Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Enabling Highly (*R*)-Enantioselective Epoxidation of Styrene by Engineering Unique Non-Natural P450 Peroxygenase

Panxia Zhao,^{†,‡, \uparrow} Jie Chen,^{†,‡, \uparrow} Nana Ma,^{†,‡} Jingfei Chen,[†] Xiangquan Qin,^{†,§}

Chuanfei Liu,[†] Fuquan Yao,[†] Lishan Yao,[†] Longyi Jin,[§] and Zhiqi Cong*,^{†,‡}

[†]CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China [‡]University of Chinese Academy of Sciences, Beijing, 100049, China [§]Department of Chemistry, Yanbian University, Yanji, Jilin, 133002, China

* To whom correspondence should be addressed. E-mail: congzq@qibebt.ac.cn

Experimental Section

Materials

All chemical reagents were purchased from commercial sources (e.g. Aldrich, TCI, Fluka, and Alladin) and used without further purification until otherwise noticed. Styrene was freshly prepared by passing through a short column packed with aluminum oxide. Dual-functional small molecule (DFSM), *N*-(ω -imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe) was synthesized according to our previous report.¹

Expression and Purification of Cytochrome P450BM3 Enzymes

The full-length of Cytochrome P450BM3 enzymes and its heme domain forms were respectively cultured and purified according to previous report.^{1,2} Purified proteins were characterized by SDS pages (Figures S1). The formation of a ferrous CO complex was confirmed by UV/visible spectral change through the reduction of ferric heme of P450BM3 enzymes by addition of Na₂S₂O₄ in the presence of carbon monoxide (CO) (Figure S2). ³ The concentrations of P450BM3 and its variants were measured by Hemochrome binding assay.^{4,5} A general procedure is shown as below.

A pyridine solution was made by combining pyridine (1.75 mL) and 1 M aqueous of NaOH (0.75 mL). The solution was mixed at room temperature then centrifuged for 30 s at 5000 rpm to remove excess aqueous base. To a cuvette containing 0.75 mL of protein solution in phosphate buffer (0.1 M, pH 8.0), 0.25 mL of the pyridine solution was added followed by 2 mg of sodium dithionite. A UV/vis spectrum was recorded immediately. Hemoprotein concentration was determined from the absorbance of the hemochrome complex using extinction coefficients of ε_{418} = 196 mM^{/1} cm^{/1}. Absorbance was assigned as the difference between the peak max at 418 nm and the baseline at 420 nm as determined by extrapolating from two points on either side of the hemochrome peak (390 nm and 450 nm).

Mutagenesis and Recombination

All the mutations were made by PCR based site-directed mutagenesis and verified by DNA sequencing. The single mutants at the position of 87 were prepared according to previous report.¹ The F87 mutants were then used as parent templates to prepare the double mutants containing the positions of 87 and 268, respectively. The F87A/T268I, F87A/T268A mutant was used as parent template to prepare the triple mutants containing another position shown in Figure 3A. The quadruple mutants were respectively prepared by using the corresponding triple mutants as parent template. Beneficial mutations selected from the prepared mutations were recombined. All primers used were as follows.

Parent	primer	sequence		
template				
	T268A-F	5'- <u>GCG</u> ACAAGTGGTCTTTTATCATTTGC -3'		
	T268V-F	5'- GTGACAAGTGGTCTTTTATCATTTGC -3'		
	T268I-F	5'- <u>ATC</u> ACAAGTGGTCTTTTATCATTTGC -3'		
F87A	T268L-F	5'- <u>CTG</u> ACAAGTGGTCTTTTATCATTTGC -3'		
	T268F-F	5'- TTCACAAGTGGTCTTTTATCATTTGC -3'		
	T268W-F	5'- <u>TGG</u> ACAAGTGGTCTTTTATCATTTGC -3'		
	T268-R	5'- TTCGTGTCCCGCAATTAAGAATG -3'		
	T268V-F	5'- GTGACAAGTGGTCTTTTATCATTTGC -3'		
F87G	T268I-F	5'- <u>ATC</u> ACAAGTGGTCTTTTATCATTTGC -3'		
	T268-R	5'- TTCGTGTCCCGCAATTAAGAATG -3'		
	T268V-F	5'- GTGACAAGTGGTCTTTTATCATTTGC -3'		
F87V	T268I-F	5'- <u>ATC</u> ACAAGTGGTCTTTTATCATTTGC -3'		
	T268-R	5'- TTCGTGTCCCGCAATTAAGAATG -3'		
	T268V-F	5'- GTGACAAGTGGTCTTTTATCATTTGC -3'		
F87I	T268I-F	5'- <u>ATC</u> ACAAGTGGTCTTTTATCATTTGC -3'		
	T268-R	5'- TTCGTGTCCCGCAATTAAGAATG -3'		
	T268V-F	5'- GTGACAAGTGGTCTTTTATCATTTGC -3'		
F87L	T268I-F	5'- <u>ATC</u> ACAAGTGGTCTTTTATCATTTGC -3'		
	T268-R	5'- TTCGTGTCCCGCAATTAAGAATG -3'		
	T268V-F	5'- <u>GTG</u> ACAAGTGGTCTTTTATCATTTGC -3'		
BIM3	T268-R	5'- TTCGTGTCCCGCAATTAAGAATG -3'		

The parent templates and primers used for the preparation of double mutants.

The parent templates and primers used for the preparation of triple mutants.

primer	sequence
L75M-F	5'- CG <u>ATG</u> AAATTTGTACGTGATTTTGCAGGAGAC -3'
L75F-F	5'- CG <u>TTT</u> AAATTTGTACGTGATTTTGCAGGAGAC -3'
L75Q-F	5'- CG <u>CAG</u> AAATTTGTACGTGATTTTGCAGGAGAC -3'
L75K-F	5'- CG <u>AAA</u> AAATTTGTACGTGATTTTGCAGGAGAC -3'
L75F-R	5'- CTTGACTTAAGTTTTTATCAAAGCGTGATTCATCG -3'
V78T-F	5'- CTTAAATTT <u>ACC</u> CGTGATTTTGCAGGAGACG -3'
V78M-F	5'- CTTAAATTT <u>ATG</u> CGTGATTTTGCAGGAGACG -3'
V78A-F	5'- CTTAAATTT <u>GCA</u> CGTGATTTTGCAGGAGACG -3'
V78C-F	5'- CTTAAATTT <u>TGC</u> CGTGATTTTGCAGGAGACG -3'
V78F-F	5'- CTTAAATTT <u>TTT</u> CGTGATTTTGCAGGAGACG -3'
V78I-F	5'- CTTAAATTT <u>ATT</u> CGTGATTTTGCAGGAGACG -3'
V78L-F	5'- CTTAAATTT <u>CTG</u> CGTGATTTTGCAGGAGACG -3'
V78S-F	5'- CTTAAATTT <u>AGC</u> CGTGATTTTGCAGGAGACG -3'
V78-R	5'- CGCTTGACTTAAGTTTTTATCAAAGCGTGAT -3'
A82-F	5'- GTTAGCGACAAGCTGGACGCATG -3'
A82G-R	5'- CCGTCTCC <u>ACC</u> AAAATCACGTACAAATTTAAG -3'

