Supporting Information

An amino acid based system for CO₂ capture and catalytic utilization to produce formates

Duo Wei, Henrik Junge,* and Matthias Beller*

Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a, 18059 Rostock (Germany) E-Mail: henrik.junge@catalysis.de; matthias.beller@catalysis.de

Contents

Materials and methods	1
CO_2 capture with amino acids	1
Standard procedure for the hydrogenation of gaseous CO ₂	9
Standard procedure for CO ₂ capture from ambient air and <i>in situ</i> conversion to formate	.14
Reference	16

Materials and methods

Unless otherwise stated, all reactions were conducted under an argon atmosphere. Ru-MACHO-BH (Ru-1, Strem, 98%), Ru-MACHO (Ru-2, Strem, 98%), Ru-MACHO^{iPr} (Ru-3, Strem, 97%), L-lysine (TCI, 98%), L-tyrosine (TCI, >98.5%), L-threonine (TCI, >99%), Lmethionine (Alfa Aesar, >98%), L-glutamic acid (TCI, >99%), L-serine (TCI, >99%), L-proline (Acros Organics, >99%), L-cysteine (TCI, >98%), L-histidine (Sigma-Aldrich, >99%), Ltryptophan (TCI, >98.5%), glycine (Merck, >99.7%), L-glutamine (TCI, >99%), 1,5diaminopentane (TCI, >98%), 6-aminohexanoic acid (Alfa Aesar, 99%), 2,3-diaminopropanoic acid (fluorochem, 95%), tetramethylguanidine (Alfa Aesar, 99%), pentaethylenehexamine (Sigma-Aldrich, >98%), deuterium oxide (Deutero, 99.9%) were purchased from commercial suppliers and used without further purification. Milstein's Ru-PNP complex (Ru-4)¹ and Fe-MACHO^{iPr}-BH (Fe-1)² were synthesized according to literature. ¹H and ¹³C were recorded using Bruker AV 300 MHz and Bruker AV 400 MHz spectrometers. ¹H and ¹³C NMR chemical shifts were determined relative to the internal standard THF (3.74 ppm and 68.68 ppm respectively) or DMF (7.92 ppm and 165.53 ppm respectively) in D₂O. ¹³C NMR-quant were performed with relaxation delay = 20s (rd>20s did not change the integration), number of scans = 512, acquisition time = $1.1141s^3$ Deionized (DI) water was used for CO₂ capture and hydrogenation reactions.

CO₂ capture with amino acids

Capture with CO₂ (2 bar): Amino acid (5.0 mmol) was added in a 25 mL Schlenk tube, followed with 1.0 mL of DI water, then 2 bar of CO_2 was charged into the Schlenk. Afterwards, the Schlenk tube was closed and stirred at r.t. for 2-18 h. The captured CO_2 amounts were calculated by gravimetric analysis.

Entry	ΔΔ [5 M]		Time [b]		
	<u>مح ام ایرا</u>				
1	H₂N、Ă	glycine	2	U.47 0.47	0.09
	é ∽ `OH		10	U.4 <i>1</i>	0.09
2		l -proline	2	0.39	0.08
<u>د</u>	N \ H OH		18	0.40	0.08
	0		2	0 27	0.05
3	~ ^{\$} ~~_Он	L-methionine	18	0.28	0.05
	NH ₂				
	0 		3	0.45	0.09
4	ОН	L-tyrosine	18	0.43	0.09
	HO NH ₂		10	0.47	0.00
			3	0.26	0.05
5	ОН	L-tryptophan	18	0.30	0.06
	HN NH₂				
•		1	3	0.54	0.11
6	HS TOH	L-cysteine	18	0.61	0.12
7		L-glutamic acid ^[c]	2	0.44	0.09
'	NH ₂		18	0.45	0.09
			<u> </u>	0.04	0.05
8	H ₂ N H ₂ N H	L-glutamine ^[c]	2	0.24	0.05
	NH ₂	-	18	0.20	0.05
	O II		2	0.44	0.00
9	NОн	L-histidine ^[c]	3 19	0.41	0.08
	HN NH ₂		10	0.72	0.14
	O II		о О	0.00	0.00
10	но	L-serine ^[c]	ა 18	0.30	0.00
	NH₂		10	0.04	0.11
11	OH O I II		2	0.46	0.09
	ОН	L-threonine ^[c]	- 18	0.49	0.10
	NH ₂		-		
10	H_2N	L-lysine ^[c]	3	3.05	0.61
12	- ~ ~ Y OH		18	3.63	0.73
			2	n d	-
13	None		_ 18	n.d.	_

Table S1. CO₂ capture with amino acids under 2 bar of CO₂.

