and then evaporated to dryness under reduced pressure.

The resulting solid residue was then recrystallised from CH3OH to afford 0.46 g of 5b as a white sticky solid

compound (57 %). 1H NMR (CD3OD, 400 MHz)  (ppm) = 9.11 (d, 4H, 3J = 6.3 Hz), 8.84 (d, 4H, 3J = 4.6 Hz), 8.51 (d,

4H, 3J = 4.0 Hz), 7.99 (d, 4H, 3J = 6.2 Hz), 7.71 (d, 4H, 3J = 6.7 Hz), 7.23 (d, 4H 3J = 7.1), 4.68 (t, 4H, 3J = 7.5 Hz), 2.37

(s, 6H), 2.13-2.00 (m, 4H), 1.5-1.3 (m, 16H); 13C NMR (CD3OD, 100 MHz):  (ppm) = 153.5, 150.4, 145.1, 142.2, 140.3,

128.5, 126.9,125.7, 125.5, 121.7, 61.3, 31.1, 29.2, 29.1, 28.8, 25.9, 19.9. MS (ESI): m/z: 240.1 [M-2TsO]2+.
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General procedure for the synthesis of the viologen axles 6a,b (DC-5): in a sealed 100 mL glass autoclave, a

solution of the appropriate salt 4a,b (0.3 mmol) and 1,12-dibromododecane (0.46 g, 1.4 mmol) in dry CH3CN (40

mL) were refluxed under vigorous stirring for 7 days. Afterwards, the solution was cooled to room temperature to

allow the precipitation of the desired product upon standing.

6a: 0.15 g (52 %) were isolated after the precipitation as a pale-yellow solid compound. M.p. >250 °C (dec.); 1H

NMR (CD3OD, 600 MHz)  (ppm) = 9.27 (d, 2H, 3J = 6.5 Hz), 9.24 (d, 2H, 3J = 6.7 Hz), 8.63-8.69 (m, 4H), 7.68 (d, 1H,
3J = 8.1 Hz), 7.20-7.33 (m, 11H), 5.07 (s, 1H), 4.74 (t, 2H, 3J = 7.6 Hz), 4.69 (t, 2H, 3J = 7.5 Hz), 4.16 (t, 2H, 3J = 6.5 Hz),

3.43 (t, 2H, 3J = 6.7 Hz), 2.36 (s, 1.5H), 2.13-2.06 (m, 2H), 2.05-1.99 (m, 2H), 1.80-1.86 (m, 2H), 1.69-1.63 (m, 2H),

1.5-1.3 (m, 20H); 13C NMR (100 MHz):  (ppm) = 174.3, 151.3, 147.0, 143.7, 141.8, 140.3,129.9, 129.3, 128.7, 128.3

(two res.), 126.9, 65.8, 63.3, 63.1, 58.2, 34.5, 33.9, 32.6, 32.3, 30.6, 30.5 (two res.), 30.1, 29.8, 29.2, 29.1, 27.3,

26.5, 26.2, 21.3; MS (ESI): m/z: 350.3 [M-2X]2+.

6b: 0.13 g (47 %) were isolated after the precipitation as a pale-yellow solid compound. M.p. >250 °C (dec.); 1H

NMR (CD3OD, 600 MHz)  (ppm) = 9.27 (d, 4H, 3J = 6.2 Hz), 8.67 (d, 4H, 3J = 5.6 Hz), 7.67 (d, 1H, 3J = 8.2 Hz), 7.20-

7.33 (m, 11H), 5.07 (s, 1H), 4.74 (t, 4H, 3J = 7.6 Hz), 4.14 (t, 2H, 3J = 6.5 Hz), 3.43 (t, 2H, 3J = 6.7 Hz), 2.36 (s, 1H),

2.13-2.06 (m, 4H), 1.79-1.89 (m, 2H), 1.63-1.57 (m, 2H), 1.5-1.2 (m, 32H); 13C NMR (100 MHz):  (ppm) = 171.4,

150.0, 145.8, 139.0, 128.5, 128.4, 128.2, 127.0, 126.9, 125.6, 64.9, 62.0, 57.0, 33.1, 32.6, 31.2, 29.2 (four res.), 29.1

(two res.), 28.8, 28.5, 27.8, 25.9, 25.0, 20.0. MS (ESI): m/z: 392.2 [M-2X]2+.

General procedure for the synthesis of the dumbbell 7a,b: in a sealed 100 mL glass autoclave, a solution of the

appropriate pyridylpyridinium salt 4a,b (0.33 mmol) and ditosylate 2b (0.056 g, 0.11 mmol) in dry CH3CN (40 mL)

was refluxed under vigorous stirring for 7 days. The solution was then cooled to room temperature to allow the

precipitation of the desired product.

