Electronic Supporting Information (ESI)

Strategic Engineering of Alkyl Spacer Length for pH-tolerant Lysosome Marker and Dual Organelle Localization

Suprakash Biswas,^{a#} Tanoy Dutta,^{a#} Akshay Silswal,^a Rohit Bhowal,^b Deepak Chopra,^{b*} and Apurba L. Koner^{a*}

^a Bionanotechnology Lab, Department of Chemistry
Indian Institute of Science Education and Research Bhopal
Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA
*E-mail: akoner@iiserb.ac.in

 ^b Crystallography and Crystal Chemistry Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA
 *E-mail: <u>dchopra@iiserb.ac.in</u>

these authors contributed equally to this work

Table of Content

1. Experimental section	3-16
1.1 Materials and methods	3-4
1.1.1 General method	3-4
1.1.2 Analysis of topological parameters	4
1.1.3 Cell culture and imaging	4
1.1.4 General synthetic procedure	4-6
1.1.5 Synthetic description of the all molecules	0-10
2. Fig. S1: Intermolecular H-bonding interactions in NIMC5 & NIMC10	17
3. Fig. S2-3: Variable temperature ¹ H-NMR in CDCI ₃	17-18
4. Fig. S4: pH dependent absorption spectra of NIMC2	18
5. Fig. S5: Optical purity of all NIMCs in water (pH ~6.0)	19
6. Fig. S6: Solvent-dependent absorption spectra of NIMCs	19
7. Fig. S7-8: Solvent-dependent emission and lifetime of NIMC2-5, NIMC8, and NIMC10	20
8. Fig. S9: Emission spectra of NIMCn (n=2-6, 8, 10) with varying alkyl spacer at pH 9.3.	21
9. Fig. S10-13: pH-dependent emission spectra	21-23
10. Fig. S14-15: Photostability of NIMC6	23-24
11. Fig. S16: Cell viability of NIMCn using MTT assay	24
12. Fig. S17-18: CLSM images of BHK-21 with NIMCs	25
13. Fig. S19: lintensity profile of NIMC6 over time, in BHK-21 cell with lysosomal stress	26
14. Fig. S20: λ -scanning experiments for polarity determination	27-29
15. Fig. S23: Live-cell 3D spheroid imaging using NIMC6 in BHK-21 cells	29
16. Table S1- 9: Solvent dependent photophysical properties table	30-33
17. Table S8-10: Crystal data details, inter and intra-molecular interactions	33-37
18. Fig. S24-40: ¹ H NMR and ¹³ C NMR Spectra	38-54
19. Fig. S41-57 Mass spectra	55-63
20. References	63-64

1. Experimental section:

1.1 Materials and methods:

1.1.1. General Method:

All the reagents and solvents were brought from commercial source and used without further purification. Water used for PBS preparation and other spectroscopic measurements is of Milli-Q grade with resistivity 18.2 M Ω . Thin layer chromatography (TLC) was performed using Merck Silica gel 60 F-254 pre-coated plates and visualized using UV-irradiation (λ =254/365 nm). Silica gel from Merck (particle size 100–200 mesh) was used for column chromatography. ¹H and ¹³C-NMR spectra were recorded on Bruker 400 MHz spectrometers with operating frequencies of 100 MHz for ¹³C. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ =7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). High-resolution mass spectrometry (HRMS) data were recorded on Bruker MicrOTOF-Q-II mass spectrometer using chloroform as the solvent. All absorption spectra and fluorescence measurements were carried out using SHIMADZU (UV-1800) spectrophotometer and HORIBA Jobin Yvon fluorimeter (fluorolog 3-2) using 1 cm path length quartz cuvettes. Fluorescence decay time was measured using a Hamamatsu MCP photomultiplier (R-3809U-50) in time-correlated single photon counting (TCSPC) setup consists of an Ortec 9327 pico-timing amplifier and using pulse Diode laser (λ_{ex} =440 nm) with fwhm ~143 ps with a setup target 10,000 counts. The instrument response function (IRF) was measured before and after fluorescence lifetime measurement using a dilute suspension of Ludox (purchased from Sigma) colloidal silica. All the measurements were carried out at ambient temperature (298K) using 5 μ M dye concentration. For the pH-dependent study, we measured the pH of the solution using Oakton pH 700 Benchtop Meter.

SCXRD. Good quality single crystals of NIMC2, NIMC3, NIMC4, NIMC5 and NIMC10 suitable for X-Ray single crystal analysis were obtained by slow evaporation method at low temperature (4°C). Single Crystal X-ray Diffraction data were collected on Bruker AXS Kappa APEXII diffractometer using monochromated Mo K α radiation (λ = 0.71073 Å) at 100 K using an Oxford Cryostream low-temperature device. Unit cell measurements, data integration, scaling and absorption corrections for the crystals were done with Bruker APEXII software.¹ Data reduction were carried out with Bruker SAINT suite.² Absorption correction was performed by multi-scan method implemented in SADABS.³ All the crystal structures were solved by direct methods using SIR 2014.⁴ The crystal structure refinements were done in the program package OLEX2,⁵ and all non-hydrogen atoms were refined anisotropically by full matrix least-squares calculations

3

based on F² with SHELXL-2018.⁶ Some hydrogen atoms were located from the difference Fourier Map, while the remaining hydrogen atoms were included in calculated positions as riding atoms. Details of crystal data, data collection, and refinement details are given in **Table S8**. Geometrical calculations were carried out using PARST⁷ and PLATON.⁸ MERCURY⁹ program was used for structure analysis and also molecular and crystal structure drawings preparation.