Conditions: AA (5.0 mmol), H_2O (1.0 mL), CO_2 (2 bar), stirred at r.t. [a] Calculated by gravimetric analysis [b] mols of CO_2 captured per mol of AA. [c] AAs involved as RuBisCO active site. n.d.= not detectable. Experiments were performed at least twice; average values are used (St. Dev.<10%).

Capture with CO₂ (20 bar): L-lysine (5.0 mmol) was added in a 50 mL autoclave equipped with a magnetic stir bar, followed with 1.0 mL of DI water, then 20 bar of CO₂ was charged into the 50 mL autoclave. Afterwards, the autoclave was closed and stirred at r.t. for 0.5-3 h. The captured CO₂ amounts were calculated by ¹³C NMR-quant with THF (406.2 μ L, 5.0 mmol) as internal standard.³

Capture from ambient air: L-lysine (5.0 mmol) was added in a 25 mL vial followed with 15.0 mL of DI water, then the indoor air (containing ca. 400 ppm CO_2) was bubbled through the vial using a long needle (1 L/min.). After 4 days, the amount of the solvent reduced to ca. 1 mL due to the water evaporation. THF (406.2 µL, 5.0 mmol) was added as an internal standard to the solution, and the mixture was analyzed by ¹³C NMR-quant.³

Figure S1. Typical reaction mixture of CO₂ capture from ambient air with L-lysine.

168 166 f1 (ppm)

Figure S2. ¹³C NMR-quant (185 - 150 ppm) in D_2O of **a**) L-lysine and corresponding solution after CO_2 capture with **b**) 20 bars of CO_2 (3 h), **c**) 2 bars of CO_2 (18 h) and **d**) air bubbling (1 L/min.) 4 d.

Figure S3. ¹³C NMR-quant (190 - 0 ppm) in D₂O of **a**) L-lysine and corresponding solution after CO₂ capture with **b**) 20 bars of CO₂ (3 h), **c**) 2 bars of CO₂ (18 h) and **d**) air bubbling (1 L/min.) 4 d.

lysine.

lysine.

Figure S7. ¹³C NMR-quant in D_2O of CO_2 capture with air bubbling (1 L/min. 1 day) with 5.0 mmol L-lysine.

Figure S8. ¹³C NMR-quant in D_2O of CO_2 capture with air bubbling (1 L/min. 2 days) with 5.0 mmol L-lysine.

Figure S9. ¹³C NMR-quant in D_2O of CO_2 capture with air bubbling (1 L/min. 4 days) with 5.0 mmol L-lysine.

Figure S10. ¹³C NMR-quant in D_2O of CO_2 capture with air bubbling (1 L/min. 8 days) with 5.0 mmol L-lysine.

Figure S11. ¹³C NMR-quant in D_2O of CO_2 capture with air bubbling (1 L/min. 4 days) with 20.0 mmol L-lysine.

Standard procedure for the hydrogenation of gaseous CO₂

Given amount of catalyst dosed from a stock solution (1 mg catalyst dissolved in 10 mL THF), amino acid (5.0 mmol) and solvent (10 mL) were added to a 50 mL autoclave equipped with a magnetic stir bar. After pressurizing the reactor with CO_2 gas, the reaction mixture was stirred at r.t. for 30 min. The reactor was pressurized with H₂ gas then heated and stirred on a preheated oil bath for indicated time. The reactor was cooled to r.t. and a biphasic reaction mixture containing a transparent upper layer and a yellow lower layer was obtained. DI water (ca. 3 mL) was added to the above mixture resulting in a homogeneous solution. DMF (250 µL, 3.24 mmol) was added as an internal standard to the reaction mixture. The reaction mixture was then analyzed by ¹H NMR with a few drops of D₂O (ca. 2 mL) to lock the signals.⁴

Figure S12. Typical reaction mixture of the hydrogenation of CO₂ to formate in the presence of L-lysine.

Figure S13. Typical ¹H NMR in D_2O after hydrogenation of gaseous CO_2 to formate in the presence of L-lysine.

