Electronic Supplementary Information

A *Tellura*-Baeyer-Villiger Oxidation: One-step Transformation of Tellurophene into Chiral Tellurinate Lactone

Shitao Wang, Chaoxian Yan, Wenlong Zhao, Xiaolan Liu, Cheng-Shan Yuan, Hao-Li Zhang and Xiangfeng Shao*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou 730000 (China)

Email: shaoxf@lzu.edu.cn

Table of contents

1. Materials and General methods	S1
2. Synthesis	S2
2.1 Synthesis of 1	S2
2.2 Synthesis of 2	S3
2.3 Synthesis of 3	S4
2.4 Synthesis of 4	S5
2.5 Synthesis of 5	S5
2.6 Synthesis of 9	S6
2.7 Synthesis of 10	S7
3. Thermogravimetric Analyses	S8
4. Assignment of protons, ¹²⁵ Te NMR, ¹ H NMR spectra under different conditions	S9
5. X-ray Crystal Structure Analyses	S16
5.1 Experimental details on crystal growth	S16
6. Photophysical Studies	S24
6.1 Separation, CD spectra, and molecular structures of the enationmers	S24
6.2 UV-Vis absorption spectra	S26
6.3 Emission spectra	S31
7 Calculations	S33
7.1. Computational Details	S33
7.2 Optimized Structures, Molecular Orbitals and Corresponding Energies, Molecu Electrostatic Potential Surfaces and Dipole Moments	ılar S35
7.3. NICS Calculations	S45
7.4. UV-Vis absorption spectra calculation	S47
8. References	S61
9. ¹²⁵ Te NMR Spectra of Products	S62
10. ¹ H NMR, ¹³ C NMR, and IR Spectra of Products	S68
11. Cartesian Coordinates	

1. Materials and General methods

All chemicals and solvents were purified according to the standard procedure.^[S1] Tellurium powder was purchased from Adamas Reagent Co. Ltd. The *meta*-chloroperbenzonic acid (*m*CPBA) was purchased from Energy Chemical. The compounds **7** and **8** were synthesized according to our previous report.^[S2]

The melting points were determined on a WRS-2 melting point apparatus. The high resolution mass spectral analysis (HRMS) was carried out on Bruker APEX II type mass spectrometer. Thermogravimetric analyses (TGA) were conducted on 1090B type thermal analyzer (Dupont Engineering Polymers). The infrared (IR) spectra were record on the PerkinElmer Spectrum 400 spectrometer with the resolution of 2 cm⁻¹.

The ¹H NMR, ¹³C NMR, and ¹²⁵Te NMR spectra were recorded on Bruker Advance III 400 MHz or 600 MHz spectrometer (400 MHz or 600 MHz for ¹H NMR, 400 MHz for ¹²⁵Te NMR, 100 MHz or 125 MHz for ¹³C NMR). Chemical shifts for ¹H NMR spectra were reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and referenced internally to the residual proton in solvents (CDCl₃: δ 7.27, CD₂Cl₂: δ 5.32). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the ¹³C resonance of solvenst (CDCl₃: δ 77.00, CD₂Cl₂: δ 53.43). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet); coupling constants, *J*, are reported in hertz. The HSQC and HMBC were recorded on a Bruker Advance III 600 MHz spectrometer. The chemical shifts of ¹²⁵Te NMR of the compounds in this manuscript were recorded by using ¹²⁵Te NMR of diphenyl ditelluride (0.5 M solution in CDCl₃, δ = 420 ppm) as external reference.^[3]

The two pairs of enationmers of compounds **2**, **9** and **10** were separated by the means of chiral high-performance liquid chromatography (HPLC, Shimadzu LC-20AT) at 25 °C. The enantiomers of **2** were separated by the chiral HPLC on CHIRALPAK IG-3 (IG30CD-WE016) column (column size: 0.46 cm I.D. ×15 cm L; eluent: MeOH/DCM=80/20). The **9** and **10** were separated by Daicel CHIRALPAK IF (IF00CE-SL018) column (column size: 0.46 cm I.D. ×25 cm L; eluent: hexane/CH₂Cl₂ = 50/50). The flow rate is 1 mL/min and the wavelength of UV is 254 nm.

Circular dichroism (CD) in CH₂Cl₂ ($c = 6 \times 10^{-4}$ mol L⁻¹) was measured on an Olis-DSM-1000 Circular Dichroism Spectrometer at 20 °C. The UV-Vis absorption spectra in CH₂Cl₂ were measured on a UV-2600 UV-Specterophotometer at 20 °C. The excitation and emission spectra, and emission lifetime in THF solution ($c = 2 \times 10^{-3}$ mol L⁻¹ for **2**, **9**, and **10**; $c = 10^{-6}$ mol L⁻¹ for *mono*-**2**, *mono*-**9**, and *mono*-**10**) were measured on a FLS-920 Spectrofluorophotometer at 77 K. The single-crystal X-ray diffraction was carried out on a SuperNova (Agilent) diffractometer. The crystal structure was solved by a direct method $SIR2004^{[S4]}$ and refined by full-matrix least-square method on F^2 by means of *SHELX*L-97.^[S5] The calculated positions of the hydrogen atoms were included in the final refinement.

2. Synthesis

2.1 Synthesis of 1

Under the nitrogen atmosphere, TMEDA (9.00 mL, 0.06 mol) and *n*-butyllithium (2.4 M in *n*-hexane, 25.00 mL, 0.06 mol) were injected to a solution of 2,3,6,7,10,11-hexabutoxytriphenylene (13.2 g, 0.02 mol) in *n*-hexane (100 mL) at room temperature (r.t.). The resulting mixture was stirred at 60 °C for 3 hours, and then cooled to r.t., followed by addition of 100 mL THF. The mixture was further cooled to -78 °C, and tellurium powder (7.62 g, 0.06 mol) was added in one portion. The resulting mixture was allowed to warm up slowly to r.t. and stirred under ultrasound for 8 hours. Finally, the reaction was quenched by adding distilled water and the mixture was extracted with CH₂Cl₂ (3×150 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, then concentrated in vacuo. The crude product was purified by column chromatography on silica (eluent, CH₂Cl₂: petro ether, 1 : 4, v/v) to afford **1** as a yellow solid (6.46 g, 41%). mp: 109.1 °C-110.6 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.87 (s, 2H), 7.80 (s, 2H), 4.33-4.26 (m, 12H), 1.98 (m, 8H), 1.91-1.84 (m, 4H), 1.72-1.61(m, 12H), 1.14-1.07 (m, 18H); ¹²⁵Te NMR (400MHz, CDCl₃) δ (ppm) 595.56; ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 150.38, 149.21, 148.48, 133.22, 126.96, 124.12, 119.94, 107.24, 105.22, 72.77, 69.22, 69.19, 32.89, 31.74, 31.5, 19.61, 19.58, 19.48, 14.13, 14.08; HRMS: calculated for C₄₂H₅₈O₆Te, 788.3290; found, 788.3280.

2.2 Synthesis of 2

Condition *a*: Compound 1 (0.79 g, 1 mmol) and Oxone (1.23 g, 2 mmol) was dissolved in a mixed solvent of THF (20 mL) and deionized H₂O (5 mL). The resulting mixture was stirred for 4 h at r.t., and then deionized H₂O was added. The mixture was extracted with dichloromethane (CH₂Cl₂, 3×30 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, then concentrated under reduced pressure. The crude product was further purified by column chromatography on silica-gel (eluent, CH₂Cl₂) to afford **2** as yellow solid (0.68 g, 82%).

Condition b: Compound 1 (0.39 g, 0.5 mmol) and mCPBA (85%, 0.20 g, 1 mmol) were dissolved in CH₂Cl₂ (5 mL). The resulting mixture was stirred at r.t. for 4 h. Aqueous Na₂SO₃ and aqueous NaHCO₃ were then added to this mixture, which was then extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was further purified by column chromatography on silica-gel (eluent, CH₂Cl₂) to afford **2** as yellow solid (0.21 g, 52%). mp: 186.2-190.1 °C; ¹H NMR (600 MHz, CDCl₃): δ(ppm) 7.91 (s, 2H), 7.59 (s, 2H), 7.37 (s, 2H), 6.72 (s, 2H), 4.46 (dt, *J* = 9.2, 6.2 Hz, 2H), 4.35 (dt, *J* = 8.9, 6.3 Hz, 2H), 4.27 (dt, J = 8.8, 6.5 Hz, 2H), 4.21 (m, 6H), 4.13 (dt, J = 9.0, 6.6 Hz, 2H), 4.00 (dt, J= 9.4, 6.6 Hz, 2H), 3.54 (dt, J = 9.4, 6.8 Hz, 2H), 3.39 (dt, dt, J = 8.5, 6.0 Hz, 2H), 3.12 (dt, dt, J = 8.1, 6.1 Hz, 2H), 2.79 (dt, J = 9.5, 6.6 Hz, 2H), 2.08-1.98 (m, 6H), 1.97-1.89 (m, 6H), 1.88-1.81 (m, 4H), 1.75-1.61 (m, 18H), 1.57-1.42 (m, 8H), 1.35-1.23 (m, 4H), 1.12 (t, J = 7.4 Hz, 6H), 1.07 (m, 12H), 1.03 (t, J = 7.4 Hz, 6H), 1.01 (t, J = 7.3 Hz, 6H), 0.94 (t, J = 7.3 Hz, 6H); ¹²⁵Te NMR (400MHz, CDCl₃) δ(ppm) 1222.95; ¹³C NMR (151 MHz, CDCl₃): δ(ppm) 152.41, 149.74, 149.05, 147.82, 146.50, 137.89, 127.50, 125.05, 124.70, 123.78, 123.76, 120.37, 113.53, 110.04, 108.48, 107.52, 97.82, 72.88, 72.13, 71.00, 69.18, 68.68, 67.37, 32.60, 32.35, 31.77, 31.63, 31.57, 19.63, 19.50, 19.47, 19.40, 19.39, 18.83, 14.18, 14.13, 14.11, 14.04, 13.99; HRMS, 2: calculated for C₈₄H₁₁₆O₁₆Te₂+H, 1639.6443; found, 1639.6437; *mono-2*: calculated for C₄₂H₅₈O₈Te+H, 821.3267; found, 821.3257.

2.3 Synthesis of 3

Compound **1** (0.39 g, 0.5 mmol) and *m*CPBA (85%, 101.5 mg, 0.5 mmol) were dissolved in CH₂Cl₂ (5 mL). The resulting mixture was stirred at r.t. for 4 h. Aqueous Na₂SO₃ and aqueous NaHCO₃ were then added to this mixture, which was then extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica-gel (eluent, CH₂Cl₂ : ethyl acetate (EA) =3:1) to afford yellow solid. After further purification by slowly evaporating the CH₂Cl₂-ethanol (1 : 1, ν/ν) solution of the yellow solid at r.t., compound **3** was obtained (0.30 g, 64%). mp: 217.1-219.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.32 (m, 6H), 7.27 (d, *J* = 7.9 Hz, 2H) 7.13 (s, 6H), 6.97 (t, *J* = 7.9 Hz, 2H), 4.40-4.34 (m, 4H), 4.27-4.20 (m, 8H), 4.17-4.12 (m, 8H), 4.09-4.04 (m, 4H), 2.02-1.92 (m, 16H), 1.90-1.81 (m, 8H), 1.72-1.53 (m, 24H), 1.10 (m, 24H), 1.03 (t, *J* = 7.3 Hz, 12H); ¹³C NMR (151 MHz, CD₂Cl₂) δ 170.31, 151.29, 149.10, 147.59, 136.56, 134.97, 133.20, 132.44, 130.29, 128.95, 128.68, 127.25, 125.24, 123.36, 108.05, 106.58, 73.72, 69.05, 68.54, 32.54, 31.74, 31.62, 19.66, 19.41, 19.30, 13.88, 13.81;

It should be noted that we cannot observe the ionic peak of compound **3** in HRMS. Instead, the ionic peak of IM-1 ($C_{42}H_{58}O_7Te$) appeared in the HRMS as following: calculated for $C_{42}H_{58}O_7Te$ +H, 805.3318; found, 805.3340.

2.4 Synthesis of 4

Under nitrogen atmosphere, TMEDA (13.50 mL, 0.09 mol) and *n*-BuLi (2.4 M in *n*-hexane, 37.5 mL, 0.09 mol) were added to a solution of phenanthrene (5.35 g, 0.03 mol) in *n*-hexane (100 mL) at r.t. The resulting mixture was heated to 60 °C and stirred for 3 h. Afterwards, the reaction was cooled to r.t., followed by addition of THF (100 mL) and then cooled to -78 °C. Te powder (11.43 g, 0.09 mol) was added in one portion. The resulting mixture was warmed up to r.t. and stirred under ultrasound for 8 h. Finally, the reaction was quenched by adding distilled H₂O and the mixture was extracted with CH₂Cl₂ (3×150 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, then concentrated in vacuo. The crude product was purified by column chromatography on silica (eluent, petro ether) to afford **4** as a white solid (1.1 g, 12%). mp: 110.1 °C-113.6 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.12 (dd, *J* = 7.5, 0.9 Hz, 2H), 7.97 (dd, *J* = 7.8, 1.0 Hz, 2H), 7.87 (s, 2H), 7.70 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (151 MHz, CD₂Cl₂) δ 139.40, 133.58, 129.54, 128.09, 127.10, 126.42, 123.54 ; HRMS: calculated for C₁₄H₈Te, 305.9683; found, 305.9682.