7a: 0.14 g (74 %) were isolated after precipitation as a white solid compound. M.p.= 225.4-225.9 °C; 1H NMR

(CD3OD, 400 MHz):  (ppm) = 9.24 (d, 4H, 3J = 6.9 Hz), 9.21 (d, 4H, 3J = 7.2 Hz), 8.64 (d, 8H, 3J = 6.0 Hz), 7.69 (d, 8H,
3J = 8.2 Hz), 7.36-7.20 (m, 28H), 5.09 (s, 2H), 4.72 (t, 4H, 3J = 7.6 Hz), 4.67 (t, 4H, 3J = 7.5 Hz), 4.17 (t, 4H, 3J = 6.5 Hz),

2.37 (s, 12H), 2.12-2.05 (m, 4H), 1.70–1.59 (m, 4H), 1.5-1.3 (m, 26H); 13C NMR (100 MHz):  (ppm) = 172.8, 149.8,

145.6, 142.2, 140.3, 138.9, 128.5, 128.3, 128.2 (two res.), 126.9 (two res.), 125.5, 64.4, 61.9, 61.7, 56.8, 31.2, 30.9,

29.2, 29.1, 28.8, 27.9, 25.9, 25.1, 24.8, 19.9. MS (ESI): m/z: 267.7[M-4TsO]4+..
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7b: 0.15 g (71 %) were isolated after precipitation as a white solid compound. M.p.= 237.7-238.3 °C; 1H NMR

(CD3OD, 400 MHz):  (ppm) = 9.22 (d, 8H, 3J = 6.6 Hz), 8.63 (d, 8H, 3J = 6.5 Hz), 7.69 (d, 8H, 3J = 8.2 Hz), 7.37-7.18

(m, 28H), 5.09 (s, 2H), 4.71 (t, 8H, 3J = 7.6 Hz), 4.15 (t, 4H, 3J = 6.4 Hz), 2.36 (s, 12H), 2.11–1.99 (m, 8H), 1.60 (t, 4H,
3J = 6.5 Hz), 1.5-1.2 (m, 48H); 13C NMR (100 MHz):  (ppm) = 172.9, 149.7, 145.6, 142.3, 140.3, 138.9, 128.5, 128.3,

128.2 (two res.), 126.9 (two res.), 125.5, 64.8, 61.9, 56.9, 31.2, 31.1, 29.2 (four res.), 29.1 (two res.), 28.8, 28.2,

25.8, 25.5, 20.0; MS (ESI): m/z: 309.7[M-4TsO]4+..

General procedure for the synthesis of the [3]rotaxanes orientational isomers UU: in a sealed glass tube, the

appropriate dumbbell component DC-2 (4a,b) (0.14 mmol) was suspended in 2 mL of dry toluene, then wheel CX

(0.22 g, 0.15 mmol) and the ditosylate 2b (31 mg, 0.06 mmol) were added. The mixture was stirred at room

temperature until the complete dissolution of the reagents was observed. After stirring at 65 °C for 7 days, the

solvent was evaporated under reduced pressure. The crude residue was then purified by column chromatography

(Hex:EtOAc:MeOH = 60:35:5). The purified product was then dissolved in 2 mL of dichloromethane, and a solution

of AgOTs in ethanol (20 mL) was added. The mixture was stirred for 2 hours, and then the solvent was evaporated

to dryness under reduced pressure. The solid residue was taken up in dichloromethane and filtered to remove the

silver salts.

R6UU was obtained as a red sticky solid in 62% yield. 1H NMR (CDCl3, 400 MHz):  (ppm) = 8.9, 8.8, 8.63 and 8.59

(4 br. s, 12H); 7.81 (d, 8H, J = 8.1 Hz); 7.70 (br. s, 4H); 7.58 (br. s., 6H); 7.5-7.3 and 7.43 (m and br. d, 58H, J  7 Hz);

7.20 (d, 8H, J = 8.1 Hz); 7.08 (br. t, 12H, J  6 Hz); 6.92 (br. s, 10H); 6.80 and 6.75 (br. t, br. s, 8H, J  7 Hz); 6.67 and

6.63 (br. d and br. s, 6H, J  4 Hz); 6.24 (br. d, 3H, J  4 Hz); 5.08 and 5.05 (2 br. s, 2H); 4.49 (d, 12H, J = 14.9 Hz);

4.36 (br. t, 4H, J  6.5 Hz); 4.03, 3.96, 3.9, 3.82 and 3.75 (br. s, s, br. s, br. s, 60 H); 3.62 (q, 12H, J = 6.9 Hz); 3.46 (d,

12H, J = 14.9 Hz); 3.22 (br. t, 4H); 2.82 (br. s., 1H); 2.38 (s, 12H); 2.03, 1.96, 1.83 and 1.64 (4 br. s., 16H); 1.44 and