1.1.2 Analysis of Topological Parameters: The *ab initio* calculations for the selected monomers and dimers at the crystal geometry were performed at the B3LYP/6-311G(d,p) level of theory using Gaussian 09¹⁰ using AIMALL.¹¹ The selected topological parameters like electron densities (ρ), Laplacian ($\nabla^2 \rho$), local potential energy (V_b), and kinetic energy density (G_b) at the bond critical points (BCPs) for the relevant interactions were obtained (See **Table S10**).

1.1.3 Cell culture and imaging:

Dulbecco's Modified Eagle Medium (DMEM), Trypsin, Antibiotic cocktail and Fetal Bovine Serum (FBS) were purchased from HiMedia (USA). Lyso-Tracker Deep red and ER-Tracker Red were purchased from Thermo Fisher Scientific (USA). The 35 mm glass bottom imaging dishes were obtained from Ibidi (Germany, Cat# 81158). All the confocal microscopy imaging was performed with an Olympus FV3000 Confocal Laser Scanning Microscope (LSM). The image processing was done with the help of cell-Sens 3.1 software (Olympus). BHK-21 ells were obtained from NCCS Pune, India and were grown in a 25 cm² cell culture flask (Corning, USA) using DMEM (phenol red free) containing 10% (v/v) FBS and 1% (v/v) antibiotic cocktail in 5% CO₂ at 37 °C in a CO₂ incubator. For imaging purpose, cells were grown to 75% - 80% confluency in the 35 mm glass bottom imaging dishes (170 ± 5 μ m) in DMEM with 10% FBS. The cells were washed twice with PBS (pH 7.4) containing 5 mM MgCl₂. Then the cells were co-incubated with 0.2 μ M of the dye of interest and 0.3 μ M of Lyso-Tracker Deep Red / ER-Tracker Red (whichever applicable) for 20 minutes and washed with PBS (pH 7.4) twice before imaging.

1.1.4. General synthetic procedure

1.1.4.1 Synthesis of NICBr: In a round bottom flask 8-Bromo-1,8-naphthalic anhydride (500 mg, 1.80 mmol) and 1-butylamine was suspended in ethanol and the reaction mixture was refluxed at 100 °C for 4 hours. The reaction was monitored by TLC and after the completion of the reaction the whole reaction mixture was poured in ice-cold water. A light-yellow precipitate appeared which was collected by filtration. Finally, a white solid pure product was isolated by column chromatography using 20 % EtOAc/ Hexane mixture with 73 % yield.

1.1.4.2 General synthetic procedure of NICM: NICM compounds were synthesized by following literature reported procedure.¹² Where NIBr (1 equivalent), N-aminoalkylmorpholine (5 equivalent) were taken in a Biotage microwave vial (2-5 mL capacity) and the tube was sealed with aluminum cap fitted with Teflon. Then to the reaction mixture dry DMSO (2 mL) was added under nitrogen environment and the nitrogen atmosphere was maintained throughout the reaction. The completion of the reaction was monitored by TLC and after the completion of reaction the reaction mixture was cooled down and whole reaction mixture was poured in ice-cold water. The organic phase was collected by CHCl₃ and washed three times with brine. The organic phase was treated with Na₂SO₄. Finally, a deep yellow pure compound was isolated by silica gel column chromatography. using 5% MeOH/ CHCl₃.

1.1.4.3 Synthesis of n-aminoalkylmorpholine: To synthesize the NIMCs with varying alkyl spacer, N-morpholinoalkane-1-amine is required. In case of **NIMC2** and **NIMC3** the required n-aminoalkylmorpholines are 2-morpholinoethane-1-amine, 3-morpholinopropane-1-amine, which are commercially available and we bought from TCI chemical Japan. The rest of higher n-morpholinoalkane-1-amines required for **NIMC4**, **NIMC5**, **NIMC6**, **NIMC8**, **NIMC10** were synthesized using literature reported procedure with suitable modification as mentioned herein.¹³

1.1.4.4 General Synthetic method of Compound PHCnBr: In a round bottle flask phthalimide (1 equivalent), K_2CO_3 (1.05 equivalent), Dibromoalkane (2 equivalent) were poured and the reaction flask was made inert by N_2 . Then to the R.B dry MeCN was added and the reaction was allowed to reflux for 8 hours under N_2 atmosphere. After completion of the reaction the

MeCN was evaporated off under reduced pressure and the reaction mixture was washed with water and the product was extracted with EtOAc. Finally, the pure product was isolated by column chromatography using 10% EtOAc/Hexane mixture.

1.1.4.5 General Synthetic method of Compound PHCnM: In a round bottle flask compound **PHCnBr** (1 equivalent), morpholine (1.5 equivalent), K_2CO_3 (1.25 equivalent) was added and the environment was made inert by nitrogen. Then to the reaction mixture dry DMF was added and the reaction mixture was allowed to react at 100 °C for overnight under N₂ atmosphere. After the completion of the reaction ice-chilled water was added to the reaction mixture and the compound was extracted with EtOAc. Then the product was washed with ice-cold water 3 times and finally, with brine solution to completely remove DMF. The EtOAc extract was treated with Na₂SO₄ and finally, the pure product was obtained by evaporating the EtOAc under reduced pressure.