2.5 Synthesis of 5

Compound **4** (152 mg, 0.5 mmol) and *m*CPBA (85%, 203 mg, 1 mmol) were dissolved in CH₂Cl₂ (10 mL). The resulting mixture was stirred at r.t. for 4 h. Aqueous Na₂SO₃ and aqueous NaHCO₃ were then added to this mixture, which was then extracted with CH₂Cl₂. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography on silica-gel (eluent, CH₂Cl₂ : formic acid=3:1) to afford **5** as a white solid (140.6 mg, 71%). mp: 136.1-138.2 °C; ¹H NMR (600 MHz, CD₂Cl₂): δ 8.23 (dd, J = 7.3, 0.7 Hz, 2H), 8.16 (dd, J = 8.0, 0.7 Hz, 2H), 7.99 (s, 2H), 7.89 (s, 2H), 7.87 (m, 2H); ¹³C NMR (151 MHz, CD₂Cl₂) δ (ppm) 168.08 , 142.51 , 140.35 , 133.48 , 130.26 , 129.97 , 128.39, 127.52; IR (KBr Pellet) 1628 cm⁻¹ (C=O); HRMS: calculated for C₁₄H₈OTe+H, 322.9710; found, 322.9720. Note that the two ester groups were dissociated in HRMS spectra of **5**, which is similar to that of compound **3**.

2.6 Synthesis of 9

Condition *a*: Compound **7** (0.85 g, 1 mmol) and Oxone (1.23 g, 2 mmol) were dissolved in the mixed solvent of THF (20 mL) and deionized H₂O (5 mL). The resulting mixture was stirred for 4 h at r.t., and then deionized H₂O was added. The mixture was extracted with dichloromethane (CH₂Cl₂, 3×30 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, then concentrated under reduced pressure. The crude product was purified by column chromatography on silica-gel (eluent, CH₂Cl₂: petro ether, 4 : 1, v/v) to afford **9** as yellow solid (0.70 g, 80%).

Condition *b*: Compound **7** (0.17 g, 0.2 mmol) and *m*CPBA (85%, 81 mg, 0.4 mmol) were dissolved in CH₂Cl₂ (5 mL). The resulting mixture was stirred at r.t. for 4 h. Aqueous Na₂SO₃ and aqueous NaHCO₃ were then added to this mixture, which was then extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was further purified by column chromatography on silica-gel (eluent, CH₂Cl₂) to afford **9** as yellow solid (53 mg, 30%). mp: 194.5-197.0 °C; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 4.55-4.40 (m, 12H), 4.33-4.29 (m, 2H), 4.10-4.06 (m, 2H), 3.69-3.66 (m, 2H), 3.34 (m, 2H), 3.11 (m, 2H), 3.02-2.98 (m, 2H), 2.02-1.94 (m, 8H), 1.93-1.86 (m, 8H), 1.76-1.69 (m, 8H), 1.68-1.59 (m, 8H), 1.51-1.46 (m, 8H), 1.41-1.30 (m, 8H), 1.14-1.05 (m, 24H), 0.96 (m, 12H); ¹²⁵Te NMR (400MHz, CDCl₃) δ (ppm) 1239.43; ¹³C NMR (151 MHz, CDCl₃): δ (ppm) 148.83, 148.73, 148.67, 146.12, 146.01, 145.09, 140.15, 132.63, 127.40, 126.52, 126.14, 125.95, 124.50, 124.47, 123.23, 120.56, 120.40, 111.94, 73.77, 73.09, 72.99, 72.77, 70.32, 32.55, 32.49, 32.43, 32.41, 32.24, 19.43, 19.37, 19.35, 19.31, 19.14, 19.05, 14.19, 14.09, 14.05, 14.00, 13.99, 13.95; HRMS, **9**: calculated for C₈₄H₁₀₈O₁₆S₄Te₂+H, 1759.4700; found, 1759.4736; *mono-***9**: calculated for C₄₂H₅₄O₈S₂Te+H, 881.2395; found, 881.2415.

2.7 Synthesis of 10

Condition *a*: Compound **8** (0.94 g, 1 mmol) and Oxone (1.23 g, 2 mmol) were dissolved in the mixed solvent of THF (20 mL) and deionized H₂O (5 mL). The resulting mixture was stirred for 4 h at r.t., and then deionized H₂O was added. The mixture was extracted with dichloromethane (CH₂Cl₂, 3×30 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, then concentrated under reduced pressure. The crude product was purified by column chromatography on silica-gel (eluent, CH₂Cl₂: petro ether, 4 : 1, v/v) to afford **10** as yellow solid (0.76 g, 78%).

Condition *b*: Compound **8** (188.8 mg, 0.2 mmol) and *m*CPBA (85%, 81.2 mg, 0.4 mmol) were dissolved in CH₂Cl₂ (5 mL). The resulting mixture was stirred at r.t. for 4 h. Aqueous Na₂SO₃ and aqueous NaHCO₃ were then added to this mixture, which was then extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was further purified by column chromatography on silica-gel (eluent, CH₂Cl₂) to afford **10** as yellow solid (15.8 mg, 8 %). mp: 113.5-116.6 °C; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 4.51-4.45 (m, 6H), 4.44-4.35 (m, 6H), 4.32 (dt, *J* = 9.1, 6.7 Hz, 2H), 4.10 (dt, *J* = 9.4, 6.7 Hz, 2H), 3.53 (m, 4H), 3.10 (m, 4H), 2.04-1.99 (m, 4H), 1.97-1.86 (m, 12H), 1.79-1.68 (m, 8H), 1.66-1.58 (m, 8H), 1.56-1.47 (m, 8H), 1.45-1.33 (m, 8H), 1.17-1.05 (m, 24H), 0.97 (m, 12H); ¹²⁵Te NMR (400MHz, CDCl₃) δ (ppm) 1228.41; ¹³C NMR (151 MHz, CDCl₃): δ (ppm) 150.36, 149.01, 148.97, 148.07, 148.06, 146.37, 140.46, 133.47, 130.02, 129.37, 128.58, 128.45, 125.84, 124.88, 124.01, 122.25, 119.68, 113.58, 73.67, 73.18, 73.05, 72.96, 72.75, 70.16, 32.69, 32.56, 32.51, 32.44, 19.50, 19.47, 19.38, 19.35, 19.28, 19.18, 14.20, 14.09, 14.06, 14.02, 13.98; HRMS, **10**: calculated for C₈₄H₁₀₈O₁₆Se₄Te₂+H, 1949.2486; found, 1949.2522; *mono*-**10**: calculated for C₈₄H₁₀₈O₁₆Se₄Te₂+H, 1949.2486; found, 1949.2522; *mono*-**10**: calculated for C₄₂H₅₄O₈Se₂Te, 976.1206; found, 976.1273.

3. Thermogravimetric Analyses

Thermogravimetric analyses (TGA) were conducted on 1090B type thermal analyzer (Dupont Engineering Polymers).

Comp	2	9	10
$T_{ m d}$ / $^{ m o}{ m C}$	200	271	242

Table S1 Thermal stability of compounds 2, 9 and 10.

 T_d : degradation temperature.

Fig. S1 TGA analyses of compounds 2, 9 and 10.

4. Assignment of protons, ¹²⁵Te NMR, ¹H NMR spectra under different conditions

The ¹H NMR of compound **2** and **13** were measured in CDCl₃ at 25 °C. The protons of $-O-CH_2$ on the *n*-butoxy region are assigned through HSQC and HMBC experiments as shown in **Figs. S2**, **S3**, **S5**, and **S6**. In addition, the H_{4a}, H_{4b}, H_{5a}, and H_{5b} can be assigned according to the relative position of protons in the crystal structure (**Fig. S4**). **Table S2** summarizes the chemical shifts of ¹H NMR, ¹³C NMR, and the HMBC(H \rightarrow C) data of **2**. As depicted in **Fig. S5**, there is dynamical transformation between **2** and *mono-***2**. When the concentration is lower than 8×10⁻⁵ mol L⁻¹, the ¹H NMR spectrum of *mono-***2** was observed. However, the ¹³C NMR, HSQC and HMBC spectra of *mono-***2** can not be obtained at such low concentration. The chemical shifts protons of $-O-CH_2$ - on the *n*-butoxy region of *mono-***2** were assigned by comparison with those of the analogue **13** (**Table S3**). The chemical shifts of the ¹²⁵Te NMR of **2**, **9** and **10** are clearly down-field shifted as compared to those of the corresponding **1**, **7** and **8** (**Fig. S6-S8**).

Fig. S2 The HSQC spectrum of compound 2 (CDCl₃, 600 MHz).

Fig. S3 The HMBC spectrum of compound 2 (CDCl₃, 600 MHz).

Number	¹ H NMR (ppm)	¹³ C NMR (ppm)	HMBC(H→C)
1	H _a :4.35 (dt, 8.9, 6.3);	67.17	7
	H _b :4.27 (dt ,8.8, 6.5)		
2	H _a : 4.21 (m);	68.67	20
	H _b :4.13 (dt, 9.0, 6.6)		
3	H _a : 4.21 (m);	72.87	19
	H _b :4.00 (dt, 9.4, 6.6)		
4	H _a : 3.54 (dt, 9.4, 6.8);	72.12	14
	H _b : 2.78 (dt, 9.5, 6.6)		
5	H _a :3.39 (dt, 8.5, 6.0);	67.36	13
	H _b : 3.12 (dt, 8.1, 6.1)		
6	H _a : 4.46 (dt, 9.2, 6.2);	70.99	8
	H _b :4.21 (m)		
9	7.90 (s)	107.51	8, 23, 10, 11, 24, 6
12	6.71 (s)	108.47	13, 14, 15, 10, 11, 16
21	7.36 (s)	97.81	20, 19, 23, 17
24	7.58 (s)	110.03	7, 23, 9, 1

Table S2 The ¹H NMR, ¹³C NMR and HMBC($H\rightarrow C$) data of compound **2**.

Fig. S4 Crystal structure of the compound **2** (top view). The H_{4a} , H_{4b} , H_{5a} , and H_{5b} are shown in blue. The other *n*-Bu groups and H atoms are omitted for clarity.

The chemical shifts of H-4a, H-4b, H-5a, and H-5b of compound **2** were determined with the aid of crystal structure of **2**. As shown in **Fig. S4**, H-4a, H-4b, H-5a, and H-5b are located in the shielding zone of the other triphenylene as depicted in the crystal structure of **2**. The chemical shift values of H-4b (δ H 2.78) implied that H-4b in **2** was significantly shielded by the triphenylene. And the observed deshielding effects provide further evidence for the chemical shifts of H-4a (δ H 3.54), H-5a (δ H 3.39), and H-5b (δ H 3.12).

Fig. S5 The HSQC spectrum of compound 13 (CDCl₃, 600 MHz).

Fig. S6 The HMBC spectrum of compound 13 (CDCl₃, 600 MHz).

Number	¹ H NMR (ppm)	¹³ C NMR (ppm)	HMBC(H→C)
1*	4.21 (m)	69.45	7*
2*	4.25 (t, 6.3)	68.87	20*
3*	4.15 (t, 6.5)	73.98	19*
4*	4.67 (t, 6.8)	74.98	14*
5*	4.28 (t, 6.3)	68.90	13*
6*	4.21 (m)	69.20	8*
9*	7.78 (s)	107.50	8*, 11*
12*	7.94 (s)	110.63	13*, 14*, 11*, 16*
21*	7.58 (s)	101.63	20*, 19*, 22*, 17*
24*	7.69 (s)	107.30	7*, 22*

Table S3 The ¹H NMR, ¹³C NMR and HMBC($H\rightarrow C$) data of compound **13**.

4×10⁻⁴ mol/L

4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5

b)

Fig. S7 a) ¹H-NMR spectra of 2 at different concentrations; b) transformation between 2 and *mono-* 2 with the numeration of hydrogen atoms (*n*-butoxy region) shown.

Table S4 The ¹²⁵Te NMR of compounds **1**, **2**, **7**, **8**, **9**, and **10**.

Fig. S8 The ¹²⁵Te NMR spectra of the compounds **1** and **2**. The chemical shifts were recorded using the ¹²⁵Te NMR of diphenyl ditelluride (0.5 M solution in CDCl₃, $\delta = 420$ ppm) as the external reference.