1.41 (br. s, s, 58H); 1.34 -1.13 (m, 30H); 1.0, 0.86, 0.76 and 0.66 (4 br. s, 16H); 13C NMR (100 MHz):  (ppm) = 172.5,

153.2, 152.5, 148.1, 147.6, 145.7, 143.9, 142.7, 142.3, 140.4, 139.9, 138.7, 136.7, 133.8, 131.9, 128.9, 128.8, 128.7,

128.5, 127.4, 126.1, 125.3, 124.2, 121.3, 117.7, 116.6, 72.5, 71.6, 70.0, 66.6, 65.1, 61.2, 60.9, 60.6, 57.2, 34.5, 31.7,

31.3, 29.5, 29.3, 29.1, 28.9, 28.4, 27.8, 26.2, 21.4, 15.4. For complete proton assignment see Fig. S1-S7; HR-MS (ESI,

Orbitrap LQ) calculated for C266H316N16O34S2 m/z (z = 2): 2171.14602 (24 %), 2171.64769 (70 %), 2172.14937 (100

%), 2172.65105 (95 %), 2173.15273 (68 %), 2173.65440 (39 %), 2174.15608 (18 %), 2174.65776 (7 %); Found:

271.14727 (21 %), 2171.64984 (64 %), 2172.14021 (97 %), 2172.65105 (100 %), 2173.15302 (80 %), 2173.65450

(55 %), 2174.15436 (31 %), 2174.65442 (15 %).
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R12UU was obtained as a red sticky solid in 43% yield. 1H NMR (CDCl3, 400 MHz):  (ppm) = 8.96, 8.83, 8.63 and

8.60 (4 br. s, 14H); 7.83 and 7.70 (d, br. s., 14H, J = 7.8 Hz); 7.6 – 7.2 (m, 60H); 7.21 (d, 8H, J = 7.7 Hz); 7.09 (br. t,

15H, J  7 Hz); 6.93 (br. s, 10H); 6.9 – 6.7 (m, 11H), 6.6 (br. s, 5H); 60.5 (br. s, 3H); 5.05 (s, 2H); 4.50 (d, 11H, J = 14.8

Hz); 4.25 and 4.20 (br. s, t, 9H, J = 7.1 Hz); 4.06, 4.00, and 3.87 (3 br. s, 58 H); 3.66 (q, 16H, J = 7.1 Hz); 3.47 (d, 13H,

J = 14.8 Hz); 3.18 (br. t, 4H); 2.86 (br. s., 1H); 2.39 (s, 12H); 2.09 (br. s, 4H); 1.77, 1.68, 1.57, 1.49, 1.41, 1.35, 1.3 -

1.2 and 1.19 (4 br. s, s, br. s, m, br. s, 169H); 0.93, 0.82, 0.72 and 0.65 (4 br. s, 18H); 13C NMR (100 MHz):  (ppm) =

172.6, 153.1, 152.8, 148.1, 144.0, 142. 7, 142.3, 140.4, 139.9, 138.8, 136.7, 133.9, 131.9, 128.9, 128.8, 128.6 (2

res.), 127.3, 126.1, 125.3, 124.1, 121.4, 117.7, 116.6, 72.5, 71.4, 70.1, 66.7, 65.2, 61.3, 60.6, 57.2, 34.5, 31.7, 31.3,

30.6, 30.2, 29.9, 29.8 (2 res.), 29.7, 29.3, 29.1, 28.9, 28.6, 28.3, 26.2, 25.9, 21.4, 15.4. For complete proton

assignment see Fig. S21; HR-MS (ESI, Orbitrap LQ) calculated for C271H333N16O31S: m/z (z = 3): 1446.4892 (20 %),

1446.8236 (61 %), 1447.1580 (95 %), 1447.4924 (100 %), 1447.8267 (80 %), 1448.1610 (53 %), 1448.4952 (29 %),

1448.8295 (14 %); Found: 1446.4878 (17 %), 1446.8230 (63 %), 1447.1573 (97 %), 1447.4916 (100 %), 1447.8258

(81 %), 1448.1599 (54 %), 1448.4940 (30 %), 1448.8286 (13 %).

General procedure for the synthesis of the [3]Rotaxanes orientational isomers LL: in a sealed glass tube, dumbbell

component DC-4 (5b) (35 mg, 0.043 mmol) was suspended in 2 mL of dry toluene, then wheel CX (170 mg, 0.12

mmol) and the appropriate dumbbell component DC-1 (3a,b) (0.11 mmol) were added. The mixture was stirred at

room temperature until the complete dissolution of the reagents. After stirring at 65 °C for 7 days, the solvent was

evaporated under reduced pressure. The crude mixture was then purified through column chromatography

(Hex:EtOAc:MeOH = 60:35:5). The purified product was then dissolved in 2 mL of dichloromethane, and a solution

of AgOTs in ethanol (20 mL) was added. The mixture was stirred for 2 hours, and then the solvent was evaporated

to dryness under reduced pressure. The solid residue was taken up in dichloromethane and filtered to remove the

silver salts.