1.1.4.6 General synthetic method of compound n-morpholinoalkane-1-amines: Compound **PHCnM** (1 equivalent), N_2H_4 . H_2O (2.5 equivalent) ware taken in RB and to it EtOH was added. The reaction mixture was refluxed for 2 hours. After the reaction, a solid white precipitate was appeared. The precipitate was filtered and the filtrate was kept. Then ethanol was evaporated and again some precipitate appeared the precipitate was dissolved in minimum amount of ethanol and then kept for few hours in ice bath. Again, precipitate appeared and again the precipitate was washed with cold ethanol and filtrate was kept. After doing this precipitation and filtration step for 4 times, pale yellow viscous amine compound was isolated which used in the next step without further purification.

1.1.5 Synthetic description of the compounds:

1.1.5.1 Synthesis of PHC4Br:

2-(4-bromobutyl)isoindoline-1,3-dione (PHC4Br)

5 g (33.98 mmol) of phthalimide, 8.11 mL (67.96 mmol) 1,4-dibromobutane, 4.931 g (35.68 mmol) K₂CO₃, and 100 mL dry MeCN were used as a reaction mixture and after purification 6.81 g of pure white solid product was obtained 71 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.4, 3.0 Hz, 2H), 3.69 (t, *J* = 7.2 Hz, 2H), 3.39 (t, *J* = 6.7 Hz, 2H), 1.90 (m, *J* = 6.9 Hz, 2H), 1.71 (m, *J* = 7.4 Hz, 2H),). ¹³C NMR (101 MHz, CDCl₃) δ

168.39, 133.92, 132.10, 123.21, 37.66, 33.38, 32.19, 27.73. ESI-HRMS M/z [M+H⁺] calculated for $C_{12}H_{13}BrNO_2$ is 282.0130 Da and found 282.0128 Da.

1.1.5.2 Synthesis of PHC4M:

5 g (17.72 mmol) of 2-(4-bromobutyl)isoindoline-1,3-dione, 2.3 mL (26.58 mmol) morpholine, 3.06 g (22.15 mmol) K₂CO₃, and 15 mL dry DMF were used as a reaction mixture and after purification 3.10 g of pure white solid product was obtained 62 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.69 (dd, *J* = 5.5, 3.0 Hz, 2H), 3.70 – 3.64 (m, 6H), 2.39 (t, *J* = 4.7 Hz, 4H), 2.33 – 2.26 (m, 2H), 1.68 (m, *J* = 7.5 Hz, 2H), 1.52 (m, *J* = 7.5 Hz, 2H), ¹³C NMR (101 MHz, CDCl₃) δ 168.39, 133.89, 132.11, 123.16, 66.93, 58.36, 53.68, 37.80, 26.50, 23.83. ESI-HRMS M/z [M+H⁺] calculated for C₁₆H₂₁N₂O₃ is 289.1552 Da and found 289.1574 Da.

1.1.5.3 Synthesis of 4-morpholinobutan-1-amine:

1.7 g (5.9 mmol) of 2-(4-morpholinobutyl) isoindoline-1,3-dione, 0.71 mL (14.75 mmol) hydrazine monohydrate, and 20 mL ethanol were used as a reaction mixture and after purification a viscous yellow liquid was obtained quantitative amount which was directly used for the next step without further purification.

1.1.5.4 Synthesis of PHC5Br:

2-(5-bromopentyl)isoindoline-1,3-dione (PHC5Br)

2.8 g (19.14 mmol) of phthalimide, 5.20 mL (38.28 mmol) 1,4-dibromopantane, 2.76 g (20 mmol) K₂CO₃, and 50 mL dry MeCN were used as a reaction mixture and after purification 4.5 g of pure white solid product was obtained 81 % yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 5.5, 3.0 Hz, 2H), 3.70 (t, J = 7.2 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 1.95 – 1.87 (m, 2H), 1.76 – 1.67 (m, 2H), 1.54 – 1.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.33, 133.83, 132.07, 123.09, 37.82, 33.38, 32.19, 27.73, 25.39. ESI-HRMS M/z [M+H⁺] calculated for C₁₃H₁₅BrNO₂ is 296.0286 Da and found 296.0269 Da.

1.1.5.5 Synthesis of PHC5M:

6.3218 g (21.35 mmol) of 2-(5-bromopentyl)isoindoline-1,3-dione, 2.78 mL (32.02 mmol) morpholine, 3.68 g (26.68 mmol) K₂CO₃, and 15 mL dry DMF were used as a reaction mixture and after purification 4 g of pure white solid product was obtained 62.50 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, J = 5.4, 3.1 Hz, 2H), 7.69 (dd, J = 5.4, 3.0 Hz, 2H), 3.67 (dd, J = 6.2, 2.9 Hz, 6H), 2.39 (t, J = 4.7 Hz, 4H), 2.32 – 2.27 (m, 2H), 1.68 (m, J = 7.5 Hz, 2H), 1.52 (m, J = 7.5 Hz, 2H), 1.35 (m, J = 7.5, 6.9, 3.4 Hz, 2H).¹³C NMR (101 MHz, CDCl₃) δ 168.33, 133.83, 132.07, 123.09, 66.87, 58.74, 53.68, 37.82, 28.37, 25.94, 24.62. ESI-HRMS M/z [M+H⁺] calculated for C₁₇H₂₃N₂O₃ is 303.1709 Da and found 303.1695 Da.

1.1.5.6 Synthesis of 5-morpholinopentan-1-amine:

5-morpholinopentan-1-amine

3 g (9.93 mmol) of 2-(4-morpholinobutyl) isoindoline-1,3-dione, 1.2 mL (24.82 mmol) hydrazine monohydrate, and 20 mL ethanol were used as a reaction mixture and after purification a viscous yellow liquid was obtained quantitative amount which was directly used for the next step without further purification.