	CO ₂ + H ₂ + A	A Ru-1 (2.0 μmol, 0 H ₂ O (1.0 mL), THF 145 °C, 40	2 mol%) → [AAH] ⁺ [HCO((1.0 mL) h	D] ⁻ Ph ₂ Ru-M	H Ru HBH ₃ Ru-1 ACHO-BH
Entry	AAs		Formate [mmol] ^[a]	Yield [%] ^[b]	Formate [TON] ^[c]
1	H ₂ N NH ₂ OH	L-lysine ^[d]	0.71	71	355
2	H ₂ N, OH	glycine	n.d.	-	-
3	Служе Н ОН	L-proline	n.d.	-	-
4	S NH ₂ OH	L-methionine	n.d.	-	-
5	HO NH ₂ OH	L-tyrosine	n.d.	-	-
6		L-tryptophan	n.d.	-	-
7	HS NH ₂	L-cysteine	0.04	4	20
8	OH OH NH ₂	L-glutamic acid ^[d]	n.d.	-	-
9	H ₂ N OH NH ₂ OH	L-glutamine ^[d]	n.d.	-	-
10	N HN HN HN NH ₂	L-histidine ^[d]	0.125	13	63
11	НО ОН NH ₂ ОН	L-serine ^[d]	0.1	10	50
12	OH O NH ₂ OH	L-threonine ^[d]	0.045	5	23
13	None		n.d.	-	-

Table S2. Hydrogenation of CO_2 in the presence of various amino acids.

Conditions: AA (1.0 mmol), Ru-MACHO-BH (2.0 µmol, 0.2 mol%), H₂O (1.0 mL), THF (1.0 mL), CO₂ (20 bar), H₂ (60 bar), 145 °C, 40 h. [a] Determined by ¹H NMR with DMF (38.5 µL, 0.5 mmol) as internal standard. [b] Calculated by formate [mmol]/AA [mmol]. [c] Calculated by formate [mmol]/catalyst [mmol]. [d] AAs involved as RuBisCO active site. n.d.= not detectable. Experiments were performed at least twice; average values are used (St. Dev.<10%).

CO ₂	+	H ₂	+	Lys	Ru-1 (2.0 μmol, 400 ppm) H ₂ O (5.0 mL), THF (5.0 mL) 145 °C, 12 h	[<mark>LysH</mark>]⁺[HCOO]⁻	H H N P P H H H CO Ph ₂ H BH ₃ Ru-1 Ru-MACHO-BH
-							

Entry	L-lysine [mmol]	Cat. [µmol, ppm]	Formate [mmol] [a]	Yield [%] ^[b]
1	5	2.0, 400 ppm	4.37	87
2	None	2.0, 400 ppm	n.d.	-
3	5	None	n.d.	-
4 ^[c]	5	2.0, 400 ppm	n.d.	-

Conditions: L-lysine (5.0 mmol), Ru-MACHO-BH (2.0 μ mol, 400 ppm), H₂O (5.0 mL), THF (5.0 mL), CO₂ (20 bar), H₂ (60 bar), 145 °C, 12 h. [a] Determined by ¹H NMR with DMF (250 μ L, 3.24 mmol) as internal standard. [b] Calculated by formate [mmol]/L-lysine [mmol]. [c] In the absence of CO₂. n.d.= not detectable.

Ĥ

ы

Table S4. Hydrogenation of CO₂ with L-lysine (screening of solvents).

CO ₂	+	H ₂	+	Lys	Ru-1 (2.0 μmol, 400 ppm) solvent (10.0 mL) 145 °C, 12 h	[<mark>Lys</mark> H]⁺[HCOO]⁻	Ru Ph ₂ HBH ₃
							Ru-1 Ru-MACHO-BH

Entry	Solvent [mL]	Formate [mmol] [a]	Yield [%] ^[b]	Formate [TON] [C]
1	THF [5] + H₂O [5]	4.37	87	2,187
2	2-MTHF [5] + H ₂ O [5]	4.30	86	2,148
3	Triglyme [5] + H ₂ O [5]	3.27	65	1,636
4	MeOH [5] + H ₂ O [5]	3.18	64	1,588
5	Ethylene glycol [5] + H ₂ O [5]	1.23	25	617
6	THF [10]	0.62	12	308
7	2-MTHF [10]	0.35	7	177
8	Triglyme [10]	0.55	11	275
9	MeOH [10]	0.52	10	259
10	Ethylene glycol [10]	1.13	23	567
11	H ₂ O [10]	0.49	9	243

Conditions: L-lysine (5.0 mmol), Ru-MACHO-BH (2.0 μ mol, 400 ppm), solvent (10.0 mL in total), CO₂ (20 bar), H₂ (60 bar), 145 °C, 12 h. [a] Determined by ¹H NMR with DMF (250 μ L, 3.24 mmol) as internal standard. [b] Calculated by formate [mmol]/L-lysine [mmol]. [c] Calculated by formate [mmol]/catalyst [mmol]. Experiments were performed at least twice; average values are used (St. Dev.<10%)

Table S5. Hydrogenation of CO₂ with L-lysine (screening of temperature and time).