R6LL was obtained as a red sticky solid in 50% yield. 1H NMR (CDCl3, 400 MHz):  (ppm) = 8.63 and 8.60 (2 br. s,

12H); 7.81 (br. d, 8H, J  6 Hz); 7.74 (br. s, 4H); 7.62 (br. s., 2H); 7.6-7.3 (m, 48H); 7.26 (m, 8H); 7.20 (d, 8H, J = 8 Hz);

7.07 and 7.02 (br. s and br. t, 14H); 6.92 (br. s, 8H); 6.82 and 6.74 (br. d, br. t, 10H); 6.61 and 6.55 (2 br. s, 3H); 6.07,

6.03 and 5.96 (3 br. s, 3H); 5.08, 5.04 and 5.01 (3 br. s, 2H); 4.50 (d, 12H, J = 14.9 Hz); 4.3-3.8, 4.08, 4.03 and 3.89

(m, 3 br. s, 64H); 3.69 (q, 12H, J = 6.9 Hz); 3.48 (d, 12H, J = 14.9 Hz); 3.15 (br. s, 4H); 2.95 (br. s, 1H); 2.39 (s, 12H);

2.14 (br. s, 4H), 1.84, 1.73, 1.64, 1.52, 1.41, 1.31 (4 br. s, s, t, 124H, J = 7.2 Hz); 0.99, 0.90, 0.75, 0.65 and 0.58 (5 br.

s, 14H); 13C NMR (100 MHz):  (ppm) = 172.6, 153.1, 152.4, 148.2, 148.1, 144.0, 142.7, 142.0, 140.2, 140.1, 138.7,
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136.6, 133.8, 131.9, 129.0, 128.8 (2 res.), 128.7, 128.6, 127.3, 126.1, 125.2, 124.1, 121.4, 117.6, 116.6, 72.5, 70.1,

66.7, 66.6 (2 res.), 65.0, 61.2, 60.2, 57.2, 34.5, 31.8 (2 res.), 31.4, 30.9, 29.7, 29.1, 28.5, 28.4, 28.2, 25.7, 24.9, 21.4,

15.5. For complete proton assignment see Fig. S8-S14; HR-MS (ESI, Orbitrap LQ) calculated for C259H309N16O31S: m/z

(z = 3): 1390.42663 (26 %), 1390.76108 (72 %), 1391.09554 (100 %), 1391.42999 (92 %), 1391.76444 (64 %),

1392.09889 (36 %), 1392.43334 (16 %), 1392.76779 (7 %), 1393.10224 (2 %); Found: 1390.42712 (23 %),

1390.76050 (66 %), 1391.09497 (100 %), 1391.42957 (89 %), 1391.76392 (76 %), 1392.09778 (39 %), 1392.43201

(23 %), 1392.76831(13 %), 1393.09827 (4 %).

R12LL was obtained as a red sticky solid in 38 % yield. 1H NMR (CDCl3, 400 MHz):  (ppm) = 8.61 (br. s, 12H); 7.82

and 7.73 (d, br. s, 12H, J = 7.4 Hz); 7.71, 7.56, 7.47, 7.43, 7.41, 7.39, 7.36, 7.34 and 7.3 – 7.2 (6 br. s., 2 s, m, 61H);

7.21 (d, 11H, J = 8 Hz); 7.07 (br. t, 17H, J = 7.15 Hz); 6.94 (br. s, 11H); 6.79 (br. t, 12H, J = 6.7 Hz); 6.61 (br. s, 5H);

6.06 (br. s, 3H); 5.06 (s, 2H); 4.52 (d, 11H, J = 14.5 Hz); 4.27 (br. s, 2H); 4.19 (t, 5H, J = 6.7 Hz); 4.08, 4.03 and 3.89

(br. s, s, br. s, 58H); 3.69 (q, 16H, J = 6.9 Hz); 3.48 (d, 14H, J = 14.9 Hz); 3.15 (br. s, 4H); 2.95 (br. s, 1H); 2.39 (s, 12H);

2.14 (br. s, 3H), 1.85, 1.7 – 1.6, 1.52, 1.4 – 1.2 and 1.15 (br. s, m, br. s, s, m, br. s, 172H); 1.0 – 0.8, 0.78 and 0.61

(m, 2 br. s, 20H); 13C NMR (100 MHz):  (ppm) = 172.6, 153.1, 152.4, 148.2, 148.1, 147.9, 144.0, 142.7, 142.3, 140.3,

140.0, 138.8, 136.7, 136.1, 134.3, 133.8, 133.1, 131.9, 129.0, 128.8, 128.6 (2 res.), 127.2, 126.1, 125.3, 124.1, 121.4,