2-(6-bromohexyl)isoindoline-1,3-dione (PHC6Br)

5 g (34 mmol) of phthalimide, 10.5 mL (68 mmol) 1,6-dibromohexane, and 4.92 mg (35.7 mmol) K_2CO_3 , and 75 mL dry MeCN were used as a reaction mixture and after purification 8.54 g of pure white solid product was obtained 81 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (dd, J = 5.4, 3.0 Hz, 2H), 7.70 (dd, J = 5.4, 3.1 Hz, 2H), 3.68 (t, J = 7.2 Hz, 2H), 3.39 (t, J = 6.8 Hz, 2H), 1.85 (m, J = 7.0 Hz, 2H), 1.69 (m, J = 7.4 Hz, 2H), 1.54 – 1.43 (m, 2H), 1.36 (m, J = 7.8, 7.4, 3.3 Hz, 2H) ¹³C NMR (101 MHz, CDCl₃) δ 168.44, 133.89, 132.13, 123.19, 37.84, 33.69, 32.61, 28.42, 27.72, 26.03. ESI-HRMS M/z [M+H⁺] calculated for C₁₄H₁₇BrNO₂ is 310.0443 Da and found 310.0422 Da.

1.1.5.8 Synthesis of PHC6M:

2-(6-morpholinohexyl)isoindoline-1,3-dione (PHC6M)

3 g (9.67 mmol) of 2-(5-morpholinobutyl) isoindoline-1,3-dione, 1.25 mL (14.5 mmol) morpholine, 1.66 g (12.08 mmol) K₂CO₃, and 15mL dry DMF were used as a reaction mixture and after purification 2.7 g of brownish white solid product was obtained 88 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (dt, *J* = 5.6, 2.6 Hz, 2H), 7.72 (dd, *J* = 4.9, 2.6 Hz, 2H), 3.75 – 3.64 (m, 6H), 2.44 (q, *J* = 4.5 Hz, 4H), 2.32 (m, *J* = 7.8, 5.0, 3.0 Hz, 2H), 1.74 – 1.63 (m, 2H), 1.49 (q, *J* = 6.8 Hz, 2H), 1.38 (d, *J* = 6.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.46, 133.88, 132.13, 123.17, 66.96, 58.99, 53.74, 37.94, 28.52, 27.03, 26.76, 26.37. ESI-HRMS M/z [M+H⁺] calculated for C₁₈H₂₅N₂O₃ is 317.1865 Da and found 317.1885 Da.

 H_2N

6-morpholinohexan-1-amine

2.5 g (7.9 mmol) of 2-(4-morpholinobutyl) isoindoline-1,3-dione, 0.978 mL (19.75 mmol) hydrazine monohydrate, and 20 mL ethanol were used as a reaction mixture and after purification a viscous yellow liquid was obtained quantitative amount which was directly used for the next without further purification.

1.1.5.10 Synthesis of PHC8Br:

2-(8-bromooctyl)isoindoline-1,3-dione (PHC8Br)

2.5 g (17 mmol) of phthalimide, 9.24 g (34 mmol) 1,8-dibromooctane, and 2.6 g (17.8 mmol) K₂CO₃, and 50 mL dry MeCN were used as a reaction mixture and after purification 4.5 g of pure white solid product was obtained 78 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.0 Hz, 2H), 3.67 (t, *J* = 7.3 Hz, 2H), 3.38 (t, *J* = 6.8 Hz, 2H), 1.83 (m, *J* = 7.0 Hz, 2H), 1.66 (d, *J* = 8.3 Hz, 2H), 1.44 – 1.29 (m, 8H) ¹³C NMR (101 MHz, CDCl₃) δ 168.45, 133.85, 132.17, 123.15, 37.98, 33.93, 32.73, 28.94, 28.58, 28.52, 28.05, 26.71. ESI-HRMS M/z [M+H⁺] calculated for C₁₆H₂₁BrNO₂ is 338.0756 Da and found 338.0750 Da.

1.1.5.11 Synthesis of PHC8M:

3.8 g (11.23 mmol) of 2-(8-bromooctyl)isoindoline-1,3-dione, 1.45 mL (16.84 mmol) morpholine, and 1.93 g (14.03 mmol) K₂CO₃, and 15 mL dry DMF were used as a reaction mixture and after purification 3.42 g of pure white solid product was obtained 88 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 7.4, 3.7 Hz, 2H), 7.73 – 7.67 (dd, 2H), 4.10 (broad s, 4H), 3.66 (t,

J = 7.2 Hz, 2H), 3.39 - 2.78 (m, 6H), 1.86 (m, 2H), 1.71 - 1.57 (m, 2H), 1.40-1.30 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 168.46, 133.90, 132.13, 123.17, 63.82, 58.02, 51.93, 37.83, 28.73, 28.68, 28.40, 26.58, 26.52, 23.21. ESI-HRMS M/z [M+H⁺] calculated for C₂₀H₂₉N₂O₃ is 345.2178 Da and found 345.2195 Da.

1.1.5.12 Synthesis of 8-morpholinooctan-1-amine:

8-morpholinooctan-1-amine

3 g (8.7 mmol) of 2-(4-morpholinobutyl) isoindoline-1,3-dione, 1.08 mL (21.75 mmol) hydrazine monohydrate, and 20 mL ethanol were used as a reaction mixture and after purification a viscous yellow liquid was obtained quantitative amount which was directly used for the next without further purification.