Entry	T [ºC]	Time [h]	Formate [mmol] ^[a]	Yield [%] ^[b]	Formate [TON] ^[C]
1	145	12	3.95	79	197,559
2	145	3	2.77	55	138,510
3	105	12	3.22	64	161,028

Conditions: L-lysine (5.0 mmol), Ru-MACHO-BH dosed from stock solution (0.02 μ mol, 4 ppm), H₂O (5.0 mL), THF (5.0 mL), CO₂ (20 bar), H₂ (60 bar). [a] Determined by 1H NMR with DMF (250 μ L, 3.24 mmol) as internal standard. [b] Calculated by formate [mmol]/L-lysine [mmol]. [c] Calculated by formate [mmol]/catalyst [mmol]. Experiments were performed at least twice; average values are used (St. Dev.<10%).

Table S6. Conditions for the generation of formamides from formates.

Entry	Amine [5 mmol]	Formates [%yield] ^[a]	Formamides [%yield] ^[a]	pH of free amine
1	L-lysine	>99	n.d.	10.2
2	PEHA	71	28	13.4

Conditions: Formic acid (5 mmol), L-lysine (5 mmol) or PEHA (5 mmol), H_2O (5 mL) as solvent, stirred at 145 °C, 12 h. pH of free amine was measured with 5 M concentration in H_2O at 25 °C. [a] Determined by ¹H NMR with DMF (250 µL, 3.24 mmol) as internal standard. n.d.= not detectable.

Standard procedure for CO₂ capture from ambient air and *in situ* conversion to formate.

The total volume of the solution of CO_2 capture from indoor air reduced to ca. 1 mL due to water evaporation. This mixture was firstly bubbled with argon for 30 min. then transferred using 4 mL of degassed DI water to a 50 mL autoclave equipped with a magnetic stir bar. The given amounts of catalyst (dosed from stock solution in THF) and THF (5 mL) were added to the above mixture. After pressurizing the reactor with H₂, the reaction mixture was stirred and heated on a pre-heated oil bath for indicated time. The reactor was cooled to r.t. and a biphasic reaction mixture containing a transparent upper layer and a pale yellow lower layer was obtained. DI water (ca. 3 mL) was added to the above mixture resulting in a homogeneous solution. DMF (250 μ L, 3.24 mmol) was added as an internal standard to the reaction mixture. The reaction mixture was then analyzed by ¹H NMR with a few drops of D₂O (ca. 2 mL) to lock the signals.⁴

Figure S14. Typical reaction mixture for the hydrogenation of captured CO_2 to formate.

Figure S15 Typical ¹H NMR in D₂O after hydrogenation of captured CO₂ to formate.

Figure S16. Typical ¹³C NMR in D₂O after hydrogenation of captured CO₂ to formate.

Reference

(1) Gnanaprakasam, B.; Zhang, J.; Milstein, D., Direct Synthesis of Imines from Alcohols and Amines with Liberation of H₂. Angew. Chem. Int. Ed. **2010**, *49*, 1468-1471.

(2) (a) Alberico, E.; Sponholz, P.; Cordes, C.; Nielsen, M.; Drexler, H.-J.; Baumann, W.; Junge, H.; Beller, M., Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions. *Angew. Chem. Int. Ed.* **2013**, *52*, 14162-14166. (b) Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M., Hydrogenation of Esters to Alcohols with a Well-Defined Iron Complex. *Angew. Chem. Int. Ed.* **2014**, *53*, 8722-8726.

(3) (a) Barzagli, F.; Mani, F.; Peruzzini, M., A ¹³C NMR Study of the Carbon Dioxide Absorption and Desorption Equilibria by Aqueous 2-Aminoethanol and N-Methyl-Substituted 2-Aminoethanol. *Energy Environ. Sci.* **2009**, *2*, 322-330. (b) Barbarossa, V.; Barzagli, F.; Mani, F.; Lai, S.; Stoppioni, P.; Vanga, G., Efficient CO₂ Capture by Non-Aqueous 2-Amino-2-Methyl-1-Propanol (AMP) and Low Temperature Solvent Regeneration. *RSC Adv.* **2013**, *3*, 12349-12355. (c) Perinu, C.; Arstad, B.; Jens, K.-J., ¹³C NMR Experiments and Methods Used to Investigate Amine-CO₂-H₂O Systems. *Energy Procedia* **2013**, *37*, 7310-7317. (d) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S., Conversion of CO₂ from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst. *J. Am. Chem. Soc.* **2016**, *138*, 778-781.

(4) Dubey, A.; Nencini, L.; Fayzullin, R. R.; Nervi, C.; Khusnutdinova, J. R., Bio-Inspired Mn(I) Complexes for the Hydrogenation of CO_2 to Formate and Formamide. *ACS Catal.* **2017**, *7*, 3864-3868.