117.7, 116.7, 72.5, 70.1, 66.6, 65.4, 61.2, 61.0, 60.6, 57.2, 34.5, 31.8, 31.3, 31.1, 30.9, 30.7, 29.8, 29.7, 29.6, 29.5,

29.4, 29.3, 29.1, 28.7, 28.6, 28.5, 26.1, 25.9, 21.4, 15.4. For complete proton assignment see Fig. S23; HR-MS (ESI,

Orbitrap LQ) calculated for C264H326N16O28: m/z (z = 4): 1042.11389 (23 %), 1042.36471 (67 %), 1042.6155 (99 %),

1042.86632 (100 %), 1043.11712 (76 %), 1043.36790 (47 %), 1043.61869 (24 %), 1043.86947 (11 %); Found:

1042.11169(22 %), 1042.36292 (69 %), 1042.61365 (100 %), 1042.86543 (94 %), 1043.11462 (77 %), 1043.36560(47

%), 1043.61584 (24 %), 1043.86633(11 %).

General procedure for the synthesis of the [3]Rotaxanes orientational isomers UL: in a sealed glass tube, the

appropriate dumbbell component DC-5 (6a,b) (0.055 mmol) was suspended in 2 mL of dry toluene, wheel CX (0.26

g, 0.176 mmol) was added, and the mixture was stirred at 80 °C for 4 hours. The solution was then cooled to room

temperature appropriate dumbbell component DC-2 (4a,b) (0.077 mmol) was added. After stirring at room

temperature for 30 min, the mixture was reacted at 80 °C for 7 days. The solvent was evaporated under reduced

pressure, and the crude mixture was purified through column chromatography (Hex:EtOAc:MeOH = 60:35: 5). The

purified product was then dissolved in 2 mL of dichloromethane, and a solution of AgOTs in ethanol (20 mL) was
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added. The mixture was stirred for 2 hours, and then the solvent was evaporated to dryness under reduced

pressure. The solid residue was taken up in dichloromethane and filtered to remove the silver salts.

R6UL was obtained as a red sticky solid in 42 % yield. 1H NMR (CDCl3, 400 MHz):  (ppm) = 8.66 and 8.61 (2 br. s,

12H); 7.83 (br. d, 8H, J  7 Hz); 7.64 -7.25 (m, 56H); 7.21 (d, 12H, J = 7.6 Hz); 7.08 and 7.02 (2t , 14H, J = 7.5 Hz );

6.90 (br. s, 10H); 6.7- 6.5 and 6.39 (m, br. s, 4H); 6.03 and 5.90 (2 br. s, 2H); 5.1, 5.08 and 5.04 (3s, 2H); 4.51 and

4.48 (2d, 12H, J = 14.4 Hz); 4.36 (t, 2H, J = 6.3 Hz); 4.2 (br. s., 3H), 4.06, 4.02 and 3.97 (2 br. s, s, 35H); 3.89 and 3.83

(2 br. s, 21H); 3.68 and 3.63 (2q, 15H, J = 6.9 Hz); 3.46 (d, 12H, J = 14.5 Hz); 3.23 (br. s, 2H); 3.11 (br. s, 2H); 2.40 (s,

12H); 2.15 and 2.07 (2 br. s, 4H); 1.95 (br. t, 2H); 1.80 and 1.71 (2 br. s, 15H); 1.6 -1.1 (m, 106H); 0.98, 0.86, 0.72,

and 0.57 (4 br. s, 16H); 13C NMR (100 MHz):  (ppm) = 172.6, 153.08, 152.4, 148.1, 148.0, 144.0, 142.7, 142.2, 140.5,

140.3, 140.0, 138.8, 138.6, 136.6, 135.8, 134.3, 133.3, 133.2, 131.9, 128.9 (2 res.), 128.8 (2 res.), 128.7 (2 res.),

128.6, 128.5, 127.5, 127.3, 126.1, 125.6, 125.3, 124.1, 124.0, 121.4, 121.2, 117.8, 117.7, 116.7, 72.6 (2 res.), 70.1,

70.0, 66.7, 66.6, 65.1, 61.4, 61.3, 60.9, 60.4, 60.2, 57.2, 57.1, 34.5, 31.7 (2 res.), 31.4, 30.8, 30.4, 30.2, 30.1, 29.9,

29.7, 29.6, 29.2, 29.0 (2 res.), 28.4, 27.8, 26.2, 26.1, 25.7, 24.8, 21.4, 15.5, 15.4. For complete proton assignment

see Fig. S15-S20; HR-MS (ESI, Orbitrap LQ) calculated for C266H316N16O34S2: m/z (z = 2): 2171.14602 (24 %),

2171.64769 (70 %), 2172.14937 (100 %), 2172.65105 (95 %), 2173.15273 (68 %), 2173.65440 (39 %), 2174.15608

(18 %), 2174.65776 (7 %); Found: 2171.14418 (21 %), 2171.64652 (63 %), 2172.14827 (94 %), 2172.64991 (100 %),

2173.15087 (82 %), 2173.65132 (55 %), 2174.15145 (30 %), 2174.65206 (14 %).