1.1.5.13 Synthesis of PHC10Br:

2-(10-bromodecyl)isoindoline-1,3-dione (PHC10Br)

2.5 g (17 mmol) of phthalimide, 7.66 mL (34 mmol) 1,10-dibromodecane, and 2.4 g (17.8 mmol) K_2CO_3 , and 50 mL dry MeCN were used as a reaction mixture and after purification 5.7 g of pure white solid product was obtained 91 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.0 Hz, 2H), 3.67 (t, *J* = 7.3 Hz, 2H), 3.40 (m, *J* = 6.9, 3.9 Hz, 2H), 1.90 – 1.79 (m, 2H), 1.66 (m, *J* = 7.4 Hz, 2H), 1.40 (m, *J* = 7.1 Hz, 4H), 1.35-1.28 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 168.43, 133.82, 132.18, 123.13, 38.03, 34.01, 32.82, 29.33, 29.31, 29.10, 28.70, 28.56, 28.13, 26.81. ESI-HRMS M/z [M+H⁺] calculated for C₁₈H₂₅BrNO₂ is 366.1069 Da and found 366.1072 Da.

3.6 g (9.8 mmol) of 2-(10-bromodecyl)isoindoline-1,3-dione, 1. 28 mL (14.7 mmol) morpholine, and 1.7 g (12.25) mmol) K₂CO₃, and 15 mL dry DMF were used as a reaction mixture and after purification 3.03 g of pure white solid product was obtained 83 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.1 Hz, 2H), 3.74 – 3.64 (m, 6H), 2.42 (t, *J* = 4.7 Hz, 4H), 2.33 – 2.26 (m, 2H), 1.46 (t, *J* = 7.6 Hz, 2H), 1.29 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 168.42, 133.81, 132.18, 123.12, 66.99, 59.22, 53.79, 38.05, 29.49, 29.45, 29.40, 29.14, 28.58, 27.48, 26.84, 26.53. ESI-HRMS M/z [M+H⁺] calculated for C₂₂H₃₃N₂O₃ is 373.2491 Da and found 373.2462 Da.

1.1.5.15 Synthesis of 10-morpholinodecan-1-amine:

10-morpholinodecan-1-amine

2.5 g (3.72 mmol) of 2-(4-morpholinobutyl) isoindoline-1,3-dione, 0.84 mL (16.8 mmol) hydrazine monohydrate, and 20 mL ethanol were used as a reaction mixture and after purification a viscous yellow liquid was obtained quantitative amount which was directly used for the next without further purification.

64 mg (0.19 mmol) of 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione, 0.13 mL (0.98 mmol) 2-morpholinoethyl-1-amine, and 1.5 mL dry DMSO was used as reaction mixture after purification 41.8 mg yellow pure product was obtained, 57 % yield ¹H NMR (400 MHz, Chloroform-*d*) δ 8.63 (d, *J* = 7.2 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 8.3 Hz, 1H), 7.68 (dd, *J* = 8.4, 7.3 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 1H), 6.27 (s, 1H), 4.22 – 4.16 (m, 2H), 3.81 (t, *J* = 4.6 Hz, 4H), 3.48 – 3.43 (m, 2H), 2.86 (t, *J* = 5.9 Hz, 2H), 2.60 (s, 4H), 1.74 (m, *J* = 7.7 Hz, 2H), 1.47 (m, *J* = 7.4 Hz, 2H), 0.99 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.69, 164.17, 149.34, 134.47, 131.10, 129.77, 125.87, 124.82, 123.24, 120.40, 110.49, 104.53, 77.27, 67.09, 55.98, 53.11, 40.00, 38.96, 30.33, 20.45, 13.90. APCI-HRMS M/z [M+H⁺] calculated for C₂₂H₂₈N₃O₃ is 382.2131 Da and found 382.2139 Da.

1.1.5.17 Synthesis of NIMC3:

50 mg (0.15 mmol) of 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione, 0.11 mL (0.75 mmol) 3-morpholinoproply-1-amine, and 1.5 ml dry DMSO was used as reaction mixture after purification 32.7 mg yellow pure product was obtained, 55 % yield ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 (d, *J* = 7.3 Hz, 1H), 8.45 (d, *J* = 8.5 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 2H), 6.64 (d, *J* = 8.5 Hz, 1H), 4.16 (t, *J* = 7.7 Hz, 2H), 3.88 (m, *J* = 4.6 Hz, 4H), 3.50 (d, *J* = 5.2 Hz, 2H), 2.70 – 2.65 (m, 2H), 2.61 (s, 4H), 2.01 (m, *J* = 5.8 Hz, 2H), 1.71 (m, *J* = 7.7 Hz, 2H), 1.45 (m, *J* = 7.6 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.74, 164.20, 150.32, 134.68, 131.01, 129.84, 126.70, 124.21, 123.20, 120.48, 109.78, 103.75, 66.99, 59.13, 54.08, 44.69, 39.97, 30.35, 23.23, 22.41, 20.46, 13.91. APCI-HRMS M/z [M+H⁺] calculated for C₂₃H₃₀N₃O₃ is 396.2287 Da and found 396.2308 Da.