Fig. S9 The ¹²⁵Te NMR spectra of the compounds 7 and 9. The chemical shifts were recorded using the ¹²⁵Te NMR of diphenyl ditelluride (0.5 M solution in CDCl₃, $\delta = 420$ ppm) as the external reference.

Fig. S10 The ¹²⁵Te NMR spectra of the compounds 8 and 10. The chemical shifts were recorded using the ¹²⁵Te NMR of diphenyl ditelluride (0.5 M solution in CDCl₃, $\delta = 420$ ppm) as the external reference.

5. X-ray Crystal Structure Analyses

5.1 Experimental details on crystal growth

The single crystals of **2**, **3**, **9**, **10**, **11** and **12** were obtained by slowly evaporating their solutions at room temperature as summarized in Table S5-S6.

Compound	Solvent (v/v)	Yield (%)	appearance
2 (8.2 mg, 0.005 mmol)	CH ₂ Cl ₂ : EtOH (3 ml : 3 ml)	5.4 mg, 66%	Pale yellow strip
3 (9.5 mg, 0.005 mmol)	CH ₂ Cl ₂ : EtOH (3 ml : 3 ml)	5.1 mg, 54%	Yellow block
9 (8.8 mg, 0.005 mmol)	CH ₂ Cl ₂ : EtOH (1 ml : 4 ml)	6.6 mg, 76%	Yellow block
10 (9.7 mg, 0.005 mmol)	EA: EtOH (1 ml : 4 ml)	6.9 mg, 72%	Pale yellow block

Table S5 Experimental details on crystal growth of compounds 2, 3, 9 and 10.

Compound	Reactant	HCl	Solvent (v/v)	Yield (%)	appearance
11	9 (17.6 mg, 0.01 mmol)	100 µL	CH ₂ Cl ₂ : EtOH (1 ml : 5 ml)	8.6 mg, 46%	Orange needle
12	10 (19.4 mg, 0.01 mmol)	100 µL	CH ₂ Cl ₂ : EtOH (1 ml : 5 ml)	8.4 mg, 41%	Orange needle

	2	3	9	10
CCDC number	2035868	2035866	2035865	2035863
Empirical formula	$C_{84}H_{116}O_{16}Te_2$	$C_{98}H_{124}Cl_2O_{17}Te_2$	$C_{84}H_{108}O_{16}S_4Te_2$	$C_{84}H_{108}O_{16}Se_4Te_2$
Formula weight	1636.96	1900.06	1757.14	1944.74
Temperature [K]	173(1)	170.0	170(2)	100
λ [Å]	0.71073 (Mo- Kα)	0.71073 (Mo- Kα)	0.71073 (Mo-Kα)	0.71073 (Mo-Kα)
Crystal size [mm ³]	0.28×0.15×0.12	0.12×0.08×0.05	0.22×0.21×0.05	0.19×0.15×0.12
Crystal system	monoclinic	monoclinic	triclinic	monoclinic
space group	C2/c	C2/c	<i>P</i> -1	$P2_{1}/n$
a [Å]	39.1328(11)	37.942(2)	19.1567(10)	18.8279(10)
<i>b</i> [Å]	20.3253(7)	17.3698(11)	35.2402(17)	27.9082(16)
<i>c</i> [Å]	29.5440(8)	29.2185(18)	49.703(2)	32.268(3)
α [°]	90	90	97.646(2)	90
β[°]	136.4590(10)	105.560(2)	90.535(2)	106.815(3)
γ [°]	90	90	92.720(2)	90
<i>V</i> [Å ³]	16187.7(9)	18550.3(19)	33214(3)	16230(2)
Ζ	8	8	16	8
$d_{\text{calc}} [\text{g cm}^{-3}]$	1.343	1.361	1.406	1.592
μ [mm ⁻¹]	0.785	0.752	0.867	2.579
2 <i>θ</i> max [°]	52.77	50.056	52.798	50.054
Data/restraints/parameters	16140/1002/967	16335/1372/1243	133760/63527/9454	28467/2716/2067
GooF	1.076	1.026	1.017	1.036
$R [I > 2\sigma(I)]$	0.0396	0.0876	0.0874	0.0588
wR_2	0.0731	0.2282	0.2278	0.1427

Table S7. Selected crystallographic data of 2, 3, 9 and 10.

 Table S8 Selected crystallographic data of 11 and 12.

	11	12
CCDC number	2064766	2064765
Empirical formula	$C_{42}H_{54}Cl_2O_7S_2Te$	$C_{42}H_{54}Cl_2O_7Se_2Te$
Formula weight	933.47	1027.27
Temperature [K]	150.00 (10)	296.15
λ [Å]	1.54184 (Cu-Kα)	0.71073 (Mo-Kα)
Crystal size [mm ³]	0.04×0.02×0.01	0.12×0.1×0.1
Crystal system	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> [Å]	9.8421(4)	9.902(3)
<i>b</i> [Å]	14.6373(6)	14.643(4)
<i>c</i> [Å]	16.1252(6)	16.120(5)
α [°]	107.209(3)	106.116(9)
β[°]	103.814(3)	104.058(11)
γ [°]	97.239(3)	96.560(9)
V [Å ³]	2105.86(15)	2136.5(10)
Ζ	2	2
$d_{\text{calc}} [\text{g cm}^{-3}]$	1.472	1.597
$\mu [{ m mm}^{-1}]$	8.059	2.572
$2\theta_{\max}$ [°]	144.228	55.434
Data/restraints/parameters	8018/203/522	9758/41/493
GooF	1.046	1.118
$R\left[I > 2\sigma(I)\right]$	0.1093	0.0792
wR2	0.3028	0.2564

Fig. S11 a) Top view and b) side view of crystal structure of 2; c) packing motif with atomic contacts shown in blue lines. The C, O and Te atoms are respectively shown in grey, red, and green. The selected bond lengths and intermolecular contacts are in unit of Å. The *n*-Bu groups and H atoms are omitted for clarity.

Fig. S12 a) Side view and b) top view of crystal structure of **3**; c) packing motif. The C, O, Cl and Te atoms are respectively shown in grey, red, orange and green. Owing to the large thermo factors of atoms, the Ortep drawn is performed at probability of 30%. The selected bond lengths are in unit of Å. The *n*-Bu groups, H atoms and the *m*CBA ester in b) are omitted for clarity.

Fig. S13 Side view of molecule A_1B_1 - A_4B_4 in 9. The selected bond lengths are in unit of Å. The bond length of the newly formed C-O is 1.37(2) Å. The C, O, S and Te atoms are respectively shown in grey, red, yellow and green.

Fig. S14 a), b), c), and d) are side views of molecule A_5B_5 - A_8B_8 in 9; e) packing motif of 9 with atomic contacts shown in blue lines. The bond length of the newly formed C-O is 1.37(2) Å. The selected bond lengths and intermolecular contacts are in unit of Å. The C, O, S and Te atoms are respectively shown in grey, red, yellow and green.

Fig. S15 a) Top view and b) side view of crystal structure of **11**; c) packing motif. The C, O, S, Cl, and Te atoms are respectively shown in grey, red, yellow, orange, and green. The *n*-Bu groups and H atoms are omitted for clarity.

Fig. S16 a) Top view and b) side view of crystal structure of **12**; c) packing motif. The C, O, Se, Cl, and Te atoms are respectively shown in grey, red, pink, orange, and green. The *n*-Bu groups and H atoms are omitted for clarity.

6. Photophysical Studies

6.1 Separation, CD spectra, and molecular structures of the enationmers

The enationmers of compounds 2 and 9 were separated by means of chiral HPLC as shown in Figs. S17a and S18a, respectively. The circular dichroism (CD) spectra of 2 and 9 were measured in CH₂Cl₂ ($c = 6 \times 10^{-4}$ mol L⁻¹) at 20 °C. The CD spectra of 2' and 9' were calculated at TD-PBE0/Def2-SVP/IEFPCM(CH₂Cl₂) (nstates = 100, root = 1) level of theory using optimized structures. The molecular structures of (-)-2'/(+)-2' and (-)-9'/(+)-9' were respectively shown in Fig. S17c and S18c.

Fig. S17 a) Chiral chromatograms of **2** on a CHIRALPAK IG-3(IG30CD-WE016) column (eluent: MeOH/DCM=80/20); b) CD spectra (solid line) of (+)-2/(-)-2 in CH₂Cl₂ (6×10⁻⁴ mol L⁻¹) and simulated CD spectra (dash line) of (+)-2/(-)-2 via TD-DFT calculation at TD-PBE0/Def2-SVP level; c) molecular structures of $(-)-2^{2}$, $(+)-2^{2}$.

Fig. S18 a) Chiral chromatograms of **9** on Daicel CHIRALPAK IF (IF00CE-SL018) column (eluent: hexane/CH₂Cl₂ = 50/50); b) CD spectra (solid line) of (+)-**9**/(-)-**9** in CH₂Cl₂ (6×10⁻⁴ mol L⁻¹) and simulated CD spectra (dash line) of (+)-**9**/(-)-**9** *via* TD-DFT calculation at TD-PBE0/Def2-SVP level; c) molecular structures of (+)-**9**', (-)-**9**'.

6.2 UV-Vis absorption spectra

UV-Vis spectra of 1, *mono-2*, 7, 8, *mono-9* and *mono-10* were measured in CH_2Cl_2 at 20 °C on a UV-2600 UV-Vis spectrometer (Shimadzu). The broad absorption bands of *mono-2* (376-385 nm) and *mono-9* (385-446 nm) are originated from the HOMO-LUMO transitions, and are red-shifted as compared with those of 1 (356-371 nm) and 7 (378-402 nm). This is caused by the electron-withdrawing unit (Te=O) in these structures.

Comp.	λ_{max}/nm	$\log \varepsilon$								
1	256	6.74	282	7.02	356	3.64	371	3.15		
mono-2	278	6.92	376	3.97	385	5.92				
7	311	6.84	378	5.16	402	5.19				
8	272	6.50	315	6.80	340	6.43	375	5.24	398	5.12
mono- 9	258	6.73	294	6.80	314	6.77	416	6.09		
<i>mono-</i> 10	258	6.74	292	6.74	320	6.76	389	5.95	413	6.08

Table S9 UV-Vis absorption spectra of 1, mono-2, 7, 8, mono-9 and mono-10 in CH₂Cl₂.

Fig. S19 UV-Vis absorption spectra of 1 and *mono-*2 in CH_2Cl_2 (10⁻⁵ mol L⁻¹).

Fig. S20 UV-Vis absorption spectra of 7 and *mono-9* in CH_2Cl_2 (10⁻⁵ mol L⁻¹).

Fig. S21 UV-Vis absorption spectra of 8 and *mono*-10 in CH_2Cl_2 (10⁻⁵ mol L⁻¹).

Fig. S22 UV-Vis absorption spectra of the CH₂Cl₂ solution of *mono*-**10** ($c = 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) and **10** ($c = 4 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$).

Fig. S23 UV-Vis absorption spectra of 2 in CH₂Cl₂ upon titration with TFA.

Fig. S24 UV-Vis absorption spectra of 9 in CH₂Cl₂ upon titration with TFA.

Fig. S25 a) The ¹H NMR spectra of **10** in the presence of acid and neutralization with base; b) The reaction mechanism.

6.3 Emission spectra

The excitation and emission spectra of *mono-2*, *2*, *mono-9*, *9*, *mono-10*, and *10* at 77K are shown in **Figs. S26-S27**, and the numeric data are collected in **Table S10**.

Compound	Concentration	λex/nm	λ_{em}/nm	$ au_1$	$ au_2$
mono-2	1×10 ⁻⁶ mol L ⁻¹	289	466	0.18µs	4.57µs
2	2×10 ⁻³ mol L ⁻¹	420	570	4.66 ms	18.41 ms
mono -9	$1 \times 10^{-6} \text{ mol } L^{-1}$	287	466	0.27 µs	7.35µs
9	2×10 ⁻³ mol L ⁻¹	382	564	3695.64µs	
<i>mono</i> -10	$1 \times 10^{-6} \text{ mol } L^{-1}$	289	465		
10	2×10 ⁻³ mol L ⁻¹	375	537	0.51µs	9.94µs

Table S10 The emission and excitation properties.^[a]

[a] λ_{ex} : excitation wavelength; λ_{em} : maximum emission wavelength; τ : lifetime. These data were measured in 77K.

Fig. S26 Emission spectra of 2 in THF at 77K.

Fig. S27 Emission spectra of 9 at 77K.

7 Calculations

7.1. Computational Details

During the structure optimizations and frontier orbital calculations, the butyl groups on 1, 2, 7, 8, 9, 10, *mono-2*, *mono-9* and *mono-10* were replaced by methyl groups to give the corresponding 1', 2', 7', 8', 9', 10', *mono-2', mono-9'* and *mono-10'* (Scheme S1), because alkyl groups have almost no contribution on the HOMO and LUMO orbitals and the geometry of the conjugated framework.