A82V-R	5'- CCGTCTCC <u>CAC</u> AAAATCACGTACAAATTTAAG -3'
A82I-R	5'- CCGTCTCC <u>AAT</u> AAAATCACGTACAAATTTAAG -3'
A82L-R	5'- CCGTCTCC <u>CAG</u> AAAATCACGTACAAATTTAAG -3'
A82F-R	5'- CCGTCTCC <u>AAA</u> AAAATCACGTACAAATTTAAG -3'
A82M-R	5'- CCGTCTCC <u>CAT</u> AAAATCACGTACAAATTTAAG -3'
A82S-R	5'- CCGTCTCC <u>GCT</u> AAAATCACGTACAAATTTAAG -3'
A82T-R	5'- CCGTCTCC <u>GGT</u> AAAATCACGTACAAATTTAAG -3'
A82E-R	5'- CCGTCTCC <u>TTC</u> AAAATCACGTACAAATTTAAG -3'
A82C-R	5'- CCGTCTCC <u>GCA</u> AAAATCACGTACAAATTTAAG -3'
A82D-R	5'- CCGTCTCC <u>ATC</u> AAAATCACGTACAAATTTAAG -3'
A82N-R	5'- CCGTCTCC <u>ATT</u> AAAATCACGTACAAATTTAAG -3'
L181F-F	5'- GTGCA <u>TTT</u> GATGAAGCAATGAACAAGCTG -3'
L181Q-F	5'- GTGCA <u>CAG</u> GATGAAGCAATGAACAAGCTG -3'
L181I-F	5'- GTGCA <u>ATT</u> GATGAAGCAATGAACAAGCTG -3'
L181M-F	5'- GTGCA <u>ATG</u> GATGAAGCAATGAACAAGCTG -3'
L181T-F	5'- GTGCA <u>ACC</u> GATGAAGCAATGAACAAGCTG -3'
L181N-F	5'- GTGCA <u>AAT</u> GATGAAGCAATGAACAAGCTG -3'
L181-R	5'- GGACCATACTTGTAATAAATGGATGAGGCT -3'
A184V-F	5'- CACTGGATGAA <u>GTG</u> ATGAACAAGCTG -3'
A184I-F	5'- CACTGGATGAA <u>ATC</u> ATGAACAAGCTG -3'
A184L-F	5'- CACTGGATGAA <u>CTG</u> ATGAACAAGCTG -3'
A184M-F	5'- CACTGGATGAA <u>ATG</u> ATGAACAAGCTG -3'
A184F-F	5'- CACTGGATGAA <u>TTT</u> ATGAACAAGCTG -3'
A184T-F	5'- CACTGGATGAA <u>ACC</u> ATGAACAAGCTG -3'
A184Q-F	5'- CACTGGATGAA <u>CAG</u> ATGAACAAGCTG -3'
A184N-F	5'- CACTGGATGAA <u>AAT</u> ATGAACAAGCTG -3'
A184-R	5'- CACGGACCATACTTGTAATAAATGGATGAG -3'
R255S-F	5'- <u>AGC</u> TATCAAATTATTACATTCTTAATTGCGGG -3'
R255D-F	5'- <u>GAT</u> TATCAAATTATTACATTCTTAATTGCGGG -3'
R255V-F	5'- <u>GTG</u> TATCAAATTATTACATTCTTAATTGCGGG -3'
R255L-F	5'- <u>CTG</u> TATCAAATTATTACATTCTTAATTGCGGG -3'
R255Q-F	5'- <u>CAG</u> TATCAAATTATTACATTCTTAATTGCGGG -3'
R255-R	5'- AATGTTCTCGTCATCAAGCGGC -3'
I263-F	5'- GGACACGAAATCACAAGTGGTCTTTTATC -3'
I263V-R	5'- CGC <u>CAC</u> TAAGAATGTAATAATTTGATAGCG -3'
I263G-R	5'- CGC <u>GCC</u> TAAGAATGTAATAATTTGATAGCG -3'
A264-F	5'- GAAATCACAAGTGGTCTTTTATCATTTGCG -3'
A264C-R	5'- GTGTCC <u>GCA</u> AATTAAGAATGTAATAATTTGATAG -3'
A264S-R	5'- GTGTCC <u>GCT</u> AATTAAGAATGTAATAATTTGATAG -3'
A264T-R	5'- GTGTCC <u>GGT</u> AATTAAGAATGTAATAATTTGATAG -3'
E267-F	5'- ATCACAAGTGGTCTTTTATCATTTGC -3'
E267Q-R	5'- <u>CTG</u> GTGTCCCGCAATTAAGAATG -3'
E267L-R	5'- <u>CAG</u> GTGTCCCGCAATTAAGAATG -3'

A328V-F	5'- <u>GTG</u> CCTGCGTTTTCCCTATATGC -3'
A328S-F	5'- <u>AGC</u> CCTGCGTTTTCCCTATATGC -3'
A328-R	5'- AGTTGGCCATAAGCGCAGC -3'

The parent templates and primers used for the preparation of quadruple mutants.

Parent template	primer	sequence		
	A82-F	5'- GTTAGCGACAAGCTGGACGCATG -3'		
	A82V-R	5'- CCGTCTCC <u>CAC</u> AAAATCACGTACAAATTTAAG -3'		
	L181Q-F	5'- GTGCA <u>CAG</u> GATGAAGCAATGAACAAGCTG -3'		
F87A/T268I/V78A	L181M-F	5'- GTGCA <u>ATG</u> GATGAAGCAATGAACAAGCTG -3'		
	L181-R	5'- GGACCATACTTGTAATAAATGGATGAGGCT -3'		
	A184L-F	5'- CACTGGATGAACTGATGAACAAGCTG -3'		
	A184-R	5'- CACGGACCATACTTGTAATAAATGGATGAG -3'		
	L181Q-F	5'- GTGCA <u>CAG</u> GATGAAGCAATGAACAAGCTG -3'		
	L181M-F	5'- GTGCA <u>ATG</u> GATGAAGCAATGAACAAGCTG -3'		
F87A/T268I/A82V	L181-R	5'- GGACCATACTTGTAATAAATGGATGAGGCT -3'		
	A184L-F	5'- CACTGGATGAACTGATGAACAAGCTG -3'		
	A184-R	5'- CACGGACCATACTTGTAATAAATGGATGAG -3'		
	L181Q-F	5'- GTGCA <u>CAG</u> GATGAAGCAATGAACAAGCTG -3'		
F87A/T268I/A184L	L181M-F	5'- GTGCA <u>ATG</u> GATGAAGCAATGAACAAGCTG -3'		
	L181-R	5'- GGACCATACTTGTAATAAATGGATGAGGCT -3'		
	A82-F	5'- GTTAGCGACAAGCTGGACGCATG -3'		
E97 A /T7691 / A 19437	A82 V-R	5'- CCGTCTCC <u>CAC</u> AAAATCACGTACAAATTTAAG -3'		
F0/A/12001/A104V	A82M-R	5'- CCGTCTCC <u>CAT</u> AAAATCACGTACAAATTTAAG -3'		
	A82T-R	5'- CCGTCTCC <u>GGT</u> AAAATCACGTACAAATTTAAG -3'		
	A82-F	5'- GTTAGCGACAAGCTGGACGCATG -3'		
E97 A /T7691/ A 1941	A82V-R	5'- CCGTCTCC <u>CAC</u> AAAATCACGTACAAATTTAAG -3'		
1°0/A/12001/A1841	A82M-R	5'- CCGTCTCC <u>CAT</u> AAAATCACGTACAAATTTAAG -3'		
	A82T-R	5'- CCGTCTCC <u>GGT</u> AAAATCACGTACAAATTTAAG -3'		

General procedure for epoxidation of styrene catalyzed by full-length P450BM3

The full-length P450BM3 enzymes (0.5 μ M) was transferred to a glass sample bottle containing 0.1 M, pH 8.0 phosphate buffer, styrene (4 mM, dissolved in methanol). The reaction was initiated by the addition of NADPH (2 mM, dissolved in pH 8.0 phosphate buffer). The reaction mixture was incubated in water bath at 25 °C for 30 min. The reaction mixture was neutralized and extracted with 1 mL of hexane (or ethyl acetate), and the organic phase was separated and dried with sodium sulphate anhydrous. The formation of styrene oxide and benzene acetaldehyde were identified according to the retention time of authentic samples by gas chromatography (GC). The catalytic turnover numbers (TON) of unreacted styrene and epoxide product were determined by using benzophenone as an internal standard according to the calibration curves prepared with the authentic samples (Figure S18). The optical purity of styrene oxide was determined with HPLC or GC.

General procedure for epoxidation of styrenes by H₂O₂-dependent P450BM3 (with styrene as an example)

The heme domains of P450BM3 variants (0.5 μ M) were transferred to a glass sample bottle containing 0.1 M, pH 8.0 phosphate buffer, styrene (4 mM, dissolved in methanol), without or with Im-C6-Phe (2 mM, dissolved in pH 8.0 phosphate buffer). The reaction was initiated by the addition of H₂O₂ (80 mM, dissolved in pH 8.0 phosphate buffer). The reaction mixture was incubated in water bath at 25 °C or 4 °C for 30 min. The reaction mixture was neutralized and extracted with 1 mL of hexane (or ethyl acetate), and the organic phase was separated and dried with sodium sulphate anhydrous. The formation of epoxides and the corresponding acetaldehydes were identified according to the retention time of authentic samples by gas chromatography (GC). The catalytic turnover numbers (TON) of unreacted styrenes and the corresponding epoxide products were determined by using benzophenone as an internal standard according to the calibration curves prepared with the authentic samples (Figure S18). The optical purity of styrene oxide was determined with chiral HPLC or GC.

General procedure for Semi-preparative scale synthesis of (R)-styrene oxide by the DFSM-facilitated P450BM3 peroxygenase system.

 $2.5 \,\mu$ M heme domain of F87A/T268I/V78A/A82V (6 μ M in the case of F87A/T268I/L181Q) was transferred to a glass flask containing 20 mL 0.1 M pH 8.0 phosphate buffer, 10 mM styrene (dissolved in 2% methanol) and 2 mM Im-C6-Phe. The reaction was initiated by the addition of 80 mM H₂O₂ and incubated at 0 °C for 30 min. The same amount of enzyme was added to the reaction mixture and incubated for another 30 min. 1mL reaction mixture was taken and extracted with 1 mL ethyl acetate, then the organic phase was separated and dried with anhydrous sodium sulphate. The concentration of unreacted styrene and the optical purity of styrene oxide formed were determined by gas chromatography (GC) and chiral GC, respectively.