1.1.5.18 Synthesis of NIMC4:

40 mg (0.12 mmol) of 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione, 94 mg (0.60 mmol) 4-morpholinobutyl-1-amine, and 1.5 mL dry DMSO was used as reaction mixture after purification 30 mg yellow pure product was obtained, 60.9 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (d, *J* = 7.2 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.2 Hz, 1H), 7.67 – 7.62 (m, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 5.65 (s, 1H), 4.22 – 4.15 (m, 2H), 3.80 (s, 4H), 3.50 – 3.43 (m, 2H), 2.54 (s, 6H), 1.90 (q, *J* = 7.0 Hz, 2H), 1.74 (m, *J* = 15.3, 8.9, 7.9 Hz, 4H), 1.47 (m, *J* = 7.3 Hz, 2H), 0.99 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.67, 164.15, 149.37, 134.43, 131.07, 129.80, 125.84, 124.57, 123.28, 120.23, 110.37, 104.30, 66.95, 58.11, 53.74, 43.62, 40.01, 30.33, 26.47, 24.31, 22.34, 20.45, 13.90. APCI-HRMS M/z [M+H⁺] calculated for C₂₄H₃₂N₃O₃ is 410.2444 Da and found 410.2461 Da.

1.1.5.19 Synthesis of NIMC5:

50 mg (0.15 mmol) of 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione, 129 mg (0.75 mmol) 5-morpholinopentyl-1-amine, and 1.5 mL dry DMSO was used as reaction mixture after purification 40 mg yellow pure product was obtained, 63 % yield. ¹H NMR (400 MHz, Chloroform*d*) δ 8.59 (dd, *J* = 7.3, 1.1 Hz, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.62 (dd, *J* = 8.4, 7.3 Hz, 1H), 6.72 (d, *J* = 8.5 Hz, 1H), 5.28 (broad s, 1H), 4.19 – 4.13 (t, 2H), 3.75 (m, 4H), 3.43 (q, *J* = 6.6 Hz, 2H), 2.47 (Broad, *J* = 26.8 Hz, 6H), 1.84 (m, *J* = 7.3 Hz, 2H), 1.71 (m, *J* = 7.6 Hz, 2H), 1.44 (m, *J* = 14.9, 7.4 Hz, 4H), 0.97 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.67, 164.14, 149.25, 134.39, 131.07, 129.80, 125.62, 124.70, 123.32, 120.19, 110.50, 104.34, 66.96, 58.79, 53.80, 43.61, 40.00, 34.13, 30.33, 28.89, 25.00, 20.45, 14.06. APCI-HRMS M/z [M+H⁺] calculated for $C_{25}H_{34}N_3O_3$ is 424.2600 Da and found 424.2607 Da.

1.1.5.20 Synthesis of NIMC6:

75 mg (0.22 mmol) of 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione, 210 mg (1.12 mmol) 6-morpholinohexyl-1-amine, and 1.5 mL dry DMSO was used as reaction mixture after purification 38.8 mg yellow pure product was obtained, 59 % yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.61 (dd, *J* = 7.3, 1.1 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.65 (dd, *J* = 8.4, 7.3 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 5.27 (s, 1H), 4.21 – 4.17 (m, 2H), 3.77 (s, 4H), 3.44 (q, *J* = 6.7 Hz, 2H), 2.47 (d, *J* = 42.3 Hz, 6H), 1.85 (m, *J* = 7.4 Hz, 2H), 1.77 – 1.69 (m, 2H), 1.51 – 1.42 (m, 5H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.68, 164.16, 149.33, 134.42, 131.07, 129.80, 125.69, 124.68, 123.26, 120.16, 110.40, 104.32, 66.80, 58.89, 53.69, 43.64, 40.00, 30.33, 28.92, 27.18, 27.06, 26.27, 20.46, 13.91. APCI-HRMS M/z [M+H⁺] calculated for C₂₆H₃₆N₃O₃ is 438.2757 Da and found 438.2735 Da.

1.1.5.21 Synthesis of NIMC8:

100 mg (0.30 mmol) of 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione, 316 mg (1.5 mmol) 8-morpholinooctyl-1-amine, and 1.5 mL dry DMSO was used as reaction mixture after purification 68.6 mg yellow pure product was obtained, 49 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 – 8.56 (m, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.5 Hz, 1H), 7.65 – 7.58 (m, 1H), 6.72 (d, *J* = 8.5 Hz, 1H), 5.20 (s, 1H), 4.20 – 4.12 (m, 2H), 3.72 (t, *J* = 4.7 Hz, 4H), 3.40 (dd, *J* = 6.6 Hz, 2H), 2.44 (s, 4H), 2.33 (t, *J* = 7.8 Hz, 2H), 1.80 (dd, *J* = 7.2 Hz, 2H), 1.71 (m, *J* = 7.6 Hz, 2H), 1.52 – 1.32 (m, 6H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.68, 164.15, 149.35, 134.42, 131.05, 129.80, 125.66, 124.65, 123.27, 120.16, 110.35, 104.32, 66.93, 59.15, 53.77, 43.72, 39.99, 30.33, 29.46, 29.30, 29.01, 27.43, 27.13, 26.48,

20.45, 13.90. APCI-HRMS M/z [M+H⁺] calculated for $C_{28}H_{40}N_3O_3$ is 466.3070 Da and found 466.3039 Da.