R12UL was obtained as a red sticky solid in 40 % yield. 1H NMR (CDCl3, 400 MHz):  (ppm) = 9.04, 8.82, 8.68 and

8.56 (2 br. s, 2 s, 12H); 7.82 and 7.6 (br. d, br. s, 12H, J  7 Hz); 7.6 – 7.2 (m, 82H); 7.21 (d, 17H, J = 7.6 Hz); 7.2 – 7.0

(m , 21H); 6.9 – 6.7 (m, 26H); 6.61 and 6.49 (2 br. s, 3H); 6.00 (br. s, 2H); 5.06 (s, 2H); 4.6 – 4.5 (m, 14H); 4.25 and

4.36 (br. s, t, 10H, J = 6.7 Hz); 4.06, 4.02 and 4.00 (br. s, 2 s, 45H); 3.88 (br. s, 35H); 3.7 – 3.6 (m, 24H); 3.47 (bd,

16H, J = 14 Hz); 3.17 and 2.95 (2 br. s, 6H); 2.39 (s, 12H); 2.20 (br. s, 4H); 1.79, 1.68, 1.52, 1.49, and 1.44 (5 br. s,

130H); 1.4 – 1.2 (m, 95H); 1.14, 1.00, 0.9 – 0.8, 0.74, 0.63 and 0.54 (2 br. s, m, 3 br. s, 39H); 13C NMR (100 MHz): 

(ppm) =153.1, 152.4, 148.0, 142.7, 138.8, 138.7, 134.0, 132.0, 128.9, 128.8 (2 res.), 128.6 (3 res.), 127.3, 127.2,

126.1, 121.4, 121.2, 117.7, 117.6, 116.5, 72.6, 70.1, 66.7, 65.4, 65.3, 61.4 (2 res.), 57.2 (2 res.), 34.5, 31.4, 30.0,

29.9 (2 res.), 29.7 (2 res), 29.6 (2 res.), 29.3, 29.0, 28.6 (2 res.), 25.9 (2 res.), 21.4, 15.5, 15.4. For complete proton

assignment see Fig. S22; HR-MS (ESI, Orbitrap LQ) calculated for C278H340N16O34S2: m/z (z = 2): 2255.23992 (22 %),

2255.74160 (67 %), 2256.24327 (100 %), 2256.74495 (99 %), 2257.246632 (74 %), 2257.74830 (44 %), 2258.24998

(22 %), 2258.75166 (9 %); Found: 2255.23668 (18 %), 2255.74953 (58 %), 2256.24190 (93 %), 2256.74351 (100 %),

2257.246381 (83 %), 2257.74418 (59 %), 2258.24485 (34 %), 2258.74509 (17 %).
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Figure S1. 1H NMR spectrum (400 MHz, CDCl3) of [3]rotaxane R6UU. The signals deriving from the paCo rotamer are indicated with an
asterisk (see Fig. S7).
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Figure S2. 13C DEPT-Q NMR spectrum (100 MHz, CDCl3) of [3]rotaxane R6UU. Positive signals indicate tertiary and primary carbons while
the negative the quaternary and secondary ones (solvent signals are negative).