The untreated reaction mixture was extracted with dichloromethane (10 mL x 3) for three times, the combined organic phase was dried with anhydrous sodium sulphate, filtered and concentrated. The crude product was purified by flash chromatography to give styrene oxide as colorless oil liquid (F87A/T268I/V78A/A82V: 13.0 mg, 54.2% yield; F87A/T268I/L181Q: 10.5 mg, 43.8% yield). ¹H NMR (600 MHz CDCl₃): δ 7.26~7.36 (m, 5H), 3.86-3.87 (t, *J* = 3.86, 1H), 3.14-3.16 (t, *J* = 3.15, 1H), 2.80-2.81 (dd, *J* = 2.81, 1H).

Instruments and Analytical Conditions

GC: The product analysis was performed on a Shimadzu GC-2010 plus gas chromatograph equipped with a DB-5 column (length: 30 m, internal diameter: 0.25 mm, film thickness: 1 μ m, Agilent, USA), a flame ionization detector, and an AOC/20i auto sampler system. The analytical conditions were as follows:

splitting ratio: 1/9, temperature program: injector 260 °C, detector 300 °C, 100 °C oven for 1min, then 15 °C/min gradient to 200 °C, 60 °C /min gradient to 280 °C for 8 min (total 17 min).

Chiral GC: The chiral analysis was performed on a Shimadzu GC-2030 plus gas chromatograph equipped with a Astec CHIRALDEX G-TA column (length: 30 m, internal diameter: 0.25 mm, film thickness: $0.12 \mu m$, Germany, GER), a flame ionization detector, and an AOC/20i auto sampler system.

The analytical conditions of styrene epoxide, 2-fluorostyrene epoxide and 4-fluorostyrene epoxide were as follows:

splitting ratio: 1/9, temperature program: injector 200 °C, detector 200 °C, 80 °C oven for 3 min, then 10 °C/min gradient to 100 °C for 5 min, 5 °C /min gradient to 105 °C for 7 min, 60 °C/min gradient to 170 °C for 3 min (total 19.08 min).

The analytical condition of 2-chlorostyrene epoxide was as follows:

splitting ratio: 1/9, temperature program: injector 200 °C, detector 200 °C, 80 °C oven for 3 min, then 10 °C/min gradient to 100 °C for 5 min, 5 °C /min gradient to 140 °C for 2.5 min, 60 °C/min gradient to 170 °C for 2 min (total 20 min).

The analytical condition of 3-chlorostyrene epoxide was as follows:

splitting ratio: 1/9, temperature program: injector 200 °C, detector 200 °C, 80 °C oven for 3 min, then 10 °C/min gradient to 100 °C for 5 min, 10 °C /min gradient to 170 °C for 10 min (total 24 min).

The analytical condition of 3-fluorostyrene epoxide was as follows:

splitting ratio: 1/9, temperature program: injector 200 °C, detector 200 °C, 80 °C oven for 3 min, then 10 °C/min gradient to 100 °C for 5 min, 5 °C /min gradient to 120 °C for 2 min, 5 °C /min gradient to 135 °C, 60 °C/min gradient to 170 °C for 2 min (total 18.58 min).

Chiral HPLC: The chiral analysis was performed on a Hitachi plus HPLC chromatograph equipped with a Chiralpak AD-3 column (250×4.6 mm, DAICEL), The analytical condition of 4-chlorostyrene was as follows:

splitting rate: 1.0 mL/min, mobile phase: hexane 100%, oven temperature: 25 °C, UV detector:200 nm, Injection volume: 10 μ L.

References

- Ma, N.; Chen, Z.; Chen, J.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Dual/functional small molecules for generating an efficient cytochrome P450BM3 peroxygenase. *Angew. Chem. Int. Ed.* 2018, 57, 7628/7633.
- [2] Cong, Z.; Shoji, O.; Kasai, C.; Kawakami, N.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. Activation of wild-type cytochrorne P450BM3 by the next generation of decoy molecules: enhanced hydroxylation of gaseous alkanes and crystallographic evidence. *ACS Catal.* 2015, 5, 150-159.
- [3] Omura, T.; Sato, R. The carbon monoxide/binding pigment of liver microsomes. I. evidence for its hemoprotein nature. *J. Biol. Chem.* **1964**, *239*, 2370/2378.
- [4] Wang, Z. J.; Renata, H.; Peck, N. E.; Farwell, C. C.; Coelho, P. S.; Arnold, F. H. Improved cyclopropanation activity of histidine/ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran. *Angew. Chem. Int. Ed.* 2014, *53*, 6810/6813.
- [5] Chen, J.; Kong, F.; Ma, N.; Zhao, P.; Liu, C.; Wang, X.; Cong, Z. Peroxide-driven hydroxylation of small alkanes catalyzed by an artificial P450BM3 peroxygenase system. *ACS Catal.* 2019, *9*, 7350-7355.

Figure S1 SDS Page of P450BM3 variants. A) Lane 1-9: F87A/T268I/L75M, F87A/T268I/L75Y, F87A/T268I/L75F, F87A/T268I/L75Q, F87A/T268I/L75K, F87A/T268I/L75T, F87A/T268I/V78T, F87A/T268I/V78M, F87A/T268I/V78A. B) Lane 1-9: F87A/T268I/V78C, F87A/T268I/V78F, F87A/T268I/V78I, F87A/T268I/V78L, F87A/T268I/V78S, F87A/T268I/L181F, F87A/T268I/L181Q, F87A/T268I/L181I, F87A/T268I/L181M. C) Lane 1-9: F87A/T268I/L181T, F87A/T268I/L181N, F87A/T268I/R255S, F87A/T268I/R255D, F87A/T268I/R255V, F87A/T268I/R255L, F87A/T268I/R255Q, F87A/T268I/I263V, F87A/T268I/I263Q. D) Lane 1-9: F87A/T268I/V78A/A82V, F87A/T268I/V78A/L181Q, F87A/T268I/A82V/L181Q, F87A/T268I/V78A/L181M, F87A/T268I/V78A/A184L, F87A/T268I/A82V/L181M, F87A/T268I/A82V/A184L, F87A/T268I/L181Q/A184L, F87A/T268I/L181M/A184L. E) Lane 1-8: F87A/T268I/A264C, F87A/T268I/A264S, F87A/T268I/A264T, F87A/T268I/E267O, F87A/T268I/E267L, F87A/T268I/A328V, F87A/T268I/A328S, T268V. Lane M: molecular mass standards.

S12

Figure S2 UV/visible spectral changes of P450BM3 variants (black line) upon addition of Na₂S₂O₄ (red line) for the formation of a ferrous CO complex through the reduction of ferric heme.

RT (min)	11.630 (<i>S</i>)	12.747 (<i>R</i>)
Area	1449	920
ee % (S)	22.3	

Figure S3 Typical chiral GC analyses for the epoxidation of styrene catalyzed by full-length P450BM3 mutants by addition of NADPH (2 mM) at 25 °C. 1) the standard sample of styrene epoxide; 2) F87A; 3) F87G; 4) F87V; 5) F87V/T268V.

Figure S4 Typical chiral GC analyses for the epoxidation of styrene catalyzed by the double mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of styrene epoxide; 2) F87A/T268I; 3) F87A/T268V.