All the calculations were performed with Gaussian 16 software package.^[S6] Geometry optimizations were carried out using PBE0^[S7]/Def2-SVP^[S8]/IEFPCM(CH₂Cl₂)^[S9] method. Molecular orbital energies dipole moments were calculated at PBE0/Def2and SVP/IEFPCM(CH₂Cl₂) level of theory using optimized structures. Aromaticity of each ring was measured by nucleus independent chemical shift (NICS)^[S10, S11], which was computed using the (GIAO)^[S12] gauge invariant atomic orbital approach at the GIAO-PBE0/Def2-SVP^[S8]/IEFPCM(CH₂Cl₂)^[S9] level with optimized structures. The UV-Vis absorption spectra were calculated at TD-PBE0/Def2-SVP/IEFPCM(CH₂Cl₂) (nstates = 100, root = 1) level of theory using optimized structures.

The optimized structures and molecular orbitals are displayed using Chemcraft.^[S13] The calculated UV-Vis absorption spectra were displayed using Multiwfn software^[S14], Gaussian function was chosen as broadening function, full width at half maximum (FWHM) was set to 0.5 eV, and only the excited states (**ES**s) with oscillator strength higher than 0.05 were shown. Molecular orbital composition was analyzed using Multiwfn software.^[S14, S15]

Scheme S1. The chemical structures of calculated molecules.

7.2 Optimized Structures, Molecular Orbitals and Corresponding Energies, Molecular Electrostatic Potential Surfaces and Dipole Moments

The optimized structures of 1', 2', 7', 8', 9', 10', *mono-2'*, *mono-9*' and *mono-10*' are displayed in **Fig S28**, and their frontier molecular orbitals and energies levels are shown in **Fig S29-S37**. Molecular orbital energies from HOMO-10 to LUMO+10 are listed in **Table S12**. The molecular electrostatic potential surfaces and dipole moments are displayed in **Fig S39**.

The theoretical investigations give the following conclusions: (1) the HOMO-LUMO energy gaps are narrowed by transforming 1', 7' and 8' respectively into *mono-2'/2*, *mono-9'/9*, and *mono-10'/10*. The calculated HOMO energy gaps for 1', 7', 8', *mono-2'/2*, *mono-9'/9*, and *mono-10'/10* are summarized in Table S11 and also depicted in Fig S38. (2) the molecular dipole moments are increased upon transformation of 1', 7' and 8' respectively into *mono-2'/2*, *mono-9'/9*, and *mono-10'/10*. This is because the Te=O groups on *mono-2'/2*, *mono-9'/9*, and *mono-10'/10* show the large contribution on the negative electrostatic potential.

1'

*mono-*9'

9'

Fig. S28 Optimized molecular structures.

Fig. S29 Calculated molecular orbitals of compound 1'.

Fig. S30 Calculated molecular orbitals of compound 7'.

Fig. S31 Calculated molecular orbitals of compound 8'.

Fig. S32 Calculated molecular orbitals of compound mono-2'.

Fig S33. Calculated molecular orbitals of compound mono-9'.

Fig. S34 Calculated molecular orbitals of compound *mono-10*'.

Fig. S35 Calculated molecular orbitals of compound 2'.

Fig. S36 Calculated molecular orbitals of compound 9'.

Fig. S37 Calculated molecular orbitals of compound 10'.

aamnaunda		Energy levels / eV							
compounds	HOMO-1	номо	LUMO	LUMO+1	Eg ^[a]				
1'	-5.74	-5.38	-0.98	-0.85	4.40				
2'	-5.38	-5.36	-1.28	-1.06	4.08				
7'	-5.47	-5.37	-1.10	-0.99	4.27				
8'	-5.38	-5.22	-1.03	-0.97	4.19				
9'	-5.20	-5.08	-1.42	-1.33	3.66				
10'	-5.19	-5.18	-1.40	-1.39	3.78				
mono-2'	-5.73	-5.59	-1.33	-1.16	4.26				
mono-9'	-5.50	-5.28	-1.52	-1.23	3.76				
<i>mono-</i> 10'	-5.43	-5.20	-1.45	-1.18	3.75				

Table S11 The calculated energy level for the frontier orbitals for compound 1', 2', 7', 8', 9', 10', *mono-2', mono-9'* and *mono-10'*.

 $[a]Eg = E_{LUMO} - E_{HOMO}$

Fig. S38 Schematic plot of HOMO–LUMO levels.

Orbital	1'	2'	7'	8'	9'	10'	mono-2'	mono-9'	mono-10'
LUMO+10	2.51	0.77	1.37	1.25	0.43	0.30	1.99	1.28	1.25
LUMO+9	2.26	0.68	1.16	1.07	0.38	0.20	1.90	1.10	1.07
LUMO+8	2.22	0.43	0.82	0.64	0.36	0.14	1.71	0.90	0.76
LUMO+7	1.65	0.11	0.66	0.52	-0.24	-0.24	1.51	0.73	0.54
LUMO+6	1.11	-0.34	0.49	0.49	-0.28	-0.41	1.00	0.58	0.35
LUMO+5	0.83	-0.59	0.43	0.25	-0.53	-0.61	0.85	0.41	0.17
LUMO+4	0.73	-0.59	0.41	0.13	-0.71	-0.79	0.16	-0.02	0.01
LUMO+3	-0.52	-0.71	-0.38	-0.42	-0.86	-0.82	-0.52	-0.52	-0.52
LUMO+2	-0.56	-0.87	-0.73	-0.67	-1.15	-1.20	-0.79	-0.98	-0.92
LUMO+1	-0.85	-1.06	-0.99	-0.97	-1.33	-1.39	-1.16	-1.23	-1.18
LUMO	-0.98	-1.28	-1.10	-1.03	-1.42	-1.40	-1.33	-1.52	-1.45
номо	-5.38	-5.36	-5.37	-5.22	-5.08	-5.18	-5.59	-5.28	-5.20
HOMO-1	-5.75	-5.38	-5.47	-5.38	-5.20	-5.19	-5.73	-5.50	-5.43
HOMO-2	-6.28	-5.44	-6.38	-6.32	-5.32	-5.45	-6.39	-6.56	-6.48
HOMO-3	-6.70	-5.65	-6.72	-6.59	-5.51	-5.56	-6.90	-6.84	-6.72
HOMO-4	-7.17	-6.17	-6.92	-6.71	-6.38	-6.38	-6.96	-7.01	-6.80
HOMO-5	-7.52	-6.24	-7.31	-7.17	-6.40	-6.42	-7.23	-7.09	-7.04
HOMO-6	-7.71	-6.55	-7.90	-7.84	-6.45	-6.61	-7.53	-7.48	-7.34
HOMO-7	-7.90	-6.78	-7.92	-7.88	-6.64	-6.66	-7.56	-7.65	-7.60
HOMO-8	-7.99	-7.00	-7.95	-7.90	-6.71	-6.75	-7.83	-7.93	-7.88
HOMO-9	-8.07	-7.09	-8.12	-7.99	-6.94	-6.77	-8.45	-8.32	-8.13
HOMO-10	-8.73	-7.20	-8.61	-8.36	-7.20	-7.07	-8.63	-8.45	-8.24

Table S12 Calculated molecular orbital energies (in unit of eV).

 Table S13. O-Te=O moiety contribution to molecular orbitals of molecules 2', 9', 10', mono-2', and mono-9' mono-10'.

Molecular Orbital	mono-2'	mono-9'	mono-10'	2'	9'	10'
LUMO+1	16.37%	14.47%	18.97%	60.91%	27.84%	56.80%
LUMO	64.86%	62.44%	69.86%	19.22%	74.43%	27.33%
НОМО	5.78%	3.91%	4.09%	5.33%	6.34%	5.47%
HOMO-1	0.83%	1.24%	2.01%	0.25%	5.81%	5.46%

Fig. S39 Calculated electrostatic potential surfaces and dipole moments.

7.3. NICS Calculations

Table S14 shows the aromaticity of each ring in 1-7 and 1'-7'. The aromaticity of ring 2 in 1', 2', 7', 8', 9', 10', *mono-2', mono-9*' and *mono-10*' is strikingly low aromaticity.

Scheme S2 The chemical structures of 1', 2', 7', 8', 9', 10', mono-2', mono-9' and mono-10'.

Comp.	1 ring	2 ring	3 ring	4 ring	5 ring	6 ring	7 ring	1' ring	2' ring	3' ring	4' ring	5' ring	6' ring
1'	-9.5872	-2.5417	-10.598	-10.5809	-4.5772								
2'	-9.547	-4.286	-10.8906	-11.7996				-9.5506	-4.2296	-10.8519	-11.8169		
7'	-12.6048	-2.0634	-11.69	-11.5522	-6.5933	-6.5197	-4.3003						
8'	-11.31	-1.8869	-11.8305	-11.2286	-5.5293	-4.4021	-4.4021						
9'	-12.2151	-1.7005	-11.9082	-12.274	-6.31	-6.8648		-12.222	-1.7154	-11.9525	-12.3507	-6.3295	-6.8707
10'	-11.8635	-2.2587	-11.7126	-12.1363	-5.5812	-6.5793		-11.9125	-1.876	-11.8727	-12.3459	-5.5912	-6.6302
mono-2'	-9.111	-3.1866	-10.5785	-10.4872									
mono-9'	-12.5409	-1.6372	-12.2602	-11.2476	-6.4442	-6.5719							
mono-10'	-11.7111	-1.5496	-11.7924	-10.8579	-5.5187	-5.6245							

Table S14 The calculated NICS values for 1', 2', 7', 8', 9', 10', mono-2', mono-9' and mono-10'.

7.4. UV-Vis absorption spectra calculation

The calculated UV-Vis absorption spectra for *mono-2*', *mono-9*', *mono-10*', 2', 9', and 10' are displayed in Fig. S40-S45. The excited states (ESs) with oscillator strength (*f*) higher than 0.06 are listed in **Table S15-S20**. The computational results reveal that each molecule has two absorption peaks (denoted as λ and λ ', respectively), and each absorption peak consisted of different excited states (S_n). The λ for *mono-2'/2'* is at 250–310 nm, and the λ ' is at 330–450 nm. The λ for *mono-9'/9'/10'* is at 300–330 nm, and the λ ' is at 350–450 nm.

We proposed that the origin of UV-Vis absorption spectra difference can be attributed to different molecular orbital energy gaps (denoted as $E_{gap}s$). In order to simplify the investigation, we choose some "critical excited states" and "critical transition types" to investigate. The "critical excited states" had high oscillator strengths and made important contributions to absorption peaks, and the "critical transition types" had dominant contribution to "critical excited states". Some absorption peaks have multiple critical transition types, we calculated average value of their $E_{gap}s$ in one absorption peak for convenience of comparison, denoted as $E_{gap}(A)$. The calculated critical excitation states, critical transition types, contributions, corresponding $E_{gap}s$, and $E_{gap}(A)s$ of molecules *mono-2*, *mono-9*, *mono-10*, 2', 9' and 10' are summarized in Table S21.

Fig. S40 Calculated UV-Vis absorption spectra and corresponding excitation states of mono-2'.

Oscillator Excitation Excitation **Transition Type** Contribution Energy/eV Wavelength/nm Strengths HOMO-2 LUMO 2.19% \rightarrow HOMO-1 LUMO 8.07% \rightarrow **S**¹ 374.18 0.0214 3.3135 HOMO-1 \rightarrow LUMO+1 2.07% HOMO 85.47% \rightarrow LUMO HOMO-1 LUMO 14.25% \rightarrow HOMO-1 LUMO+1 31.90% \rightarrow HOMO-1 \rightarrow LUMO+2 4.07% **S**³ 3.6603 338.73 0.1815 HOMO LUMO 5.17% \rightarrow HOMO LUMO+1 33.06% \rightarrow HOMO LUMO+2 7.56% \rightarrow HOMO-2 LUMO 4.50% \rightarrow HOMO-1 \rightarrow LUMO+1 15.33% **S**⁵ 3.9942 310.41 0.2642 HOMO-1 \rightarrow LUMO+3 14.44% 52.79% HOMO LUMO+2 \rightarrow HOMO 6.72% \rightarrow LUMO+3 HOMO-2 \rightarrow LUMO 2.75% HOMO-2 LUMO+1 6.61% \rightarrow HOMO-1 \rightarrow LUMO+2 22.16% **S**⁹ 4.3226 0.3076 286.83 HOMO-1 LUMO+3 17.23% \rightarrow HOMO LUMO+2 4.66% \rightarrow HOMO LUMO+3 35.91% \rightarrow HOMO-2 4.16% LUMO \rightarrow HOMO-2 \rightarrow LUMO+1 3.67% HOMO-1 \rightarrow LUMO+2 16.29% HOMO-1 \rightarrow LUMO+3 46.06% S¹⁰ 4.3859 282.69 0.7284 4.43% HOMO \rightarrow LUMO+1 9.26% HOMO LUMO+2 \rightarrow HOMO \rightarrow LUMO+3 8.38% \rightarrow HOMO LUMO+4 2.63% HOMO-2 \rightarrow LUMO+1 75.98%

Table S15. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (**ES**) of *mono* -2'.