Figure S3. 2D edited HSQC spectrum of [3]rotaxane R6UU. The cross-peaks with blue contours indicate CH couplings of tertiary and primary
carbons, while those with reddish contours the CH couplings of secondary carbons. The cross-peaks relative to the macrocycles methylene
bridging units have been highlighted with a green box, while those relative to the external and internal alkyl chains with blue and red
ellipses, respectively. The inset shows the enhanced correlations of the bridging methylene groups of the paCo rotamer (all the projection
peaks and correlations arising from this rotamer have been indicated with an asterisk).
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Figure S4. (Top) Magnitude mode 2D DQF-COSY spectrum of R6UU (CDCl3, 400 MHz); (down) Low-fields expansion.
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Figure S5. (Top) 2D TOCSY spectrum of R6UU (CDCl3, 400 MHz, mixing time = 40 ms); (down) mid-high fields expansion: the red rectangle
highlights the signals of the inner spacer, the blue rectangle those of the external arms.
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Figure S6. 2D ROESY spectrum of R6UU (CDCl3, 400 MHz, spin-locking = 200 ms). The cross-peaks with blue contours (negative signals)
indicate dipolar coupling between protons, while those with reddish contours (positive signals) indicate either diagonal peaks or cross-
peaks due to chemical exchange. The red dashed lines indicate the spatial proximity between the inner alkyl spacer, protons , and the
phenylurea groups at the wheels upper rim, protons b and c. Blue dashed lines evidence the spatial proximity between the dumbbell
external alkyl chains, protons 25, and the methoxy (OMe) and ethoxyethyl protons (d and e) present at the wheels lower rim. For the
protons labelling, see the sketch above the spectra.
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Figure S7 1H NMR stack plot (400 MHz, CDCl3) of the 1D gradient-selected ROESY spectra of R6UU (spin-lock = 200 ms) obtained by
irradiating the following resonances: a) 8.62, b) 6.62, c) 7.72, d) 6.14, e) 4.37, f) 2.78 ppm, and g) non-irradiated spectrum of R6UU taken
as the reference. The positive peaks indicate the resonances in chemical exchange with the irradiated ones, while the negative peaks are
due to dipolar coupling. Note that more than one positive peak is present in spectrum c) because of the overlap of the ¥ resonance with
other wheel's signals. Spectrum f) was recorded using a 1D gradient-selected NOESY sequence for sensitivity reasons. The sketch below
the stack plot shows the possible flip of one of the p-tert-butyl anisole ring of the wheel (coloured in dark green) in the cone conformation
(left) that determines the paCo rotamer formation (right). To evaluate as the paCo rotamer's formation affects the wheel's signals, see
the asterisked correlations in the HSQC depicted in Fig. S3.
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Figure S8. 1H NMR spectrum (400 MHz, CDCl3) of [3]rotaxane R6LL. The signals deriving from the paCo rotamer are indicated with an
asterisk.
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Figure S9. 13C DEPT-Q spectrum of R6LL in CDCl3 (100 MHz). Positive signals indicate tertiary and primary carbons while the negative the
quaternary and secondary ones (solvent signals are negative).

Figure S10. 2D edited HSQC spectrum of [3]rotaxane R6LL. The cross-peaks with blue contours indicate CH couplings of tertiary and primary
carbons, while those with reddish contours the CH couplings of secondary carbons. The cross-peaks relative to the macrocycles methylene
bridging units have been highlighted with a green box, while those relative to the external and internal alkyl chains with blue and red
ellipses, respectively. The inset shows the enhanced correlations of the bridging methylene groups of the paCo rotamer (all the projection
peaks and correlations arising from this rotamer have been indicated with an asterisk).
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Figure S11. (Top) Mid-high and (down) low fields expansions of magnitude mode DQF-COSY of R6LL (CDCl3, 400 MHz).
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Figure S12. (Top) 2D TOCSY spectrum of R6LL (CDCl3, 400 MHz, mixing time = 40 ms); (down) mid-high fields expansion: the red rectangle
highlights the signals of the inner spacer, the blue rectangle those of the external arms.
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Figure S13. (Top) 2D ROESY spectrum of R6UU (CDCl3, 400 MHz, spin-locking = 200 ms). The cross-peaks with blue contours (negative
signals) indicate dipolar coupling between protons, while those with reddish contours (positive signals) indicate either diagonal peaks or
cross-peaks due to chemical exchange. (Down) Levels-enhanced expanded region (see dashed box) of the 2D ROESY showing the dipolar
coupling between the dumbbell bis-viologen core protons with several wheels' comparts (see the sketch of the following page for further
details); for the sake of clarity, only negative levels are presented.
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Figure S14 1D selective ROESY spectrum (400 MHz, SL = 200 ms) with PFG signal selection of protons 3,4,5 (0.66 ppm); (bottom) the 1H
NMR reference spectrum. The protons spatial proximity has been highlighted with purple, green and blue solid lines (see the sketch above
the stack for the protons labelling).
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Figure S15. 1H NMR spectrum (400 MHz, CDCl3) of [3]rotaxane R6UL. Signals of the wheels' paCo rotamers are indicated with asterisks.
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Figure S16. 13C DEPT-Q spectrum of R6UL in CDCl3 (100 MHz). Positive signals indicate tertiary and primary carbons while the negative the
quaternary and secondary ones (solvent signals are negative).

