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1. Ligand Configurations for Boltzmann Weighting 
 

 
 
Figure S1. 10 distinct ligand arrangements leading to the (R)- or (S)-propargyl alcohol for C2-
symmetric bidentate Lewis-based catalysed propargylation reactions. Nu = alkyl nucleophile. 
For each ligand configuration BP1–5, the alkyl nucleophile can add to either face of 
benzaldehyde, yielding 10 possible diastereomeric TSs ((R)- or (S)-).  
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2. Learning Curves 
 

 
 
Figure S2. Learning curves for the different molecular representations used. a) Curves 
correspond to the SLATM representations of 3 and 2 (dashed and solid blue, respectively), 3 
– 2 (orange), 3 – 2 with 500 features selected using Mutual Information importances (red), and 
3 – 2 with 500 features selected using r2 linear regression coefficients (green). b) Curves 
correspond to the learning curves of 3 – 2 using different standard atomistic ML 
representations: Coulomb Matrix (blue), Bag of Bonds (orange), and SLATM (green).  
 

3. Feature Importances 

 
Figure S3. Feature importances of the SLATMDIFF representations of the dataset, computed 
using: (blue) the variance, (orange) the r2 linear regression coefficient, and (green) the Mutual 
Information. 
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4. Hyperparameters 

 
 

Figure S4. a-c) Average hyperparameter fitting curves for the 100 train/test splits. The error 
bars are calculated with the standard deviation in the 100 splits. d) Importances of features 
sorted by the average feature importance in the 100 train/test splits. The error bars are computed 
using the standard deviation in the feature importance for the 100 splits. 
 
 
Table S1. Optimised hyperparameters, obtained through grid-search optimisation, of the ML 
model for each of the representations discussed in the main text. σ controls kernel width and λ 
is the ridge parameter for regularization. 
 

 𝛔 𝝺 

SLATM2 180 1 × 10–5 

SLATMDIFF 1.5 1 × 10–6 

SLATMDIFF+ 1.5 1 × 10–6 
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5. Predicted e.e. Values 
 

 
Figure S5. ML-predicted vs. reference DFT e.e. values for the 76 catalysts using each of the 
three different approaches discussed in the main text: SLATM2 (blue), SLATMDIFF (orange) 
and SLATMDIFF+ (green). Most of the points are hidden by the overlaps at the 100/100 region. 
Data corresponds to Figure 3 of the main text and details on their generation are given in the 
machine learning section. 
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6. Out-of-sample Predictions with Retrained Model 
 

 
 
Figure S6. ML-predicted vs. reference DFT Ea values of out-of-sample catalysts 7j and 7k. 
The ML model was re-trained on all of the 754 data points, without splitting them into the 
90/10 train/test sets, using the same hyperparameters previously obtained in the cross-
validation training. The features of SLATMDIFF+ were also selected using the full dataset (754 
points), but they did not vary from those selected in the previous cross-validation splits. 
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7. DFT Optimised XYZ Structures and Energies 
 
The structures of the 1508 catalytic cycle intermediates, optimised at the PCMDCM/B97-
D/TZV(2p,2d) level, are provided in the folders DFTgeomInt2 and DFTgeomInt3. The absolute 
energies (in atomic units) of intermediates 2, 3, and of the enantiodetermining TSs are provided 
in DFTEnergies.csv. The ML-predicted relative Ea values for each species, in kcal mol–1, using 
the three representations discussed in the main text, are provided in 
ActivationEnergiesPredictions.csv.  
 
Note that all our data (optimised structures, energies, ML predictions) can be found in the 
Materials Cloud. 
 

8. Out-Of-Sample Machine Learning Predicted Activation Energies 

 
The ML-predicted and DFT-computed activation energies of the out-of-sample catalysts 7j and 
7k with the SLATMDIFF+ representation are given in the OOSPredictions.csv file, while the 
geometries of catalytic cycle intermediates 2 and 3 and of the enantiodetermining transitions 
states are given in the folders DFTgeomOOSInt2, DFTgeomOOSInt3 and DFTgeomOOSTS.  
 