0.2891

S¹¹

4.4727

277.20

HOMO-1

HOMO-1

HOMO

LUMO+2

LUMO+3

LUMO+2

 \rightarrow

 \rightarrow

 \rightarrow

5.94%

7.92%

2.90%

Fig. S41 Calculated UV-Vis absorption spectra and corresponding excitation states of 2'.

Table S16. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (**ES**) of **2**['].

	Excitation Energey/ev	Excitation Wavelength/nm	Oscillator Strengths	r Transition Type			Contribution
C 1	2 2109	274 49	0.0602	HOMO-2	\rightarrow	LUMO	7.23%
51	3.3108	374.48	0.0603	HOMO	\rightarrow	LUMO	84.84%
C 3	2 4602	257 29	0.0554	HOMO-2	\rightarrow	LUMO	86.79%
3°	3.4093	337.38	0.0554	HOMO	\rightarrow	LUMO	8.21%
				HOMO-3	\rightarrow	LUMO	4.84%
				HOMO-3	\rightarrow	LUMO+5	6.52%
				HOMO-2	\rightarrow	LUMO+2	6.18%
				HOMO-2	\rightarrow	LUMO+6	3.66%
S ¹⁴	3.9687	312.40	0.2972	HOMO-1	\rightarrow	LUMO+3	44.80%
				HOMO-1	\rightarrow	LUMO+5	4.43%
				HOMO	\rightarrow	LUMO+2	3.92%
				HOMO	\rightarrow	LUMO+4	12.69%
				HOMO	\rightarrow	LUMO+6	4.59%
				HOMO-4	\rightarrow	LUMO+1	5.99%
		295.77		HOMO-3	\rightarrow	LUMO+2	4.68%
				HOMO-3	\rightarrow	LUMO+4	11.34%
S ²¹	4.1919		0.3858	HOMO-2	\rightarrow	LUMO+3	16.60%
				HOMO-2	\rightarrow	LUMO+5	35.91%
				HOMO	\rightarrow	LUMO+3	3.24%
				HOMO	\rightarrow	LUMO+5	12.69%
		3800 283.07	0.5061	HOMO-5	\rightarrow	LUMO+1	9.80%
	4,3800			HOMO-4	\rightarrow	LUMO	2.82%
				HOMO-4	\rightarrow	LUMO+3	2.72%
				HOMO-3	\rightarrow	LUMO+3	3.66%
S ²⁸				HOMO-3	\rightarrow	LUMO+5	26.09%
				HOMO-2	\rightarrow	LUMO+4	3.77%
				HOMO-2	\rightarrow	LUMO+6	15.42%
				HOMO-1	\rightarrow	LUMO+3	3.04%
				HOMO-I	\rightarrow	LUMO+/	2.43%
				HOMO 5	\rightarrow		19.8/%
				HOMO-3	\rightarrow		8.39% 12.67%
				HOMO 4	<u> </u>	LUMO+2	5 5 2 0 4
S ³⁰	4.4523	278.47	0.3898	HOMO 3	→ 、	LUMO+2	2.13%
				HOMO 3		LUMO+2	2.13%
				HOMO-1		LUMO+4	27.40%
				HOMO-9	\rightarrow		6 20%
				HOMO-7	\rightarrow		9.00%
			0.4323	HOMO-6	\rightarrow	LUMO+1	3 24%
S ³⁸	4,7449	261 30		HOMO-5	\rightarrow	LUMO+2	7.30%
	4.7449	4.7449 261.30		HOMO-4	\rightarrow	LUMO+3	38.02%
				HOMO-4	\rightarrow	LUMO+5	11.73%
				HOMO-1	\rightarrow	LUMO+7	10.10%

Fig. S42 Calculated UV-Vis absorption spectra and corresponding excitation states of mono-9'.

Table S17. Calculated excitation energy, excitation wavelength, oscillator strength, transition typeand corresponding contribution of each excited state (ES) of *mono-9*'.

	Excitation Energy/eV	Excitation Wavelength/nm	Oscillator Strengths	Transition Type			Contribution	
S ¹	2.9818	415.80	0.0162	HOMO	\rightarrow	LUMO	95.86%	
				HOMO-1	\rightarrow	LUMO	47.32%	
S^2	3.2417	382.47	0.0207	HOMO-1	\rightarrow	LUMO+2	6.31%	
				HOMO	\rightarrow	LUMO+1	43.80%	
		368.24	0.1244	HOMO-1	\rightarrow	LUMO	48.81%	
S ³	3.3670			HOMO-1	\rightarrow	LUMO+2	9.82%	
				HOMO	\rightarrow	LUMO+1	37.76%	
		327.54	0.4667	HOMO-1	\rightarrow	LUMO+1	46.17%	
S ⁵	3.7853			HOMO-1	\rightarrow	LUMO+3	3.51%	
				HOMO	\rightarrow	LUMO+2	41.19%	
				HOMO-1	\rightarrow	LUMO+2	53.45%	
C 6	3 8 3 0 4	322.02	0.2021	HOMO	\rightarrow	LUMO+1	12.64%	
3	3.0394	322.92	0.3921	HOMO	\rightarrow	LUMO+2	2.39%	
				HOMO	\rightarrow	LUMO+3	24.97%	
				HOMO-2	\rightarrow	LUMO	7.63%	
C 8	4 0402	306.10	0.2350	HOMO-1	\rightarrow	LUMO+2	19.92%	
S ⁸	4.0492	1.0492 306.19		HOMO	\rightarrow	LUMO+1	2.22%	
					HOMO	\rightarrow	LUMO+3	61.02%

Fig. S43 Calculated UV-Vis absorption spectra and corresponding excitation states of 9'.

Table S18 Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (**ES**) of **9**'.

	Excitation Energy/eV	Excitation Wavelength/nm	Oscillator Strengths	Transition Type			Contribution
				HOMO-3	\rightarrow	LUMO	4.75%
C 4	3.1560	392.85	0.2125	HOMO-2	\rightarrow	LUMO+3	5.34%
3			0.2125	HOMO-1	\rightarrow	LUMO+1	55.19%
				HOMO	\rightarrow	LUMO+2	27.69%
			0.2749	HOMO-3	\rightarrow	LUMO+1	8.00%
		334.73		HOMO-2	\rightarrow	LUMO+2	12.46%
	3.7040			HOMO-2	\rightarrow	LUMO+4	3.40%
S ¹³				HOMO-1	\rightarrow	LUMO+2	3.58%
				HOMO-1	\rightarrow	LUMO+4	2.52%
				HOMO	\rightarrow	LUMO+3	60.61%
				HOMO	\rightarrow	LUMO+5	4.77%
		323.62		HOMO-3	\rightarrow	LUMO+2	32.54%
				HOMO-2	\rightarrow	LUMO+3	14.10%
S ¹⁷	3.8311		0.5736	HOMO-1	\rightarrow	LUMO+5	2.83%
				HOMO	\rightarrow	LUMO+4	40.30%
				HOMO	\rightarrow	LUMO+6	2.44%
				HOMO-3	\rightarrow	LUMO+4	3.41%
				HOMO-2	\rightarrow	LUMO+3	18.75%
S ²⁰	4.0136	4.0136 308.91	0.3420	HOMO-1	\rightarrow	LUMO+3	2.69%
				HOMO-1	\rightarrow	LUMO+5	44.58%
				HOMO	\rightarrow	LUMO+6	18.81%

Fig. S44 Calculated UV-Vis absorption spectra and corresponding excitation states of mono-10'.

Table S19 Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (**ES**) of *mono*-10'.

	Excitation energy/eV	Excitation wavelength/nm	Oscillator Strengths	Transition Type		Туре	Contribution
S ¹	2.9894	414.75	0.0234	HOMO	\rightarrow	LUMO	96.07%
	•			HOMO-1	\rightarrow	LUMO	38.16%
\mathbf{S}^2	3.2209	384.93	0.0241	HOMO-1	\rightarrow	LUMO+2	6.00%
				HOMO	\rightarrow	LUMO+1	53.26%
				HOMO-1	\rightarrow	LUMO	57.46%
S ³	3.3842 366.36	0.1682	HOMO-1	\rightarrow	LUMO+2	7.04%	
				HOMO	\rightarrow	LUMO+1	30.34%
				HOMO-1	\rightarrow	LUMO+1	49.50%
S ⁵	3.7382	331.67	0.4796	HOMO-1	\rightarrow	LUMO+3	2.82%
				HOMO	\rightarrow	LUMO+2	39.30%
				HOMO-1	\rightarrow	LUMO+2	54.59%
S ⁶	3.8160	324.90	0.3169	HOMO	\rightarrow	LUMO+1	10.74%
				HOMO	\rightarrow	LUMO+3	28.38%
				HOMO-5	\rightarrow	LUMO	19.35%
S ⁸	3.9752	311.89	0.2245	HOMO-1	\rightarrow	LUMO+2	21.07%
				HOMO	\rightarrow	LUMO+3	48.58%

Fig. S45 Calculated UV-Vis absorption spectra and corresponding excitation states of 10'.

Table S20 Calculated excitation energy, excitation wavelength, oscillator strength, transition typeand corresponding contribution of each excited state (ES) of 10'.

	Excitation Energey/ev	Excitation Wavelength /nm	Oscillator Strengths	Transition Type			Contribution
				HOMO-2	\rightarrow	LUMO+1	3.51%
63	2 1 4 5 7	204 14	0 1070	HOMO-1	\rightarrow	LUMO	6.17%
3	5.1457	374.14	0.1079	HOMO	\rightarrow	LUMO	41.86%
				HOMO	\rightarrow	LUMO+1	40.54%
				HOMO-2	\rightarrow	LUMO	4.57%
S ⁸	3.4696	357.35	0.1352	HOMO-2	\rightarrow	LUMO+1	66.36%
				HOMO	\rightarrow	LUMO+2	21.93%
	3.5667	347.61		HOMO-3	\rightarrow	LUMO	7.77%
S ¹⁰			0.1510	HOMO-3	\rightarrow	LUMO+1	76.35%
				HOMO-1	\rightarrow	LUMO+2	9.53%
		322.34	0.4130	HOMO-3	\rightarrow	LUMO+2	25.84%
				HOMO-2	\rightarrow	LUMO+2	7.30%
				HOMO-2	\rightarrow	LUMO+4	3.11%
				HOMO-1	\rightarrow	LUMO+3	14.80%
S ¹⁷	3.8464			HOMO-1	\rightarrow	LUMO+4	12.58%
				HOMO-1	\rightarrow	LUMO+5	2.34%
				HOMO	\rightarrow	LUMO+3	4.27%
				HOMO	\rightarrow	LUMO+4	15.50%
				HOMO	\rightarrow	LUMO+5	2.19%
				HOMO-5	\rightarrow	LUMO	2.69%
				HOMO-3	\rightarrow	LUMO+3	29.61%
S ²⁰	4 0245	308.07	0.4543 -	HOMO-2	\rightarrow	LUMO+3	31.59%
5	7.0275			HOMO-2	\rightarrow	LUMO+4	8.34%
				HOMO-1	\rightarrow	LUMO+5	5.52%
				HOMO	\rightarrow	LUMO+5	4.94%

Table S21 Calculated critical excitation states (**ES**s), critical transition types, contributions, corresponding molecular orbital energy gaps ($E_{gap}s$), and average value of molecular orbital energy gaps ($E_{gap}(A)s$) of molecules 2', 9', 10', *mono-2'*, *mono-9'*, and *mono-10'*.