Figure S17. 1H-13C edited HSQC NMR spectrum of R6UL in CDCl3 (600 MHz for 1H, 298 K). The methylene groups' cross-peaks have blue
contours, while those of methine and methyl groups red contours.
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Figure S18. (Top) Mid-high and (down) low-fields expansions of a magnitude mode DQF-COSY of R6UL (CDCl3, 600 MHz). The red lines
highlight the inner spacer's cross-peaks, the blue lines those of the external arms, the purple lines those of the viologen units, the green
lines those of phenylureido groups of CX.
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Figure S19. (Top) Mid and (down) high fields expansions of the 2D TOCSY spectrum of R6UL (CDCl3, 600 MHz, 298 K, mixing time = 60
ms). The red lines highlight the inner spacer's cross-peaks, the blue lines those of the external arms.
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Figure S20. Stack plot (CDCl3, 600 MHz) of 1D selective TOCSY spectra (mixing time: 0.06 s) with several PFG signal selection. The 1H
NMR reference spectrum of R6UL is at the bottom of the stack.
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Figure S21. (Top) 1H (400 MHz, CDCl3) and (down) 13C DEPT-Q (100 MHz, CDCl3) spectra of R12UU. The asterisks in the proton spectrum
indicate the resonances assigned to the wheel's paCo rotamer (see Fig. S7). In the DEPT-Q spectrum, the signals relative to primary and
tertiary carbons are phased positive, while secondary and quaternary carbons are negative.
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Figure S22. (Top) 1H (400 MHz, CDCl3) and (down) 13C DEPT-Q (100 MHz, CDCl3) spectra of R12UL. The asterisks in the proton spectrum
indicate the resonances assigned to the wheel's paCo rotamer (see Fig. S7). In the DEPT-Q spectrum, the signals relative to primary and
tertiary carbons are phased positive, while secondary and quaternary carbons are negative.
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Figure S23. (Top) 1H (400 MHz, CDCl3) and (down) 13C DEPT-Q (100 MHz, CDCl3) spectra of R12LL. The asterisks in the proton spectrum
indicate the resonances assigned to the wheel's paCo rotamer (see Fig. S7). In the DEPT-Q spectrum, the signals relative to primary and
tertiary carbons are phased positive, while secondary and quaternary carbons are negative.
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Figure S24 1H NMR stack plot (600 MHz, CDCl3) of the oriented [3]rotaxanes R12UU (bottom), R12UL (middle) and R12LL (top).
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Figure S25. HR-MS spectra of R6UU; in the inset, the experimental isotopic distribution is compared with the calculated one.

Figure S26 HR-MS spectra of R12UU; in the inset, the experimental isotopic distribution is compared with the calculated one.
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Figure S27. HR-MS spectra of R6LL, in the inset, the experimental isotopic distribution is compared with the calculated one.

Figure S28. HR-MS spectra of R12LL, in the inset, the experimental isotopic distribution is compared with the calculated one.
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Figure S29. HR-MS spectra of R6UL, in the inset, the experimental isotopic distribution is compared with the calculated one.

Figure S30. HR-MS spectra of R12UL, in the inset, the experimental isotopic distribution is compared with the calculated one.

Table S1. Photophysical data of the investigated species in CH2Cl2 at room temperature. (a) The number of independent measurements
is indicated in parentheses. (b) The absorption coefficient could not be precisely determined because of the low solubility in CH2Cl2.
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Figure S31. (Top) Absorption spectra of the [3]rotaxanes R6UU (Black), R6LL (Red) and R6UL (Blue) in CH2Cl2. Inset: Charge-transfer
absorption bands of the [3]rotaxanes. (Bottom) Absorption spectra of the [3]rotaxanes R12UU (Black), R12LL (Red) and R12UL (Blue) in
CH2Cl2. Inset: Charge-transfer absorption bands of the [3]rotaxanes.
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Figure S32. (Top) Absorption spectra of the [3]rotaxanes R6UU (Black), R6LL (Red) and R6UL (Blue) in CH2Cl2. The spectra are normalised with
respect to the maximum absorption. Inset: Maximum of the absorption bands of the [3]rotaxanes. (Bottom) Absorption spectra of the
[3]rotaxanes R12UU (Black), R12LL (Red) and R12UL (Blue) in CH2Cl2. The spectra are normalised with respect to the maximum of absorption.
Inset: Maximum of the absorption bands of the [3]rotaxanes.
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Figure S33. Absorption spectra of the dumbbells 7a (Black) and 7b (Red) in CH2Cl2. The spectra are normalised with respect to the
maximum of absorption.

Table S2. Electrochemical potentials of the investigated species obtained from the Differential Pulse Voltammetries in CH2Cl2.
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Figure S34. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 1.9 × 10-4 M solution of R6UU in CH2Cl2.

Figure S35. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 2.4 × 10-4 M solution of R6LL in CH2Cl2.

Figure S36. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 2.3 × 10-4 M solution of R6UL in CH2Cl2.
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Figure S37. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 2.5 × 10-4 M solution of R12UU in CH2Cl2. The process
observed around -1.8 V is not reproducible: as it cannot be reliably assigned, it is possibly related to the presence of an impurity.

Figure S38. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 2.4 × 10-4 M solution of R6LL in CH2Cl2.
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Figure S39. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 2.3 × 10-4 M solution of R6UL in CH2Cl2.
The process observed around -1.7 V is not reproducible: as it cannot be reliably assigned, it is possibly related to the presence of an
impurity.

Figure S40. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 9.6 × 10-5 M solution of dumbbell 7a in CH2Cl2.

Figure S41. CV (left, scan rate: 200 mV s-1) and DPV (right, scan rate: 20 mV s-1) of a 5.7 × 10-5 M solution of dumbbell 7b in CH2Cl2.
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