RT (min)	11.697 (<i>S</i>)	12.835 (<i>R</i>)
Area	196	11570
ee % (<i>R</i>)	96.7	
	数据文件名:F87A-T268I-75Q.R1.gcd 样品名:F87A-T268I-75Q.R1	
5000 500 5000 5		
RT (min)	11.694 (<i>S</i>)	12.832 (<i>R</i>)
Area	457	18032
ee % (<i>R</i>)	95.1	

RT (min)	11.697 (<i>S</i>)	12.835 (<i>R</i>)
Area	196	11570
ee % (<i>R</i>)	96.7	

数据文件名:氧化苯乙烯.gcd 样品名:氧化苯乙烯 5

0 10.00 10.25 10.20 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 mm			
RT (min)	11.835 (<i>S</i>)	13.040 (<i>R</i>)	
Area	2281	70820	
ee % (<i>R</i>)	93.8		
裁抵文件 6,587A-7268i781 R1 god 样品 5,757A-7268i781 R1			

F87A/T268I/V78I

RT (min)	11.824 (<i>S</i>)	13.055 (<i>R</i>)		
Area	522	37079		
ee % (<i>R</i>)	97.2			

35000		+ + + + + +	
30000	-++	+ + + +	
25000		<u> </u>	
		+ + + +	
10000		Ţ = - Ţ =	
	11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 1	3.50 13.75 14.00 14.25 14.50 14.75 min	
RT (min)	11.811 <i>(S</i>)	13.026 (<i>R</i>)	
Area	1417	80564	
ee % (<i>R</i>)	96.5		
	载带文件名-F87A-T268i-82C R2.gcd 样品名:F87A-T268i-82C R2		
22500			
²⁰⁰⁰ F87A/T268I/A82C	- + +	+ + +	
17500	- + + + +	+ + +	
15000	- +		
12500		+ + + + + +	
	- +	+ + + +	
7500	- + +	+ +	
5000 <u> </u>		<u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u>	
2500			
RT (min)	11.810 <i>(S</i>)	13.027 (<i>R</i>)	
Area	939	61505	
ee % (<i>R</i>)	97.0		

אים אינאי פעאי פעאי פעאי פעד אינד שבר שבר אבי אינגי פעי אינד אינו אינו אינו אינו אינו אינו אינו אינו		
RT (min)	11.809 (<i>S</i>)	13.026 (<i>R</i>)
Area	1028	75223
ee % (<i>R</i>)	97.3	
裁部文件名序87A-T268452/R1gcd 样品名字87A-T268452/R1		

F87A/T268I/A82I

0 10.00 10.25 10.50 10.75 11.00 11.25	11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 1	+ - + - + - + - + +
RT (min)	11.836 (<i>S</i>)	13.041 (<i>R</i>)
Area	1292	76365
ee % (<i>R</i>)	96.7	

					 		L L			
- E97 A /T76	01/1001				 	- +	+ +			
Г0/A/120	ol/Ao2L	i i			i i			i.		
•		. T T -			76 - 7 -		T F			
•╋╴╴╴╎╴╴╶╎╴╴╶╎╴					- -					
<u></u>		. i i _			 		$\bot = _ \bot$	L	_i	
•	· - ¬ ¬	т — — т —				- _T	\top $ \Box$			
x -					-14					
					11-1-		+ +			
		1 I I		Å –				1		

10.00 10.25 10.50 10.75 11.00 11.25	11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 1	3.50 13.75 14.00 14.25 14.50 14.75 min
RT (min)	11.835 (<i>S</i>)	13.046 (<i>R</i>)
Area	534	41386
ee % (<i>R</i>)	97.4	

S23

F87A/T268I/L181M

2500

15000

S	
·	
50 11.75 12.00 12.25 12.50 12.75 13.00 13.25	13.50 13.75 14.00 14.25 14.50 14.75 mir
11.689 (<i>S</i>)	12.822 (<i>R</i>)
384	35815
	S.

数据文件名:F87A-T268I255S R1.gcd 样品名:F87A-T268I255S R1 71497

1136

97.0

Area ee % (*R*)

10.00 10.25 10.20 10.75 11.00 11.25	11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 t	3.50 13.75 14.00 14.25 14.50 14.75 min
RT (min)	11.803 (<i>S</i>)	13.009 (<i>R</i>)
Area	1136	71497
ee % (<i>R</i>)	96.9	

0 1025 10.50 10.75 11.00 11.25	11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 1	3.50 13.75 14.00 14.25 14.50 14.75 min
RT (min)	11.680 (<i>S</i>)	12.814 (<i>R</i>)
Area	546	40186
ee % (<i>R</i>)	97.3	

4000		+++++
300		
2000		
RT (min)	11.622 (S)	130 13.75 14.00 14.25 14.30 14.75 min 12.727 (<i>R</i>)
RT (min) Area	11.622 (<i>S</i>) 292	120 1375 1400 1425 1430 1475 mm 12.727 (R) 31835

 R#XFR.F87A.72681/R255Q
 R

 5000
 F87A/T2681/R255Q

 6000
 F87A/T2681/R255Q

 7000
 F87A/T2681/R255Q

 7000
 F87A/T2681/R255Q

 7000
 F87A/T2681/R255Q

 7000
 F87A/T2681/R255Q

 7000
 F87A/T2681/R255Q

 7000
 F87A/T2681/R255Q

	10.50	10.75	11.00	11.25	11.50	11.75	12.00	12.25	12.50	12.75	13.00	13.25	13.50	13.75	14.00	14.25	14.50	14.75 min	
RT (min)						11.6	18 (2	5)					1	2.73	1 (<i>R</i>)			
Area						204							1	9631	L				
ee $\%$ (R)						98.0													

10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 min							
RT (min)	11.605 (<i>S</i>)	12.728 (<i>R</i>)					
Area	118	11986					
ee % (<i>R</i>)	98.1						

数据文件名:F87A-T268I-255D R2.god 样品名:F87A-T268I-255D R2

2000

数据文件名:F87A-T268I-263V R2.gcd 样品名:F87A-T268I-263V R2

F87A/T268I/I263V

F87A/T268I/A2647	F + - + - + - + - + - + - + - + - + - +					
7500						
5000	- + + + + + + - + + + - + + + - + + - +					
2800						
RT (min)	11.688 (<i>S</i>)	12.823 (<i>R</i>)				
Area	1175 45905					
ee % (<i>R</i>)	95.0					

RT (min)	11.690 (<i>S</i>)	12.826(R)
Area	2061	43419
ee % (<i>R</i>)	90.9	

RT (min)	11.696 (<i>S</i>)	12.829 (<i>R</i>)		
Area	183	12864		
ee % (<i>R</i>)	97.1			

数据文件名:F87A-T268I-328VR1.gcd 样品名:F87A-T268I-328VR1

RT (min)	11.688 (<i>S</i>)	12.827 (<i>R</i>)			
Area	158	4852			
ee % (<i>R</i>)	93.7				

	數据文件名.F87A.T268I-328S R2.gcd 样晶名.F87A.T268I-328S R2	
-F87A/T268I/A328S		
	11.50 11.75 12.00 12.25 12.90 12.75 13.00 13.25 1	- -
RT (min)	11.685 (<i>S</i>)	12.825 (<i>R</i>)
Area	112	11217
ee % (<i>R</i>)	98.0	

Figure S5 Typical chiral GC analyses for the epoxidation of styrene catalyzed by the triple mutants of P450BM3 heme domain by addition of H₂O₂ (80 mM) at 25 °C in the presence of Im-C6-Phe. 1) the standard sample of styrene epoxide; 2) F87A/T268I/75M; 3) F87A/T268I/L75F; 4) F87A/T268I/L75O; 5) F87A/T268I/L75K; 6) F87A/T268I/V78T; 7) F87A/T268I/V78M; 8) F87A/T268I/V78A; 9) F87A/T268I/V78C; 10) F87A/T268I/V78F; 11) F87A/T268I/V78I; 12) F87A/T268I/V78L; 13) F87A/T268I/V78S; 14) F87A/T268I/A82V; 15) F87A/T268I/A82I; 16) F87A/T268I/A82C; 17) F87A/T268I/A82G; 18) F87A/T268I/A82L; 19) F87A/T268I/A82S; 20) F87A/T268I/A82T; 21) F87A/T268I/A82M; 22) F87A/T268I/A82E; 23) F87A/T268I/L181F; 24) F87A/T268I/L181Q; 25) F87A/T268I/L181I; 26) F87A/T268I/L181M; 27) F87A/T268I/L181T; F87A/T268I/A184I;30) 28) F87A/T268I/L181N;29) F87A/T268I/A184Q;31) F87A/T268I/A184T; 32) F87A/T268I/A184V; 33) F87A/T268I/A184L; 34) F87A/T268I/A184M; F87A/T268I/R255S; 35) F87A/T268I/A184N; 36) 37) F87A/T268I/R255D; 38) F87A/T268I/R255V; 39) F87A/T268I/R255L; 40) F87A/T268I/R255Q; 41) F87A/T268I/I263V; 42) F87A/T268I/I263G; 43) F87A/T268I/A264S; 44) F87A/T268I/A264T; 45) F87A/T268I/E267Q; 46) F87A/T268I/E267L; 47) F87A/T268I/A328V; 48) F87A/T268I/A328S.