1.1.5.22 Synthesis of NIMC10:

75 mg (0.22 mmol) of 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione, 275 mg (1.12 mmol) 10-morpholinodecyl-1-amine, and 1.5 mL dry DMSO was used as reaction mixture after purification 51.2 mg yellow pure product was obtained, 46 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 (dd, *J* = 7.4, 1.1 Hz, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.62 (dd, *J* = 8.4, 7.3 Hz, 1H), 6.72 (d, *J* = 8.5 Hz, 1H), 5.20 (s, 1H), 4.19 – 4.13 (m, 2H), 3.72 (t, *J* = 4.7 Hz, 4H), 3.40 (q, *J* = 6.5 Hz, 2H), 2.43 (s, 4H), 2.35 – 2.29 (m, 2H), 1.81 (m, *J* = 7.3 Hz, 2H), 1.71 (m, *J* = 7.7 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.66, 164.18, 149.47, 134.41, 130.99, 129.76, 125.82, 124.55, 123.13, 120.14, 110.14, 104.24, 66.96, 59.20, 53.78, 43.73, 39.95, 30.33, 29.52, 29.49, 29.36, 28.96, 27.49, 27.18, 26.52, 20.44, 13.89. APCI-HRMS M/z [M+H⁺] calculated for C₃₀H₄₄N₃O₃ is 494.3383 Da and found 494.3352 Da.

Fig. S1: Intramolecular H-bonding interactions in (a) NIMC5 & NIMC10

Fig. S2: Variable temperature ¹H-NMR of NIMC2 in CDCl₃

Fig. S3: Variable temperature ¹H-NMR of NIMC4 in CDCl₃

Fig. S4: Change in absorption spectra of **NIMC2** (10 μ M) with the variation of pH, where with decreasing pH the absorption maxima show a blue shift, which is due the interaction of secondary amine lone pair with protonated morpholine hydrogen (inset).

Fig. S5: Optical purity of the synthesized compound in water (pH ~6.0) (a) NIMC2, (b) NIMC3, (c) NIMC4, (d) NIMC5, (e) NIMC6, (f) NIMC8, and (f) NIMC10

Fig. S6: Solvent-dependent absorption spectra of (a) NIMC2, (b) NIMC3, (c) NIMC4, (d) NIMC5, (e) NIMC6, (f) NIMC8 and (f) NIMC10.

Fig. S7: Solvent-dependent emission spectra of (a) NIMC2, (b) NIMC3, (c) NIMC4, (d) NIMC5, (e) NIMC8, and (f) NIMC10.

Fig. S8: Solvent-dependent emission lifetime of (a) **NIMC2**, (b) **NIMC3**, (c) **NIMC4**, (d) **NIMC5**, (e) **NIMC8**, and (f) **NIMC10**, using 440 nm LASER as excitation source.

Fig. S9: Fluorescence intensity of **NIMCn** (n=2-6, 8, 10) with variation of alkyl chain length at pH 9.3 (λ_{ex} = 450 nm)

Fig. S10: Plot of pH-dependent fluorescence intensity of **NIMC3**, solid line shows the fitting using sigmoidal equation. The obtained pK_a value is 6.8±0.1. Inset shows the fluorescence spectra with the variation of pH of the solution (λ_{ex} = 450 nm).

Fig. S11: Plot of pH-dependent fluorescence intensity of **NIMC4**, solid line shows the fitting using sigmoidal equation. The obtained pK_a value is 6.6±0.2. Inset shows the fluorescence spectra with the variation of pH of the solution (λ_{ex} = 450 nm).

Fig. S12: Plot of pH-dependent fluorescence intensity of **NIMC5**, solid line shows the fitting using sigmoidal equation. The obtained pK_a value is 5.0±0.3. Inset shows the fluorescence spectra with the variation of pH of the solution (λ_{ex} = 450 nm).

Fig. S13: Plot of pH-dependent fluorescence intensity of **NIMC10**, solid line shows the fitting using sigmoidal equation. The obtained pK_a value is 6.2±0.15. Inset shows the fluorescence spectra with the variation of pH of the solution (λ_{ex} = 450 nm).

Fig. S14: Monitoring the photostability of **NIMC6** with respect to Lyso-tracker green (LTG), by exciting (λ_{ex} = 450 nm) light from 450 W Xenon lamp from Fluorolog instrument (lux).

Fig. S15: Comparison of the photostability between Lysotracker red (red line) and **NIMC6** (green line) inside live BHK-21 cells.

Fig. S16: Cell viability plot with increasing concentration of **NIMCn** using MTT assay of (a) **NIMC2**, (b) **NIMC4**, (c) **NIMC8**, and (d) **NIMC10** in BHK21 cells.

Fig. S17. CLSM images of BHK-21 cells stained with (a) 0.2 μ M **NIMC6**, (b) 0.3 μ M of ER-Tracker Red, (c) merge image of (a) and (b), (d) scatter plot showing Pearson's correlation coefficient of 0.19 ± 0.04, (e) 0.2 μ M NIMC6, (f) 0.3 μ M of Mito-Tracker Red, (g) merge image of (e) and (f), (h) scatter plot showing Pearson's correlation coefficient of 0.67 ± 0.02. (scale bar: 10 μ m)

Fig. S18. CLSM images of BHK-21 cells stained with 0.2 μ M (a) **NIMC3**, (e) **NIMC4** and (i) **NIMC5** where (b), (f), and (j) were treated with 0.3 μ M of LysoTracker Deep Red. (c), (g) and (k) provides merge images. The scatter plots (d), (h) and (i) showing Pearson's correlation coefficient values of 0.89 ± 0.04, 0.86 ± 0.02 and 0.87 ± 0.04 for NIMC3, NIMC4, and NIMC5 respectively (scale bar: 10 μ m)

Fig. S19a. CLSM images of BHK-21 cells stained with (a) 0.2 μ M **NIMC6** and stimulated with 20 μ M chloroquine for (b) 10 min, (c) 20 min, and (d) 30 min; (e) shows the average fluorescence intensity in different ROIs **in same FOV** at the aforementioned time-points of the experiment. (scale bar: 10 μ m) Under the stressed condition, the fluorescence intensity is intact over time indicating the pH-independency of NIMC6 in live-cell.