	Absorption Peak	Critical ES	Oscillator Strength	Critical Transition Type	Contri- bution	$E_{ m gap}$ /eV	Egap(A)∕ eV	
		0	0.2076	HOMO-1→LUMO+2	22.16%	4.94		
) - 282	9	0.3076	HOMO→LUMO+3	35.91%	5.07	5 1 1	
mono-2'	$\kappa = 2.02 \text{ mm}$	10	0.7284	HOMO-1→LUMO+3	46.06%	5.21	5.11	
		11	0.2891	HOMO-2→LUMO+1	75.98%	5.23		
	$\lambda' = 374 \text{ nm}$	1	0.0214	HOMO→LUMO	85.47%	4.26	4.26	
		F	0.4667	HOMO-1→LUMO+1	46.17%	4.27		
	$\lambda' = 322 \text{ nm}$	5	0.4007	HOMO →LUMO+2	41.19%	4.3	4.36	
mono-y		6	0.3921	HOMO-1→LUMO+2 53.45%		4.52	l	
	$\lambda' = 416 \text{ nm}$	u' = 416 nm 1 0.016		HOMO→LUMO	95.86%	4.26	4.26	
101	$\lambda = 324$ nm	5	0.4706	HOMO-1→LUMO+1	49.50%	4.25	4.35	
		5	0.4790	HOMO→LUMO+2	39.30%	4.28		
<i>mono-</i> 10		6	0.3169	HOMO-1→LUMO+2	54.59%	4.51		
-	$\lambda' = 414 \text{ nm}$	1	0.0214	HOMO→LUMO	85.47%	3.75	3.75	
	$\lambda = 282 \text{ nm}$	28	0.5061	HOMO-3→LUMO+5	26.09%	4.97		
27		30	0.2909	HOMO-3→LUMO+4	27.40%	4.97	4.99	
2			0.3898	HOMO-1→LUMO+6	29.42%	5.04		
	$\lambda' = 374 \text{ nm}$	1	0.0603	$HOMO \rightarrow LUMO$	84.84%	4.08	4.08	
	1 - 322 nm	17	0 5736	HOMO→LUMO+4	40.30%	4.37	1 36	
9'	$\kappa = 323$ mm	17	0.5750	HOMO-3→LUMO+2	32.54%	4.36	4.50	
	$\lambda' = 392$ nm	4	0.2125	HOMO-1→LUMO+1	55.19%	3.87	3.87	
		17	0.4130	HOMO-3→LUMO+2	25.84%	4.36		
	$\lambda = 320 \text{ nm}$	20	0.4543	HOMO-3→LUMO+3	29.61%	4.74	4.58	
10'		20	0.4545	HOMO-2→LUMO+3	31.59%	4.65		
	$\lambda' = 304 \text{ nm}$	3	0.1079	HOMO → LUMO	41.86%	3.78	3 70	
	π = 394 IIII	3	0.1079	HOMO→LUMO+1	40.54%	3.79	5.79	

8. References

- [S1] W. L. F. Armarege and C. L. L. Chai., Purification of Laboratory Chemicals, 5th ed.
- [S2] S. Wang, J. Shang, C. Yan, W. Wang, C. Yuan, H.-L. Zhang and X. Shao, Org. Chem. Front. 2019, 6, 263.
- [S3] Y. Xu, V. Kumar, M. J. Z. Bradshaw and D. L. Bryce, Cryst. Growth Des., 2020, 20, 7910.
- [S4] M. C. Burla, R Caliandro., M. Camalli, B. Carrozzini, G. L. Cascarano, L. de Caro, C. Giacovazzo, G. Polidori and R. Spagna, J. Appl. Cryst., 2005, 38, 381.
- [S5] G. M. Sheldrick, SHELXL-97, A Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.
- [S6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.
- [S7] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B. 1988, 37, 785.
- [S8] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297
- [S9] J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev. 2005, 105, 2999.
- [S10] P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. V. E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
- [S11] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. V. R Schleyer, *Chem. Rev.* 2005, 105, 3842.
- [S12] a) F. London, J. Phys. Radium. 1937, 8, 397. b) H. F. Hameka, Mol. Phys. 1958, 1, 203. c)
 R. Ditchfield, Mol. Phys. 1974, 27, 789. d) K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
- [S13] G. A. Andrienko and Chemcraft, Version 1.8 (built 523b); <u>http://www.chemcraftprog.com</u>.
- [S14] T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580.
- [S15] T. Lu and F. Chen, Acta Chim. Sinica 2011, 69, 2393.

9. ¹²⁵Te NMR Spectra of Products

1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 f1 (ppm)

f1 (ppm)

S65

 $\begin{array}{c} 7 & 7 \\ 7 & 7$

$\int_{6.95}^{7.35} \int_{7.28}^{7.35} \int_{7.28}^{7.32} \int_{6.98}^{7.25} \int_{6.95}^{7.13} \int_{6.95}^{7.$

-5.32 -5.52 -5.32

11. Cartesian Coordinates

1'

С	3.31254200	-1.34731400	-0.01163000
С	2.06704000	-0.68120200	-0.03155200
С	2.04891000	0.73751100	-0.09371500
С	3.28359500	1.42019000	-0.11677600
С	4.49574100	0.76232100	-0.09516500
С	4.51524800	-0.65862500	-0.04965100
С	0.81639200	-1.43671100	0.00838600
С	-0.40480700	-0.73061900	0.00298500
С	-0.40788200	0.70241900	-0.07695000
С	0.78020900	1.45691500	-0.12752900
С	0.74708900	-2.84019200	0.04319700
С	-0.46658000	-3.50346900	0.09574300
С	-1.69955400	-2.79209700	0.12209000
С	-1.65860000	-1.39882900	0.06230100
С	-1.65567500	1.35442900	-0.10448900
С	-1.76625100	2.72911900	-0.18668000
С	-0.57044200	3.49350000	-0.25291700
С	0.67122500	2.85966100	-0.21600500
Te	-3.25515300	0.00979500	-0.02667300
0	5.72995200	-1.23364100	-0.06247800
С	5.82048000	-2.63791400	-0.01701600
0	5.64592800	1.47757000	-0.17116600
С	6.46691000	1.46796900	0.98220800
0	-0.46828800	-4.85926500	0.18048600
С	-0.90360500	-5.55163800	-0.97410500
0	-2.79297500	-3.57742900	0.18425000
С	-3.98883400	-3.12277900	0.77066400
0	-2.99632900	3.29892600	-0.25429700

С	-3.37563500	4.10759900	0.84780100
0	-0.73995200	4.82365300	-0.36588000
С	0.39353500	5.65520100	-0.43886800
Н	3.33238300	-2.43508300	0.02458500
Н	3.32296400	2.50970800	-0.15763600
Н	1.64189600	-3.46359800	0.04326600
Н	1.57265600	3.46739800	-0.27025000
Н	6.89060200	-2.88203800	-0.03487400
Н	5.37580000	-3.04653300	0.90686800
Н	5.33280600	-3.10629500	-0.88929600
Н	7.32911800	2.11386000	0.76538200
Н	5.92798200	1.87597000	1.85592500
Н	6.82959300	0.45599800	1.22205200
Н	-0.82307600	-6.62531100	-0.75341500
Н	-1.95033200	-5.31609200	-1.22474000
Н	-0.26246500	-5.31813900	-1.84301300
Н	-4.58480700	-4.01796200	0.99723200
Н	-3.80155100	-2.57720100	1.70995200
Н	-4.58240600	-2.49800000	0.07974800
Н	-4.41711100	4.41131500	0.67394700
Н	-3.32224200	3.53919900	1.79267700
Н	-2.74622900	5.00722800	0.92777000
Н	0.01977300	6.68412100	-0.52137500
Н	1.01978000	5.57374700	0.46635300
Н	1.00981600	5.42718000	-1.32547000

С	-2.82998600	-1.47081000	0.08074600
С	-1.67209800	-0.69848800	0.05599800
С	-1.66918200	0.67745800	0.07995500
С	-2.83347900	1.42590400	0.12004700
С	-4.03939100	0.70778400	0.14953100
С	-4.04463500	-0.73988100	0.13303200
С	-0.44933200	-1.38542300	-0.00632200
С	0.77191600	-0.71703900	-0.04851700
С	0.75544400	0.71208900	-0.02322800
С	-0.46049400	1.38912700	0.03988000
С	-0.57811500	-2.76872200	-0.03062800
С	0.60035300	-3.51563700	-0.10558500
С	1.87657200	-2.84216300	-0.15671300
С	1.97704600	-1.43082900	-0.12665800
С	1.93973000	1.44438100	-0.07299700
С	1.85451300	2.84049600	-0.06392600
С	0.58718400	3.52808200	-0.01025900
С	-0.60970000	2.77901800	0.04707400
Te	3.55130200	0.06083200	-0.18165000
S	-2.30764800	-3.20446900	0.02607900
S	-2.38533300	3.15050100	0.11771400
0	-5.27992800	-1.26300500	0.17676200
С	-5.44011900	-2.66228400	0.12462100
0	-5.22434100	1.36047300	0.22333800
С	-5.95950400	1.42916900	-0.98735400
0	0.55627600	-4.86722500	-0.17222600
С	0.91245700	-5.55319200	1.01666900
0	2.90313900	-3.70669100	-0.24236300
С	4.22522500	-3.24099600	-0.35620600

7'

0	2.98925200	3.58175100	-0.15187400
С	3.41446000	4.19297600	1.05414300
0	0.69757100	4.86449900	-0.03042700
С	-0.46462100	5.66206200	-0.01236500
Н	-6.52013800	-2.85523100	0.16420100
Н	-5.04372500	-3.08104800	-0.81575300
Н	-4.96590600	-3.15635000	0.98931800
Н	-6.86956800	2.00762800	-0.77661400
Н	-5.38151300	1.94459700	-1.77434500
Н	-6.24662100	0.42722300	-1.34487200
Н	0.79333400	-6.62642100	0.81370500
Н	1.95819400	-5.35558700	1.30125400
Н	0.24788600	-5.27088300	1.85194300
Н	4.86392300	-4.13204300	-0.41953500
Н	4.36972300	-2.64624500	-1.27411300
Н	4.53308200	-2.66129600	0.53124800
Н	4.35400500	4.71816300	0.83293300
Н	2.67534600	4.92218600	1.42296700
Н	3.60230000	3.43796200	1.83773700
Н	-0.12697200	6.70623500	-0.04199200
Н	-1.09716400	5.47430700	-0.89585200
Н	-1.04741500	5.51013000	0.91158900

С	-2.62149600	-1.44427200	0.10902100
С	-1.43763300	-0.69606200	0.09742500
С	-1.42653800	0.69122400	0.09430100
С	-2.60795200	1.42434300	0.09831900
С	-3.81644100	0.72439400	0.10899900
С	-3.83266600	-0.71599400	0.11843500
С	-0.20585600	-1.39377700	0.09566900
С	1.01818900	-0.72043500	0.08875100
С	1.00680600	0.70985800	0.08859800
С	-0.20497000	1.40564600	0.08935600
С	-0.28545700	-2.78408000	0.10225000
С	0.89981700	-3.51611300	0.10154800
С	2.16713800	-2.83629000	0.09718500
С	2.23531700	-1.42642500	0.08948800
С	2.20765300	1.42082500	0.08965800
С	2.16710800	2.81436800	0.09256900
С	0.91786800	3.52604900	0.09786400
С	-0.29493900	2.80612300	0.09317900
Te	3.81634500	0.04513800	0.11020400
Se	-2.11839500	-3.32259400	0.12316600
Se	-2.18182600	3.28531300	0.10378600
0	-5.07418800	-1.22777300	0.14749000
С	-5.26575900	-2.62233600	0.10119500
0	-4.99146800	1.40052100	0.14880100
С	-5.71608800	1.43941400	-1.06893900
0	0.86134300	-4.87081400	0.14389400
С	1.17492800	-5.53288100	-1.06977400
0	3.20862100	-3.68797100	0.11808100
С	4.52699600	-3.22170500	-0.03154400

0	3.32820000	3.51849600	0.13215000
С	3.70984500	4.13846300	-1.08391800
0	1.06490000	4.86035800	0.11673600
С	-0.06497200	5.70150500	0.10359800
Н	-6.35115100	-2.78774200	0.10950400
Н	-4.85250400	-3.05893500	-0.82365200
Н	-4.83243500	-3.12157500	0.98421300
Н	-6.61165600	2.04997900	-0.88866700
Н	-5.11941300	1.90749600	-1.87143800
Н	-6.02782000	0.43206400	-1.38831400
Н	1.05342600	-6.60946400	-0.88664700
Н	0.48729300	-5.22762700	-1.87785800
Н	2.21295400	-5.33740500	-1.38258500
Н	5.17009500	-4.11174600	-0.05262100
Н	4.66208100	-2.67317000	-0.97903600
Н	4.84045200	-2.59864200	0.82386200
Н	4.67986400	4.62294800	-0.90540100
Н	3.82538100	3.39353200	-1.89080900
Н	2.98051500	4.90256900	-1.39687900
Н	0.31420300	6.73182300	0.11388300
Н	-0.66667400	5.56009300	-0.80991200
Н	-0.69164100	5.55262400	0.99877200

mono-2'