数据文件名:F87A-T268I-82V-184L R2.gcd 样品名:F87A-T268I-82V-184L R2

ml/		
250 200 F87A/T268I/A82V	//A184L	
17.5	$\begin{array}{c} - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \begin{array}{c} + \\ - \end{array} \\ - \bigg \\ = \bigg \\ - \bigg \\ - \bigg \\ = \bigg \\ - \bigg \\ = \bigg \\ - \bigg \\ - \bigg \\ = \bigg \\ = \bigg \\ - \bigg \\ = \bigg$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
500		$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
0.0 11.00 1125 11.50 11.75 12.00 12.25	12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25	14.50 14.75 15.00 15.25 15.50 15.75 min
RT (min)	12.433 (<i>S</i>)	14.493 (<i>R</i>)
Area	1069	124477
ee % (<i>R</i>)	98.3	

Figure S6 Typical chiral GC analyses for the epoxidation of styrene catalyzed by the quadruple mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of styrene epoxide; 2) F87A/T268I/V78A/A82V; 3) F87A/T268I/V78A/A181Q; 4) F87A/T268I/V78A/A181M; 5) F87A/T268I/V78A/A184L; 6) F87A/T268I/A82V/A181Q; 7) F87A/T268I/A82V/A181M; 8) F87A/T268I/A82V/A184L; 9) F87A/T268I/A181Q/A184L; 10) F87A/T268I/A181M/A184L.

RT (min)	15.831 (<i>R</i>)	16.849 (<i>S</i>)
Area	140917	140444

数据文件名-F87A-T268AR1.gcd 样品名-F87A-T268AR1

~ ÷	7"	<u> </u>												1																													Т																7			
000	-	- 1	Ē	ō	7	Ā	7	т	-	5	ē	0	٨																																																	
00		_1	C	o	L	A	V	1	4	21	0	ð.	P	4						÷				÷				È									-				÷		÷		÷			-									i-		÷			
00														J.						Т				L	^			L													1.		\perp		. 1												I		_			
00	-				_	_								ł	_					÷				$\frac{1}{2}$	()	1	_									_		_			÷.		÷						_	_					_				÷	_		
00														4						4				ł		-		L									_				1.		+		4			-									- 1		_			
0																								ŀ		_ \	Ł																																			
0	-			-	_		+				_			i.	_		_	_	_	+		۲	2	+		_		÷	_	ł	-	-	 	-	-	-	-	_	~	_	į.	 	+	_		_	 	_		_	-	_	 4	~	_	_	-	_	 -		_	_
14	.00		14	25		1-	.50	,	'	14.	75		1	5.00	'	15	25	'		15.5	60		1	15.75	5		16	5.00		'	16.	25	1	16.50	5		16.1	5		17	.00	1	17.2	5	17.	50	 17	75		18	3.00		18.2	5		18	50	'	 18.7	5		mir

RT (min)	15.823 (<i>R</i>)	16.830 (<i>S</i>)
Area	164985	11641
ee % (<i>R</i>)	86.8	

RT (min)	15.822 (<i>R</i>)	16.833 (<i>S</i>)
Area	143486	3429
ee % (<i>R</i>)	95.3	

RT (min)	15.822 (<i>R</i>)	16.829 (<i>S</i>)
Area	195003	10075
ee % (<i>R</i>)	90.2	

数据文件名:F87A-T268A-181MR2.god 样品名:F87A-T268A-181MR2

-FID1									+ -	_	+ -	-	+			-						_		+		_	H		_							
4									1 _		L _		L .		. L								1.	\perp	_ 1		L.							1_		
	\mathbf{F}	87	٨	T	26	58	Λ //	[1	81	N.	1												1													
	1	07	п	1	24	101	ΠΥΙ		01	I IV	ŧ -		Ξ.																							
											T -		1	t -				-					7 -	\top	- 1		Γ.							1 -		
									+ -		+ -		+	1-				-					+ -	$^+$			⊢ :	-								
									1 -		L _		4.	1									1.	\perp	_ 1		L .									
													1	1																						
													1	1				1																		
									+ -	-	T -	-	/	- +				- 1			17	_	7 -	$^{+}$	 - 1	-	Γ.		-	17	~ -	1-		1 -		
1		-	_		-						-	_			~	4	-	 _	-	~	\sim	\sim	4	 -	 _	 	+	 \sim	_	_	\sim	 -	_		_	-

RT (min)	15.826 (<i>R</i>)	16.829 (<i>S</i>)
Area	114906	9138
ee % (<i>R</i>)	85.3	

RT (min)	15.824 (<i>R</i>)	16.832 (<i>S</i>)					
Area	123080	13452					
ee % (<i>R</i>)	80.3						

Figure S7 Typical chiral GC analyses for the epoxidation of 2-chlorostyrene catalyzed by the mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of 2-chlorostyrene epoxide; 2) F87A/T268A; 3) F87A/T268A/V78A; 4) F87A/T268A/A82V; 5) F87A/T268A/L181M; 6) F87A/T268A/L181Q.

RT (min)	14.248 (<i>S</i>)	14.679 (<i>R</i>)
Area	131249	133575

RT (min)	14.255 <i>(S</i>)	14.681 (<i>R</i>)					
Area	1338	33228					
ee % (<i>R</i>)	92.3						

RT (min)	14.252 (<i>S</i>)	14.682 (<i>R</i>)
Area	759	39919
ee % (<i>R</i>)	96.3	

RT (min)	14.261 (<i>S</i>)	14.682 (<i>R</i>)					
Area	322	14086					
ee % (<i>R</i>)	95.5						

数据文件名 F87A-T268I-82V R1 gcd 样品名:F87A-T268I-82V R1

	-	-		-		_					-	-						-	Ļ	-		-)			-	- 1		-	-	-1	-	-		-		-		-		-		-	-	-		-	-	-		-			-				-			-		-	-	-	
Г	2-	7 /	5	Ŧ	ō	Ā	ō	Ē		3	2	7	ī																												÷																								
Ľ	5/		1/	Ŧ	4	v	0.	L/	F	10	2	1	V -																			-	٨	1-																															
									7			1							Ť.													٦	T	1 -			7				t				t.			Ľ															11		
									1			1							+													1	t	- 			-				+				+			ï															1.		
				i –	_		_	_											ī											ï		1	Ţ	i -			1				ī					_		ī								_									
																																I	1																																
																	~	_	Τ.	_		- 1				_				1		J		Ľ		ų.	1				T				Ľ							1			-		1		-1			_	1.1		
	F	F87	F87 <i>I</i>	F87A/	F87A/T	F87A/T2	F87A/T26	F87A/T268	F87A/T268I/	F87A/T268I/A	F87A/T268I/A8	F87A/T268I/A82	F87A/T268I/A82	F87A/T268I/A82V																																																			

RT (min)	14.251 (<i>S</i>)	14.680 (<i>R</i>)
Area	2629	57574
ee % (<i>R</i>)	91.3	

RT (min)	14.247 (<i>S</i>)	14.670 (<i>R</i>)				
Area	2037	42691				
ee % (<i>R</i>)	90.9					

RT (min)	14.247 (<i>S</i>)	14.672 (<i>R</i>)
Area	2096	46741
ee % (<i>R</i>)	91.4	

RT (min)	14.248 (<i>S</i>)	14.671 (<i>R</i>)
Area	1493	28370
ee % (<i>R</i>)	90.0	

Figure S8 Typical chiral GC analyses for the epoxidation of 3-chlorostyrene catalyzed by the mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of 3-chlorostyrene epoxide; 2) F87A/T268I/A82G; 3) F87A/T268I/A82I; 4) F87A/T268I/A82L; 5) F87A/T268I/A82V; 6) F87A/T268I/V78A/A82V; 7) F87A/T268I/A82V/A184I; 8) F87A/T268I/A82V/A184V.

Figure S9 Typical chiral HPLC analyses for the epoxidation of 4-chlorostyrene catalyzed by the mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of 4-chlorostyrene epoxide; 2) F87A/T268I/A82V; 3) F87A/T268I/A82V/A184V; 4) F87A/T268I/A82V/A184I; 5) F87A/T268I/A82T/A184V.

RT (min)	11.039 (<i>R</i>)	13.946 (<i>S</i>)
Area	112261	111902

RT (min)	11.010 (<i>R</i>)	13.916 (<i>S</i>)
Area	47607	747
ee % (<i>R</i>)	96.9	

RT (min)	11.010 (<i>R</i>)	13.919 (<i>S</i>)
Area	109722	1387
ee % (<i>R</i>)	97.5	

RT (min)	11.011 (<i>R</i>)	13.912 (<i>S</i>)
Area	62595	533
ee % (<i>R</i>)	98.3	

RT (min)	11.014 (<i>R</i>)	13.909 (<i>S</i>)
Area	47815	620
ee % (<i>R</i>)	97.4	

数批文件 6/597A-7288/78A-184L R2.gdd 件应 经145/174268/78A-184L R2.gdd												
5000 F87A/T268I/V78A/A184L												
10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75	12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 min											

RT (min)	10.994 (<i>R</i>)	13.923 (<i>S</i>)
Area	279948	2796
ee % (<i>R</i>)	98.02	

Figure S10 Typical chiral GC analyses for the epoxidation of 2-fluorostyrene catalyzed by the mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of 2-fluorostyrene epoxide; 2) F87A/T268I; 3) F87A/T268I/V78A; 4) F87A/T268I/V78C; 5) F87A/T268I/A184I; 6) F87A/T268I/V78A/A82V; 7) F87A/T268I/V78A/A184L.