С	-3.66577100	0.78381000	0.14594700
С	-2.31244100	0.37676000	0.04303800
С	-2.03454400	-1.00031200	-0.08765800
С	-3.11653200	-1.91262200	-0.14787200
С	-4.43208200	-1.50286300	-0.06119900
С	-4.71388300	-0.11440300	0.09979600
С	-1.22716000	1.35537200	0.03386100
С	0.11712300	0.91272100	-0.09170600
С	0.40542700	-0.51248200	-0.09464500
С	-0.65221100	-1.46190000	-0.11789800
С	-1.51076500	2.73389900	0.10694900
С	-0.50091100	3.68241900	0.04123600
С	0.83739000	3.26348000	-0.11159500
С	1.13513700	1.90454300	-0.23266300
С	1.71363900	-1.04375200	-0.02619400
С	1.99774500	-2.39429300	0.00191500
С	0.94525300	-3.33371100	-0.06311800
С	-0.35051400	-2.84230100	-0.11936900
0	1.82874100	4.18536600	-0.17316000
С	2.10415800	4.66608600	-1.47214200
0	3.30359300	-2.74233200	0.18043200
С	3.92278500	-3.51501400	-0.84294000
0	1.28178000	-4.63315100	-0.02065500
С	0.26001800	-5.60321200	-0.06270100
0	-5.50106600	-2.31239900	-0.11239200
С	-5.29397200	-3.69503900	-0.26265800
0	-6.01318700	0.20799800	0.18958800
С	-6.36399900	1.56044000	0.34845500
0	-0.68772700	5.01140200	0.10162800

С	-1.99521800	5.50621900	0.25912100
Н	2.43782900	3.85237100	-2.13916300
Н	1.22163800	5.15846600	-1.91707500
Н	3.48936200	-4.52374400	-0.89398300
Н	3.82253700	-3.01852000	-1.82294500
Н	-0.41934500	-5.51441200	0.80226100
Н	-0.32791200	-5.53441700	-0.99413400
Н	-4.77414500	-3.93114800	-1.20797200
Н	-4.71637800	-4.11643000	0.57904200
Н	-5.94952500	1.98448300	1.27989000
Н	-6.02714700	2.17423000	-0.50555400
Н	-2.64435900	5.22807600	-0.58965500
Н	-2.45709900	5.15037900	1.19647500
Н	-7.46011900	1.59541200	0.39974800
Н	-6.28802600	-4.16067500	-0.27882600
Н	0.75786000	-6.58056800	-0.02603800
Н	4.98622200	-3.58561800	-0.57895400
Н	2.91294300	5.40556700	-1.38259900
Н	-1.91262800	6.60034600	0.29783600
Te	3.48532700	0.08811400	0.21175300
0	3.50393600	0.39447300	2.00877800
0	2.41226200	1.63593100	-0.55113200
Н	-1.16579000	-3.56191400	-0.12614800
Н	-2.91771000	-2.97488700	-0.26813100
Н	-3.90489600	1.83784800	0.26510700
Н	-2.53903100	3.07187500	0.19917700

mono-**9**'

С	-3.34549900	0.51919300	0.03947900
С	-1.98918000	0.19384500	0.00794400
С	-1.54650100	-1.10874900	-0.03774300
С	-2.41281900	-2.20041900	-0.03726300
С	-3.79329100	-1.91993500	0.00031000
С	-4.26071600	-0.55304800	0.03645500
С	-1.06568000	1.26156100	0.00379200
С	0.32482200	1.03322500	-0.04131100
С	0.79050800	-0.34385100	-0.05290200
С	-0.16405400	-1.38100600	-0.06379300
С	-1.69709400	2.51379300	0.02717200
С	-0.86740800	3.64824700	0.00033600
С	0.54190600	3.45118400	-0.04167200
С	1.14477700	2.17708700	-0.10327600
С	2.11819400	-0.78181000	-0.03503100
С	2.44691700	-2.13577800	-0.03951500
С	1.46674800	-3.16777200	-0.05709000
С	0.11968700	-2.75955400	-0.07163700
0	1.33700200	4.55004600	-0.03722900
С	1.62653100	5.07152400	-1.31805800
0	3.77426400	-2.43173800	0.05039700
С	4.37361600	-3.05683100	-1.07787800
0	1.95581800	-4.41605000	-0.03081100
С	1.08951000	-5.53011400	-0.04723700
0	-4.79047700	-2.81893100	0.00855000
С	-4.49471800	-4.19169000	-0.08047100
0	-5.60019600	-0.45649300	0.05878600
С	-6.20967700	0.79392300	0.27322200
0	-1.23904000	4.93601100	0.00689000

С	-2.59907700	5.28317900	0.12943700
Н	2.16379100	4.33465600	-1.94009200
Н	0.70795800	5.38618300	-1.84331000
Н	3.97884600	-4.07189000	-1.23007300
Н	4.21233100	-2.45798600	-1.99061500
Н	0.44840200	-5.55684300	0.84897700
Н	0.47355400	-5.55182200	-0.96151500
Н	-3.96478400	-4.43531400	-1.01712100
Н	-3.91154500	-4.54260600	0.78799400
Н	-5.88359200	1.24921200	1.22351500
Н	-6.02466000	1.48961400	-0.56292400
Н	-3.18778100	4.94112100	-0.73825400
Н	-3.03577400	4.89254700	1.06350700
Н	-7.29058700	0.60781700	0.32937000
Н	-5.45794800	-4.71904800	-0.08192000
Н	1.73189100	-6.42027400	-0.04035100
Н	5.45019000	-3.11320000	-0.86850900
Н	2.27057400	5.95089600	-1.17446000
Н	-2.63800200	6.38010700	0.16079700
Те	3.73569900	0.56891800	0.18106500
0	3.88556600	0.66494600	1.99370000
0	2.47509600	2.13401100	-0.26406000
S	-1.41383000	-3.68079400	-0.06648400
S	-3.47794900	2.29713500	0.05712000

mono-10'

С	3.16510700	-0.20046600	0.05079900
С	1.77019700	-0.05886000	0.01037900
С	1.17661300	1.19530700	-0.04105600
С	1.93949300	2.37117400	-0.04197900
С	3.33793700	2.25852600	0.00358900
С	3.95508000	0.95950200	0.04856300
С	0.96972000	-1.23711800	-0.00534600
С	-0.44076600	-1.15706700	-0.05960300
С	-1.06049200	0.15755200	-0.06015500
С	-0.24059600	1.30903500	-0.06876100
С	1.69719300	-2.44185400	0.00824400
С	0.98243800	-3.64814600	-0.04018400
С	-0.43503900	-3.59024100	-0.09416600
С	-1.14565100	-2.37764600	-0.14832200
С	-2.43707600	0.41414800	-0.03076000
С	-2.95301200	1.70381900	-0.02827300
С	-2.12263600	2.85453800	-0.05520900
С	-0.73545900	2.63224600	-0.07417100
0	-1.12659600	-4.75645700	-0.11518700
С	-1.34228700	-5.28829400	-1.40591600
0	-4.30876000	1.80830200	0.08165600
С	-5.00684600	2.34003500	-1.03798000
0	-2.78452200	4.02184900	-0.02654900
С	-2.10701400	5.25798800	-0.06785100
0	4.22922300	3.26355500	0.01841200
С	3.82002700	4.59188600	-0.19370900
0	5.29798200	1.01502900	0.07052900
С	6.05623100	-0.11417300	0.43013900
0	1.46968500	-4.89844700	-0.04933400

С	2.84705100	-5.14622500	0.10416800
Н	-1.93522400	-4.59815900	-2.03099600
Н	-0.38882300	-5.50932900	-1.91649700
Н	-4.75495000	3.39816200	-1.19934300
Н	-4.78085600	1.76356700	-1.95138400
Н	-1.47147100	5.40244700	0.82112800
Н	-1.51125700	5.36600500	-0.98939600
Н	3.28866400	4.70866900	-1.15345000
Н	3.19705000	4.96893300	0.63573400
Н	5.72884700	-0.53668300	1.39475500
Н	6.03515500	-0.89316900	-0.35185600
Н	3.43217900	-4.75627300	-0.74590600
Н	3.23206300	-4.73817100	1.05339300
Н	7.09456100	0.22929700	0.53388900
Н	4.73607300	5.19689800	-0.22994000
Н	-2.88386100	6.03389500	-0.06528800
Н	-6.07742000	2.25130900	-0.80990000
Н	-1.90302600	-6.22600000	-1.28324700
Н	2.96393600	-6.23795600	0.12571500
Те	-3.88641400	-1.10381700	0.22906700
0	-3.92250800	-1.25419000	2.04480300
0	-2.47026800	-2.47201700	-0.33594500
Se	3.58258900	-2.06707900	0.05370700
Se	0.73731500	3.86237500	-0.06754900

2'			
С	-3.16592600	3.05549500	-0.52667400
С	-2.03645200	2.32534000	-0.96757300
С	-2.23871500	1.03149000	-1.49471300
С	-3.56245200	0.54997900	-1.63538600
С	-4.65906900	1.28378100	-1.22846300
С	-4.45072500	2.55993600	-0.63212800
С	-0.69851900	2.91025000	-0.93642400
С	0.40202400	2.14709200	-1.39926200
С	0.21755800	0.74538500	-1.72694600
С	-1.08912200	0.20254800	-1.83598200
С	-0.49507800	4.23901800	-0.51553600
С	0.75713300	4.83438500	-0.60195800
С	1.84061400	4.11436500	-1.14732600
С	1.65801200	2.80063100	-1.58719400
С	1.29463400	-0.14978200	-1.92559300
С	1.12988900	-1.46411200	-2.33183500
С	-0.17731500	-1.97938700	-2.48975100
С	-1.25056900	-1.14428100	-2.22241500
0	3.05290500	4.71555000	-1.25182100
С	3.34041200	5.24149600	-2.52812200
0	2.23768800	-2.22369400	-2.51738800
С	2.46711300	-2.71660900	-3.82834500
0	-0.27689600	-3.26956600	-2.85938700
С	-1.55632800	-3.81911800	-3.05778200
0	-5.93924900	0.89019200	-1.32539400
С	-6.22550700	-0.35192200	-1.92134200
0	-5.55915200	3.19064300	-0.20227700
С	-5.42027700	4.44208800	0.42254500
0	1.03114100	6.09367300	-0.21352400

С	0.01642000	6.84467600	0.40176200
Н	3.36104900	4.44928400	-3.29595800
Н	2.60541000	6.01152800	-2.82539900
Н	1.70567800	-3.45352800	-4.12258600
Н	2.48353800	-1.89229700	-4.56277100
Н	-2.15220500	-3.81007300	-2.12998300
Н	-2.11204300	-3.28262100	-3.84676900
Н	-5.84780100	-0.40118400	-2.95772800
Н	-5.81680500	-1.19259300	-1.33853700
Н	-4.79712800	4.37868600	1.33254600
Н	-4.98405300	5.19390700	-0.25809200
Н	-0.83489900	7.02769100	-0.27776500
Н	-0.35543000	6.35381400	1.31851200
Н	-6.43058500	4.76478900	0.70637400
Н	-7.31956600	-0.44271700	-1.93764000
Н	-1.40473700	-4.85893700	-3.37508900
Н	3.45265400	-3.20105000	-3.81027100
Н	4.33484300	5.70848600	-2.47394600
Н	0.46160800	7.81099500	0.67405600
Te	3.31681300	0.34498100	-1.55415000
0	3.39018400	1.23371900	0.18610100
0	2.68622300	2.21788500	-2.20659300
Н	-2.25304200	-1.56113900	-2.28609300
Н	-3.73413100	-0.43820000	-2.05611700
Н	-3.03097800	4.04459800	-0.09567800
Н	-1.33046800	4.82769400	-0.14595700
С	-3.16660700	-3.05490800	0.52678900
С	-2.03696500	-2.32496100	0.96760600
С	-2.23895000	-1.03103100	1.49465200
С	-3.56258000	-0.54922300	1.63530500

С	-4.65936600	-1.28283000	1.22849100
С	-4.45130300	-2.55908800	0.63227900
С	-0.69915200	-2.91015000	0.93648300
С	0.40155000	-2.14719900	1.39929000
С	0.21738600	-0.74543400	1.72690300
С	-1.08918300	-0.20230700	1.83586200
С	-0.49599300	-4.23899100	0.51568300
С	0.75609900	-4.83460800	0.60213000
С	1.83973600	-4.11476600	1.14741200
С	1.65741300	-2.80097600	1.58722300
С	1.29463600	0.14953100	1.92551900
С	1.13015000	1.46394200	2.33159900
С	-0.17694200	1.97951700	2.48941200
С	-1.25036000	1.14460100	2.22213500
0	3.05190900	-4.71619400	1.25189100
С	3.33940000	-5.24207700	2.52822200
0	2.23808600	2.22334500	2.51707900
С	2.46750400	2.71638100	3.82799000
0	-0.27622800	3.26977200	2.85888100
С	-1.55551400	3.81966800	3.05727200
0	-5.93946300	-0.88896600	1.32544100
С	-6.22544400	0.35324400	1.92132700
0	-5.55989000	-3.18963200	0.20259600
С	-5.42134000	-4.44124300	-0.42196900
0	1.02985800	-6.09398100	0.21379100
С	0.01493200	-6.84491300	-0.40124200
Н	3.36031200	-4.44978700	3.29597000
Н	2.60422800	-6.01188800	2.82564900
Н	1.70610100	3.45337800	4.12212700
Н	2.48385400	1.89214600	4.56250400