RT (min)	11.449 (<i>S</i>)	14.553 (<i>R</i>)
Area	128255	129815

1	-																																				
+		Ė	22	7	λ	/1	r_{2}	6	8	I /	v	7	ġ.	٨		÷Τ	÷.		÷Ť			÷È		÷		÷-			È.		÷-			÷.		Γ.	
+		Ŧ.	0	1	А	4	_ <u>_</u>	0	0.	Ľ	Y	1	φ.		-1-	+	\neg	- -	+					+ -		+ -			Ŀ.		+ -			$^+$		\vdash	
-		÷									i		÷				-i	- 1-	+					4		+ -			A		+ -			+		⊢	
		_				_ 1							1						1					Ш.		1.			H		1 -			1		L	
																													H								
	_	÷	_	_					-	_		_	÷						÷	_			_			 ÷ -		_	H				_	÷			_
		÷									-		÷				÷.	÷	+					÷.		÷			Ľ	L .	÷ -			÷	-i	-	
					_							_		L.	. i.													_	1	L							

RT (min)	11.444 (<i>S</i>)	14.527 (<i>R</i>)						
Area	2148	123088						
ee % (<i>R</i>)	96.5							

RT (min)	11.444 (<i>S</i>)	14.538 (<i>R</i>)
Area	1321	35581
ee % (<i>R</i>)	95.5	

																	数样	据文作 品名:F	+名:F8 F87A-T	7A-T26 2681-8	381-82 21 R2	R2.go	d																	
40000 <u>uV</u>	D1			1		1					1	-		- 1-			-		1			-				-			-				-		 			-		٦
35000		+	_			+ -				-	+ -			- +-		-	- -	-	+ -			- +-					- +				\vdash		+		 +			$- \vdash$		+
30000		F	87	'A	/7	Γ_2	68	RI/	'A	87	1								1_								_ 1								1					-
25000			_	-			00	_																											+ -					-
20000		+				+ -					+ -			- +-					+ -			- +		-i -			- +				ΪA		+		+					-
15000		\rightarrow				1 -			_ L		4 -								÷ –								_ +				-41		-		1			_ L		+
10000																															Ð									-
5000		T				Ť-			- i-		÷ -			- T					τ-	i		- 1-		1-			- 1				Ŧ	<u></u>	i —		Ť.			- r		
0		+	-			+	-	_		Ŧ	+ *								+					+		+			-		1	1	-		 		+			+
10.0	5	10.2	5	10.50		10.75	11.	00	11.2		1.50	11.3	75	12.00	12	25	12.50	1	2.75	13.	00	13.25	1	3.50	13	3.75	14.0	0	14.25	1	4.50	14	75	15.00	 15.25	15	.50	15.7	5 r	.in

RT (min)	11.452 <i>(S</i>)	14.548 (<i>R</i>)
Area	1797	86400
ee % (<i>R</i>)	95.9	

RT (min)	11.456 (<i>S</i>)	14.560 (<i>R</i>)
Area	789	26823
ee % (<i>R</i>)	94.2	

	~																	要科	対相文作 品名:	件名手 F87A-	87A-T T268I	2681-8 1-82V F	32V R2 R2	2.gcd																		
35000-	FID1	1.						-			1	_	_	-	L		_	_		1				L		_			1 -			_ L		1.		T			_		L .	
															1							1					1		1							1						
30000		F۶	87	Δ	77	Γ2	6	81	74	8	22	V			Т		1 -			Т									ΤT			1										
25000		7,	57	- <u>†</u> _•			U	<u>_</u>	14	10	7	<u> </u>			+		- 1			+									+ -			- 4	-	4.							⊢ -	
20000																	i .					1										- 1	1			1						
20000															ī.		1					1					- I		T				-			Ē.,						1
15000		1.1					-				\pm				tr.		1 -	-		\pm									+ -			- +	-	1.1			- 1		-1-		E -	
10000-		1.									1				L		L _			1									1 -			_	L									
															1							1					1		1				1			1						
5000																	1 -			Т												- 1	T.									
0				-		-	-		-	*	-	÷		-	+		-	-		-		-		-	-				+	-		\downarrow	L	k		-	-				-	-
10	00	10.25		0.50	10	75	11.0	00	11.2	5	11.50		11.75	1	2.00	12	25	12.5	0	12.75		13.00	13	.25	13.5	50	13.75	1	4.00	14.	25	14.50	1	14.75	15	5.00	15.	25	15.50	1/	5.75	min

RT (min)	11.449 (<i>S</i>)	14.541 (<i>R</i>)
Area	2420	122935
ee % (<i>R</i>)	96.1	

数据文件名:F87A-T268I-78A-82V R1.gcd 样品名:F87A-T268I-78A-82V R1

80000	V FID1	,			1	_	T	_	-				-	_	-			_	-						_	-	_	-	_	1		-				-	_	-	-	-		-	_	T			 		٦
70000-			+ -				+				-		+				+		-		- 1-		+			-		+ -		+ -								-		+ -				+					-
60000		F	8	7	A	/7	$\Gamma 2$	26	8	[/	V	78	87	4/	Ά	.8	2	V																										÷					-
50000						-	÷	-				-	÷				÷	-								-	-				-			- -		-		A					-					-	
40000			+ -				+				- 1-		+				+		Η		- -		+					÷.		+ -				+ -			-	4		+				÷					
30000-							+				- I		+				-		4									L						L -				1		<u> </u>				÷			-		-
20000-																																					-												-
10000			1 -			-	Т	-	-1-			-	Т	-			Т	-	٦				Τ.			- 1	-	Γ.		1 -	-			Γ-		1	-	-\		1 -			-	Т					-
0	.				+-						+	۴.,	-	*	-				-		-		-					÷		+							1		<u> </u>			+-		÷		+	 +		1
10	.00	10	.25	1	0.50		10.75		11.00		11.25		11.5)	11.7		12.00		12.25	5	12.5	0	12.7	75	13	.00	13	.25	13	.50	13	.75	14	.00	14	25	14	50	14	.75	15	4.00	1	5.25	1	15.50	15.75		ain'

RT (min)	11.441 (<i>S</i>)	14.508 (<i>R</i>)
Area	3651	246550
ee % (<i>R</i>)	97.0	

数据文件名:F87A-T268I-78A-184L R2.gcd 样品名:F87A-T268I-78A-184L R2

8000	L _ J L _ L _ L		_ L _ J L L	L _ J L _ J L
70000				
F87	a/T268I/V78a/a1	841		
101		0 IL		
50000	- + +		- + +	
40000	- +			
30000				
20000				
10000			+	
10.00 10.25 10.50	10.75 11.00 11.25 11.50 11.75 12	00 1225 1250 1275 13.00	1325 1350 1375 1400 1425	T 14.50 14.75 15.00 15.25 15.50 15.75 min
10.00 10.20 10.00	10.10 11.00 11.00 11.10 12	1210 1230 12.10 10.00	10.20 10.00 10.10 14.00 14.20	14.50 14.15 12.00 12.25 12.30 12.15 181

RT (min)	11.442 (<i>S</i>)	14.501 (<i>R</i>)
Area	6267	301222
ee % (<i>R</i>)	95.9	

数据文件名:F87A-T268I-82V-184I 3-氨 R1.gcd 样品名:F87A-T268I-82V-184I 3-氨 R1

	v	_																																																		_
	ED:	Π.																																																		
35000+	-		Т					Т					-		т					Γ.		1.1			Т					Π.		1.1				Т				10		Т				- т						+
30000-		- 1	F	8	7.	A	F.	F2	20	68	8 I	Ŧ	4	8	2	V	H	4	1	84	4I	-	- -					—	-	+						+					-	\rightarrow	-			- +		_		- -		-
25000-																																								۸												4
																						1																		11												
20000-			Т					Т							Т					Γ.		٦.			Т					Г		1.1				Т				11		Т				- т						-
15000-	-		+					+		_			-		+								- -		- +					+		+ -				+				H		\rightarrow				- +		-				-
10000-																																								14												-
																																								$ \rangle$												
5000-		-	Т	-			-	Т	-		-	-		-	Т	-		-		Γ.		٦.			Т			-	-	Γ.		1.7			-	Т	-			Γ	1-	Т	-	=1		- т					-	1
0		_	-		_	_		-	_	-	_	_	_	_	-		*	_		-		-	-		-		_	_		-		-	_	-		-		-	_	-	C	-		_		-		-		-		_
	h		· •					T •					ř.		-							T 7	 									1.1				· · · ·																-1
10	.00	1	10.25	5	10.	50	1	0.75		11.0	0	11.	25	1	1.50)	11.3	'5	12	.00	1	2.25	12.5	D	12.3	75	13.	00	12	25	1	3.50		13.75		14.00		14.25		14.50)	14.7	5	15.0	10	15.2	25	15.5	0	15.75	5 1	min