Н	-2.15140300	3.81071900	2.12948000
Н	-2.11135900	3.28337700	3.84630200
Н	-5.84772600	0.40248200	2.95771000
Н	-5.81655400	1.19379700	1.33848200
Н	-4.79827500	-4.37817500	-1.33204800
Н	-4.98519900	-5.19300200	0.25878900
Н	-0.83633200	-7.02767000	0.27842400
Н	-0.35694800	-6.35414700	-1.31803000
Н	-6.43174500	-4.76379500	-0.70562300
Н	-7.31948200	0.44428400	1.93762200
Н	-1.40364400	4.85946900	3.37450900
Н	3.45307300	3.20076400	3.80989900
Н	4.33370500	-5.70932800	2.47400200
Н	0.45991800	-7.81135500	-0.67342700
Те	3.31670300	-0.34567500	1.55415000
0	3.38997500	-1.23443600	-0.18609300
0	2.68574700	-2.21843400	2.20661100
Н	-2.25274700	1.56167400	2.28569200
Н	-3.73403600	0.43903100	2.05594700
Н	-3.03188600	-4.04406200	0.09584200
Н	-1.33150000	-4.82752900	0.14615100

С	5.49471900	1.85736500	0.19348800
С	4.37178000	1.17945100	-0.28173000
С	3.22077300	1.82950600	-0.65654900
С	3.07295200	3.21116100	-0.55360000
С	4.17093100	3.93691900	-0.05135600
С	5.39036700	3.25749000	0.31741600
С	4.46031200	-0.22239500	-0.41012400
С	3.37823600	-0.99132900	-0.88573900
С	2.12142700	-0.31715300	-1.19096500
С	2.10719500	1.09145600	-1.10688600
С	5.72903600	-0.70778300	-0.05829600
С	5.95991800	-2.08472200	-0.22905400
С	4.89906300	-2.88266700	-0.73637800
С	3.63977600	-2.35923400	-1.10675900
С	0.88754500	-0.89638300	-1.54278700
С	-0.23499000	-0.10804000	-1.85415700
С	-0.21048300	1.31161400	-1.74805000
С	0.99973600	1.91026700	-1.37103800
0	5.12125700	-4.21469900	-0.88431800
С	5.57578800	-4.59230200	-2.16616100
0	-1.35492400	-0.77684200	-2.18851400
С	-2.17421700	-0.34337100	-3.26065700
0	-1.37985000	1.94719800	-1.94542500
С	-1.39284400	3.20943500	-2.57445500
0	4.22581100	5.26625200	0.14326600
С	3.14994600	6.07621800	-0.26147900
0	6.34981800	4.09199300	0.75728000
С	7.50376800	3.56540500	1.36554500
0	7.09007300	-2.76211200	0.02516100

С	8.16438300	-2.12907400	0.67907200
Н	4.83447100	-4.34374900	-2.94530200
Н	6.53630600	-4.10685200	-2.41472500
Н	-2.94045200	0.36847300	-2.92461400
Н	-1.57675700	0.11592000	-4.06542800
Н	-1.09191800	4.01487500	-1.88379600
Н	-0.74334500	3.22265000	-3.46566700
Н	2.94516500	5.97601400	-1.34108100
Н	2.23404900	5.86381600	0.31655100
Н	7.25455900	2.92222800	2.22649100
Н	8.12936500	3.00711000	0.64807300
Н	8.61575100	-1.33796800	0.05680800
Н	7.85995200	-1.71483800	1.65488100
Н	8.08548900	4.42374200	1.72797900
Н	3.44732700	7.11432200	-0.06104900
Н	-2.43039100	3.39570000	-2.88329900
Н	-2.66566800	-1.24576500	-3.65136600
Н	5.72469200	-5.68186200	-2.15358600
Н	8.92369800	-2.90352400	0.85196000
Te	0.68013400	-3.00884800	-1.41459000
0	-1.19868700	-3.08241500	-0.48370400
0	2.76012600	-3.15869800	-1.69061200
S	1.40983200	3.61197500	-1.05917100
S	6.77565400	0.65060200	0.47495900
С	-5.43352900	1.92950400	-0.22022900
С	-4.33729800	1.22500700	0.27780900
С	-3.18060400	1.84814600	0.67971000
С	-2.99820000	3.22582500	0.58210800
С	-4.06704800	3.97728100	0.05604000
С	-5.29391000	3.32699400	-0.33937300

С	-4.45763900	-0.17568700	0.39288000
С	-3.40046900	-0.97130800	0.87985100
С	-2.13744700	-0.32512600	1.21571900
С	-2.09110400	1.08308800	1.14270600
С	-5.72903700	-0.63137500	0.01211100
С	-5.99164200	-2.00415200	0.16891300
С	-4.95851500	-2.82797500	0.69246900
С	-3.69468300	-2.33486900	1.08796100
С	-0.92502500	-0.93305800	1.58830600
С	0.20959000	-0.17347000	1.92874000
С	0.22509300	1.24551200	1.81031700
С	-0.96719100	1.87343600	1.42221800
0	-5.21171100	-4.15569300	0.83035800
С	-5.74335300	-4.52098100	2.08566400
0	1.29429900	-0.87755800	2.30143600
С	2.15026700	-0.42797800	3.33698300
0	1.40994600	1.85452100	2.00383800
С	1.45416000	3.11447100	2.63649000
0	-4.08295500	5.30721200	-0.14323000
С	-3.01623700	6.09494200	0.32480900
0	-6.22447800	4.18330600	-0.79939300
С	-7.36405500	3.68313700	-1.45511200
0	-7.12980500	-2.65675300	-0.11350100
С	-8.18264500	-1.99358400	-0.77245900
Н	-5.04593100	-4.27521600	2.90536300
Н	-6.71143200	-4.02447400	2.27591600
Н	2.94423000	0.22664400	2.95260000
Н	1.58919000	0.10137000	4.12457300
Н	1.17118900	3.92846500	1.94805000
Н	0.80731600	3.14086000	3.52936900

Η	-2.86309400	5.97269400	1.41062400
Н	-2.07696300	5.88005400	-0.21362100
Н	-7.09427100	3.03972200	-2.30965700
Н	-8.02795200	3.13295000	-0.76626200
Н	-8.62400200	-1.19989500	-0.14635500
Н	-7.85805800	-1.57508500	-1.73993100
Н	-7.91476400	4.55475500	-1.83400300
Н	-3.28979600	7.14046300	0.12882500
Н	2.49664600	3.27535900	2.94321700
Н	2.60359400	-1.33202700	3.76777000
Н	-5.90252200	-5.60906300	2.07070200
Н	-8.95628900	-2.74946400	-0.96298200
Те	-0.75729700	-3.04297900	1.41937300
0	1.12367300	-3.09542900	0.48665000
0	-2.84143000	-3.15678200	1.68060900
S	-1.33293300	3.58520500	1.11090100
S	-6.73466100	0.75289800	-0.53472300

С	4.67636000	2.10845900	-0.17477000
С	3.67085900	1.21917000	-0.57431000
С	2.46129900	1.67433400	-1.07368000
С	2.18183500	3.03835800	-1.21340800
С	3.17253200	3.95289200	-0.82580200
С	4.42013100	3.48826500	-0.28505400
С	3.94023600	-0.17896800	-0.54942000
С	2.99268500	-1.11996600	-1.01923600
С	1.68756900	-0.64854900	-1.45297600
С	1.47809400	0.74609600	-1.49735900
С	5.22492400	-0.51521100	-0.08927600
С	5.60411800	-1.86804600	-0.11105800
С	4.68260300	-2.82119700	-0.61436900
С	3.41621700	-2.46424200	-1.11986900
С	0.58127800	-1.43438900	-1.83153600
С	-0.58778900	-0.86831200	-2.36995900
С	-0.72992900	0.53917500	-2.48117900
С	0.31051100	1.33191300	-2.00129200
0	5.04598800	-4.12853000	-0.61442000
С	5.64983700	-4.57064200	-1.81171400
0	-1.50939700	-1.72332200	-2.86631400
С	-2.86434200	-1.63573100	-2.42474900
0	-1.82806600	1.12205200	-3.02400100
С	-1.97755200	0.95107100	-4.42642300
0	3.07972900	5.29287500	-0.94844500
С	1.88098000	5.92206700	-0.56054100
0	5.26181000	4.48313900	0.04757000
С	6.37310000	4.22610800	0.87090100
0	6.77701800	-2.39073200	0.27987600

С	7.65435100	-1.65448500	1.09885600
Н	4.96348700	-4.46745500	-2.66982000
Н	6.58018200	-4.01501400	-2.02483600
Н	-3.20515900	-0.59406400	-2.35804500
Н	-3.46781900	-2.17248100	-3.16886100
Н	-1.12137500	1.38928000	-4.96680600
Н	-2.07145200	-0.11210000	-4.70092300
Н	1.08188700	5.80916900	-1.31457300
Н	1.52722300	5.53841800	0.41053900
Н	6.08584000	3.68756300	1.78976400
Н	7.16354600	3.66922300	0.33845700
Н	8.16668500	-0.85265300	0.53979800
Н	7.13502800	-1.23188400	1.97502500
Н	6.78446000	5.20477900	1.15376400
Н	2.10103900	6.99452500	-0.46381400
Н	-2.89515100	1.48136100	-4.71419100
Н	-2.95392000	-2.13387900	-1.45109500
Н	5.89626000	-5.63427000	-1.68069700
Н	8.41818600	-2.36081800	1.45155700
Te	0.59843000	-3.51649800	-1.47417500
0	-1.28420800	-3.47305700	-0.54174100
0	2.67823300	-3.40382800	-1.69489200
С	-4.52336700	2.28566800	0.21218000
С	-3.59420300	1.32163800	0.62520100
С	-2.34894600	1.68560200	1.11171600
С	-1.94581700	3.02427800	1.20982000
С	-2.85925900	4.01019100	0.80201100
С	-4.15424600	3.63795700	0.29503400
С	-3.96825700	-0.05177400	0.58634700
С	-3.09322400	-1.06449600	1.04327100

С	-1.76082600	-0.69210500	1.48473300
С	-1.44119300	0.68158500	1.53292300
С	-5.26873200	-0.28993500	0.10768800
С	-5.74468400	-1.61185100	0.10952200
С	-4.89182200	-2.63798300	0.59317700
С	-3.60202400	-2.38227100	1.09881000
С	-0.71532700	-1.56254200	1.84513600
С	0.50243100	-1.09649900	2.36708200
С	0.76853300	0.29067000	2.46132500
С	-0.21450000	1.16695200	2.00330000
0	-5.34788200	-3.91594800	0.56709200
С	-5.94618200	-4.34881000	1.77028700
0	1.35990100	-2.03731600	2.81289700
С	2.73539000	-1.97681000	2.45048600
0	1.93534100	0.76136700	2.97014900
С	2.02188700	0.71148300	4.38589000
0	-2.66709300	5.33975900	0.84803000
С	-1.35602900	5.84637800	0.88385400
0	-4.90347900	4.69383300	-0.07243900
С	-6.29444400	4.55622800	-0.22520100
0	-6.94860500	-2.04872600	-0.29169500
С	-7.82242200	-1.20688800	-1.00512700
Н	-5.22925600	-4.32066800	2.60894300
Н	-6.82707500	-3.73435800	2.02805300
Н	2.86731600	-1.46655700	1.48952700
Н	3.32690700	-1.46647800	3.22576200
Н	1.24261900	1.33873400	4.85185600
Н	1.92264900	-0.32075900	4.76226600
Н	-0.89166700	5.72555700	1.87868600
Н	-0.72972000	5.37093600	0.11346300

Н	-6.55833700	3.96903400	-1.12243500
Н	-6.76202800	4.10833700	0.66753000
Н	-8.22993500	-0.40179700	-0.37013100
Н	-7.33715300	-0.77797200	-1.89786400
Н	-6.69511100	5.57039800	-0.35917300
Н	-1.42595300	6.92238900	0.67238200
Н	3.01100200	1.10194000	4.66094100
Н	3.07698600	-3.01503400	2.35152800
Н	-6.27324100	-5.38765400	1.61826900
Н	-8.66050600	-1.83600800	-1.33423100
Те	-0.84734900	-3.60654200	1.36501700
0	1.03392800	-3.55716500	0.43493700
0	-2.91757300	-3.39106200	1.62199200
Se	6.20071900	1.08050100	0.36109300
Se	0.43780600	3.22949300	-1.98869800
Se	-0.16715200	3.06343100	1.94754800
Se	-6.10354200	1.37782700	-0.37319600