RT (min)	11.420 (<i>S</i>)	14.482 (<i>R</i>)
Area	2465	121186
ee % (<i>R</i>)	96.0	

	数据文件 样品名:P8	名于87A-T268I-82V-184V3-蕉 R1.god 87A-T268I-82V-184V3-蕉 R1		
20000		- 4 4 4 4 4 4	1	
17500 F87A/T268I/A	82V/A184V		+	- +
15000 - 10707A7120017A	104 V / A 1 04 V		т — — — — — — — — — — — — — — — — — — —	
12500 + +		-+	+ + - +	-+
		- +	+ +	- +
7500			+	
5000			<u>+</u>	
2500	- $+$ $ +$ $ -$	- +	+ + +	- +
0	<u> </u>			
10.00 10.25 10.50 10.75 11.00 11.25	11.50 11.75 12.00 12.25 12.50	12.75 13.00 13.25 13.50 13.75	14.00 14.25 14.50 14.75 15.00	15.25 15.50 15.75 min

RT (min)	11.423	14.485
Area	1867 (<i>S</i>)	86641 (<i>R</i>)
ee % (<i>R</i>)	95.8	

Figure S11 Typical chiral GC analyses for the epoxidation of 3-fluorostyrene catalyzed by the mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of 3-fluorostyrene epoxide; 2) F87A/T268I/V78A; 3) F87A/T268I/V78C; 4) F87A/T268I/A82I; 5) F87A/T268I/A82L; 6) F87A/T268I/A82V;7) F87A/T268I/V78A/A82V; 8) F87A/T268I/V78A/A184L; 9) F87A/T268I/A82V/A184I; 10) F87A/T268I/A82V/A184V.

RT (min)	11.448 (<i>S</i>)	12.492 (<i>R</i>)
Area	125060	126331

BEERR FRBANDERSTRAMTOR

RT (min)	11.463 (<i>S</i>)	12.482 (<i>R</i>)
Area	1132	234908
ee % (<i>R</i>)	99.0	

RT (min)	11.428 (<i>S</i>)	12.485 (<i>R</i>)
Area	412	120536
ee % (<i>R</i>)	99.3	

RT (min)	11.462 (<i>S</i>)	12.490 (<i>R</i>)
Area	688	64602
ee % (<i>R</i>)	97.9	

数据文件名:F87A-T268I-78A-T268L R1)	bot
样品名:F87A-T268I-78A-T268L R1	·

∞ ¥m			- +			- +	!			-	- :			 +			 +				+ -	- -	 + -	 		-
ο -			_ +					!						1			↓ _		_ L		→ _		÷		L -	
4	$\mathbf{F8}$	7A	/T2	681	[/V]	78	$A \square$	118	84T_																	
1	10	11	-	.00		19					Λ						1									
										1	Í١	- Τ		 Γ.			 Τ -			_	1 -	- 1-	 T	 		
1 -	- + -		- +			- +					t	- +		+			+ -		- +		+ -		+ -		F -	
+ -					L				L		14	_ 1		L -		_	 ⊥ _		_ L			_ _	 L _			
1																										
										1																
1			- +							17		∇^{+}									7 -		Τ -			
-										-		~	*	 	-		-	_	-		-	-	+	 		-

RT (min)	11.462 (<i>S</i>)	12.478 (<i>R</i>)
Area	976	250217
ee % (<i>R</i>)	99.2	

	数据文件名-F8 样品名-F87A-T	7A-T268I-82T-184V R1.gcd 268I-82T-184V R1						
5000								
	A 10437							
F8/A/12081/A821/	A184V							
3000	++-+++++-++							
	i i i livi			i i				
2000 +	++-+	$- \ - + - + + -$	- + - + + -	-				
				I I				
	+-+-+-++++++++++++++++++++++++++++++	+-	- ++-	-1				
		•						
10.00 10.25 10.50 10.75 11.00 11.25 11.50	11.75 12.00 12.25 12.50 12.7	13.00 13.25 13.50 13.75 14.00	14.25 14.50 14.75 15.00 15.25	15.50 15.75 min				
10.00 10.25 10.50 10.75 11.00 11.25 11.50	11.75 12.00 12.25 12.30 12.7	13.00 13.20 13.30 13.70 14.00	14.25 14.30 14.75 13.00 13.25	13.50 13.75 1111				
RT (min)	11.458 (<i>S</i>)		12.489 (<i>R</i>)					
Area	671		47685					

97.2

ee % (R)

Figure S12 Typical chiral GC analyses for the epoxidation of 4-fluorostyrene catalyzed by the mutants of P450BM3 heme domain by addition of H_2O_2 (80 mM) at 4 °C in the presence of Im-C6-Phe. 1) the standard sample of 4-fluorostyrene epoxide; 2) F87A/T268I/V78A; 3) F87A/T268I/V78C; 4) F87A/T268I/A184V; 5) F87A/T268I/V78A/A184L; 6) F87A/T268I/A82T/A184V.

Figure S13 Optimizing the amount of H_2O_2 used in styrene epoxidation catalyzed by P450BM3 F87A/T268I/V78Cmutant (0.5 μ M) in the presence of Im-C6-Phe (500 μ M) at 25 °C.

Figure S14 Optimizing the amount of Im-C6-Phe used in styrene epoxidation with H_2O_2 (20 mM) catalyzed by P450BM3 F87A/T268I/V78C mutant (0.5 μ M) at 25 °C.

(B)

Figure S15 GC analyses for the unreacted styrene and formed styrene oxide in the semipreparative scale epoxidation of styrene (10 mM) catalyzed by the mutants of F87A/T268I/L181Q (A) and F87A/T268I/V78A/A82V (B) upon addition of H_2O_2 (80 mM) in the presence of Im-C6-Phe (2 mM) in 0.1 M pH 8.0 phosphate buffer at 0 °C.

Figure S16 Chiral GC analyses for the semi-preparative scale epoxidation of styrene (10 mM) catalyzed by the mutants of F87A/T268I/L181Q (A) and F87A/T268I/V78A/A82V (B) upon addition of H_2O_2 (80 mM) in the presence of Im-C6-Phe (2 mM) in 0.1 M pH 8.0 phosphate buffer at 0 °C.

Figure S17 ¹H NMR spectra of styrene oxide isolated from the semi-preparative scale epoxidation of styrene (10 mM) catalyzed by the mutants of F87A/T268I/L181Q (A) and F87A/T268I/V78A/A82V (B) upon addition of H_2O_2 (80 mM) in the presence of Im-C6-Phe (2 mM) in 0.1 M pH 8.0 phosphate buffer at 0 °C.

Figure S18 The calibration curves of styrene substrates and the corresponding epoxide products. IS: Internal standard.

-		
mutations	ee %	TON
F87A/T268A	$nd^{[d]}$	124±2
F87A/T268V	<mark>94</mark>	382±2
F87A/T268I	<mark>97</mark>	335±8
F87A/T268L	$nd^{[d]}$	53±2
F87A/T268F	$nd^{[d]}$	25±2
F87A/T268W	$nd^{[d]}$	40±1
F87G/T268V	<mark>83</mark>	767±3
F87G/T268I	<mark>94</mark>	318±17
F87V/T268V	<mark>52</mark>	161±3
F87V/T268I	<mark>90</mark>	395±48
F87I/T268V	$nd^{[d]}$	81±6
F87I/T268I	$nd^{[d]}$	322±3
F87L/T268V	$nd^{[d]}$	16±4
F87L/T268I	$nd^{[d]}$	47±1

Table S1 Screening of P450BM3 double mutants for the epoxidation of styrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

[a] Reaction conditions: P450BM3 (0.5 μ M), H₂O₂ (20 mM), Im-C6-Phe (0.5 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 25 °C. [b] All the control reactions did not show obvious activity of styrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction. [d] nd: not detected.

mutations	ee %	TON
F87A/T268I/L75M	<mark>97</mark>	1098±19
F87A/T268I/L75Y	nd ^[d]	59±1
F87A/T268I/L75F	<mark>97</mark>	80±1
F87A/T268I/L75Q	<mark>95</mark>	203±3
F87A/T268I/L75K	<mark>97</mark>	79±1
F87A/T268I/V78T	<mark>97</mark>	1006±19
F87A/T268I/V78M	<mark>97</mark>	296±4
F87A/T268I/V78A	<mark>97</mark>	1524±16
F87A/T268I/V78C	<mark>97</mark>	830±20
F87A/T268I/V78F	<mark>94</mark>	874±4
F87A/T268I/V78I	<mark>96</mark>	201±1
F87A/T268I/V78L	<mark>97</mark>	249±2
F87A/T268I/V78S	<mark>97</mark>	917±3
F87A/T268I/A82V	<mark>97</mark>	1027±22
F87A/T268I/A82I	<mark>97</mark>	$1086{\pm}5$
F87A/T268I/A82C	<mark>97</mark>	792±18
F87A/T268I/A82G	<mark>97</mark>	527±20
F87A/T268I/A82L	<mark>96</mark>	544±1
F87A/T268I/A82S	<mark>96</mark>	645±1
F87A/T268I/A82F	nd ^[d]	12±1
F87A/T268I/A82N	nd ^[d]	30±1
F87A/T268I/A82T	<mark>96</mark>	578±1
F87A/T268I/A82M	<mark>91</mark>	1472 ± 2
F87A/T268I/A82E	<mark>51</mark>	$nd^{[d]}$
F87A/T268I/L181F	<mark>97</mark>	481±2
F87A/T268I/L181Q	<mark>99</mark>	918±54
F87A/T268I/L181I	<mark>97</mark>	879±10
F87A/T268I/L181M	<mark>98</mark>	1576±82
F87A/T268I/L181T	<mark>98</mark>	879±52
F87A/T268I/L181N	<mark>98</mark>	355±1
F87A/T268I/A184F	nd ^[d]	$nd^{[d]}$
F87A/T268I/A184I	<mark>97</mark>	635±1
F87A/T268I/A184Q	<mark>97</mark>	401±1
F87A/T268I/A184T	<mark>97</mark>	664±13
F87A/T268I/A184V	<mark>97</mark>	804±1
F87A/T268I/A184L	<mark>97</mark>	816±3
F87A/T268I/A184M	<mark>97</mark>	1015±3
F87A/T268I/A184N	<mark>97</mark>	$nd^{[d]}$
F87A/T268I/R255S	<mark>98</mark>	298±1
F87A/T268I/R255D	<mark>>99%</mark>	120±1
F87A/T268I/R255V	<mark>98</mark>	164±1

Table S2 Screening of P450BM3 mutants for the epoxidation of styrene with H_2O_2 in the presence of Im-C6-Phe ^[a, b]

F87A/T268I/R255L	<mark>98</mark>	292±5
F87A/T268I/R255Q	<mark>98</mark>	435±4
F87A/T268I/I263V	<mark>98</mark>	608±8
F87A/T268I/I263G	<mark>92</mark>	206±32
F87A/T268I/A264C	nd ^[d]	$nd^{[d]}$
F87A/T268I/A264S	<mark>96</mark>	698±2
F87A/T268I/A264T	<mark>95</mark>	526±5
F87A/T268I/E267Q	<mark>91</mark>	478±18
F87A/T268I/E267L	<mark>97</mark>	148±3
F87A/T268I/A328V	<mark>92</mark>	47±1
F87A/T268I/A328S	<mark>98</mark>	150±3

[a] Reaction conditions: P450BM3 (0.5 μ M), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 25 °C. [b] All the control reactions did not show obvious activity of styrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction. [d] nd: not detected.

Table S3 Screening of P450BM3 mutants for the epoxidation of styrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

F87A/T268I/V78A/A82V	<mark>98</mark>	4052±22
F87A/T268I/V78A/A181Q	<mark>97</mark>	2060±40
F87A/T268I/V78A/A181M	<mark>97</mark>	2051±36
F87A/T268I/V78A/A184L	<mark>98</mark>	4349±26
F87A/T268I/A82V/A181Q	<mark>98</mark>	236±1
F87A/T268I/A82V/A181M	<mark>99</mark>	699±9
F87A/T268I/A82V/A184L	<mark>98</mark>	1030±50
F87A/T268I/L181Q/A184L	<mark>98</mark>	815±22
F87A/T268I/L181M/A184L	<mark>97</mark>	538±17

[a] Reaction conditions: P450BM3 (0.5 μ M), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 4 °C. [b] All the control reactions did not show obvious activity of styrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction. [d] nd: not detected.

1		
mutations	ee %	TON
F87A/T268A	<mark>87</mark>	1724±7
F87A/T268I	<mark>50</mark>	153±1
F87A/T268V	<mark>51</mark>	514±1
F87A/T268A/V78A	<mark>95</mark>	1445±14
F87A/T268A/A82V	<mark>90</mark>	2023±24
F87A/T268A/L181M	<mark>85</mark>	1300±51
F87A/T268A/L181Q	<mark>80</mark>	1314±3

Table S4 Screening of P450BM3 mutants for the epoxidation of 2-chlorostyrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

[a] Reaction conditions: P450BM3 (0.5 μM), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 4 °C. [b] All the control reactions did not show obvious activity of 2-chlorostyrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction.
[d] nd: not detected.

mutations	ee %	TON
F87A/T268I/A82G	<mark>92</mark>	310±5
F87A/T268I/A82I	<mark>96</mark>	362±2
F87A/T268I/A82L	<mark>96</mark>	479±11
F87A/T268I/A82V	<mark>91</mark>	262±13
F87A/T268I/V78A/A82V	<mark>91</mark>	472±4
F87A/T268I/A82V/A184I	<mark>91</mark>	496±13
F87A/T268I/A82V/A184V	<mark>90</mark>	311±4

Table S5 Screening of P450BM3 mutants for the epoxidation of 3-chlorostyrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

[a] Reaction conditions: P450BM3 (0.5 μM), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 4 °C. [b] All the control reactions did not show obvious activity of 3-chlorostyrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction.
[d] nd: not detected.

Table S6 Screening of P450BM3 mutants for the epoxidation of 4-chlorostyrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

mutations	ee %	TON
F87A/T268I/A82V	<mark>98</mark>	454±1
F87A/T268I/A82V/A184V	<mark>98</mark>	671±34
F87A/T268I/A82V/A184I	<mark>98</mark>	719±1
F87A/T268I/A82T/A184V	<mark>96</mark>	473±3

[a] Reaction conditions: P450BM3 (0.5 μM), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 4 °C. [b] All the control reactions did not show obvious activity of 4-chlorostyrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction.
[d] nd: not detected.

mutations	ee %	TON
F87A/T268I	<mark>97</mark>	677±10
F87A/T268I/V78A	<mark>98</mark>	483±25
F87A/T268I/V78C	<mark>98</mark>	1215±11
F87A/T268I/A184I	<mark>97</mark>	488±23
F87A/T268I/V78A/A82V	<mark>98</mark>	2192±10
F87A/T268I/V78A/A184L	<mark>98</mark>	3480±216

Table S7 Screening of P450BM3 mutants for the epoxidation of 2-fluorostyrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

[a] Reaction conditions: P450BM3 (0.5 μM), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 4 °C. [b] All the control reactions did not show obvious activity of 2-fluorostyrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction.
[d] nd: not detected.

mutations	ee %	TON
F87A/T268I/V78A	<mark>97</mark>	1304±6
F87A/T268I/V78C	<mark>96</mark>	330±3
F87A/T268I/A82I	<mark>96</mark>	882±22
F87A/T268I/A82L	<mark>94</mark>	829±10
F87A/T268I/A82V	<mark>96</mark>	503±1
F87A/T268I/V78A/A82V	<mark>97</mark>	2876±130
F87A/T268I/V78A/A184L	<mark>96</mark>	3316±5
F87A/T268I/A82V/A184I	<mark>96</mark>	1215±42
F87A/T268I/A82V/A184V	<mark>96</mark>	887±8

Table S8 Screening of P450BM3 mutants for the epoxidation of 3-fluorostyrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

[a] Reaction conditions: P450BM3 (0.5 μM), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 4 °C. [b] All the control reactions did not show obvious activity of 3-fluorostyrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30/min reaction.
[d] nd: not detected.

Table S9 Screening of P450BM3 mutants for the epoxidation of 4-fluorostyrene with H_2O_2 in the presence of Im-C6-Phe^[a, b]

mutations	ee %	TON
F87A/T268I/V78A	<mark>99</mark>	2037±13
F87A/T268I/V78C	<mark>99</mark>	1312±11
F87A/T268I/A184V	<mark>98</mark>	680±13
F87A/T268I/V78A/A184L	<mark>99</mark>	2803±51
F87A/T268I/A82T/A184V	<mark>97</mark>	480±9

[a] Reaction conditions: P450BM3 (0.5 μM), H₂O₂ (80 mM), Im-C6-Phe (2 mM), styrene (4 mM) in pH 8.0 phosphate buffer at 4 °C. [b] All the control reactions did not show obvious activity of 4-fluorostyrene epoxidation in the absence of Im-C6-Phe. [c] TON: Turnover numbers were estimated over a 30 min reaction.
[d] nd: not detected.