Fig. S19b. CLSM images of BHK-21 cells stained with (a) 0.2 μ M **NIMC6** and stimulated with 20 μ M chloroquine for (b) 10 min, (c) 20 min, and (d) 30 min; (e) shows the average fluorescence intensity in different ROIs **in different FOVs** at the aforementioned time-points of the experiment. (scale bar: 20 μ m) Under the stressed condition, the fluorescence intensity is intact over time indicating the pH-independency of NIMC6 in live-cell.

Fig. S20. (a-e) Series of individual images in different wavelength range recorded using confocal lambda scanning technique, (f) emission spectra of **NIMC6** inside lysosome in HEK-293 cells (λ_{max} = 518 nm) shows 37 nm blueshift compared to water (λ_{max} = 554 nm).

Fig. S21. (a-e) Series of individual images in different wavelength range recorded using confocal lambda scanning technique, emission spectra of **NIMC10** inside ER in BHK21 cells (λ_{max} = 537 nm) shows 21 nm blueshift compared to water (λ_{max} = 558 nm).

Fig. S22. (a-e) Series of individual images in different wavelength range recorded using confocal lambda scanning technique, (f) emission spectra of **NIMC10** inside ER in HEK-293 cells (λ_{max} = 536 nm) shows 20 nm blue shift compared to water (λ_{max} = 558 nm).

Fig. S23. Live-cell 3D spheroid imaging is better able to recapitulate not only the *in vivo* morphology, but the cell connectivity, polarity, gene expression. Hence, we performed a 3D-spheroids imaging derived from BHK-21 cells and incubated with 2 μ M of **NIMC6**, where (a) bright field, (b) with NIMC6 and (c) merged images (scale bar 10 μ m) suggested the applicability of **NIMC6** in 3D spheroid imaging and further imaging tissue samples.

Table S1. Solvent dependent photophysical properties of **NIMC2**, fluorescence quantum yield is calculated with respect to fluorescein in 0.1 N NaOH.¹⁴

Solvent	Absorption	Extinction	Emission	Stokes	Lifetime	Quantum
	Max. (nm)	coefficient	Max. (nm)	shift	(ns)	Yield
		<i>ε</i> (M⁻¹cm⁻¹)		(nm)		${oldsymbol{\phi}_{\mathrm{f}}}$
Water (pH 6.0)	441	16000	538	97	6.9	0.22
EG	442	6970	535	93	6.8	0.02
Methanol	438	7880	519	81	9.7	0.08
MeCN	430	5980	528	98	10.3	0.19
DMSO	443	7840	533	90	10.2	0.01
DMF	438	7620	531	93	10.3	0.02
DCM	428	6390	505	77	8.8	0.16
CHCI ₃	427	6730	496	69	8.1	0.20
EtOAc	426	6390	512	86	9.4	0.09
Dioxane	422	7520	504	82	9.7	0.10
Toluene	420	5570	497	77	7.9	0.14

Table S2. Solvent dependent photophysical properties of NIMC3, fluorescence quantum yieldis calculated with respect to fluorescein in 0.1 N NaOH.

Solvent	Absorpti	Extinction	Emissio	Stokes	Lifetime	Quantum
	on Max.	coefficient	n Max.	shift	(ns)	Yield
	(nm)	<i>ε</i> (M⁻¹cm ¹)	(nm)	(nm)		$oldsymbol{\phi}_{ extsf{f}}$
Water (pH 6.0)	446	10800	548	102	5.4	0.47
EG	447	5400	541	94	6.4	0.15
Methanol	441	5160	536	95	9.3	0.47
MeCN	434	5300	520	86	7.1	0.44
DMSO	443	5270	535	92	10.1	0.10
DMF	441	4900	532	91	6.2	0.34
DCM	436	4400	510	74	10.3	0.46
CHCI ₃	435	6000	503	68	8.7	0.64
EtOAc	429	4600	509	80	9.6	0.34
Dioxane	426	5200	505	79	9.9	0.29
Toluene	427	5320	494	67	8.1	0.52

Table S3. Solvent dependent photophysical properties of **NIMC4**, fluorescence quantum yield is calculated with respect to fluorescein in 0.1 N NaOH.

Solvent	Absorptio	Extinction	Emission	Stokes	Lifetime	Quantum
	n Max.	coefficient	Max.	shift	(ns)	Yield
	(nm)	<i>ε</i> (M ⁻¹ cm ¹)	(nm)	(nm)		$oldsymbol{\phi}_{ extsf{f}}$
Water	449	12000	554	105	4.6	0.34
(pH 6.0)						
EG	447	8800	544	97	8.0	0.30
Methanol	442	7400	532	90	8.8	0.29
MeCN	431	8600	520	89	10.0	0.26
DMSO	445	8600	532	87	10.4	0.37
DMF	441	6700	526	85	10.0	0.41
DCM	429	7900	509	80	10.4	0.33
CHCI ₃	429	5700	498	69	9.0	0.60
EtOAc	428	8600	509	81	9.6	0.30
Dioxane	425	6400	504	79	10.0	0.48
Toluene	424	7800	498	74	8.2	0.34

Table S4. Solvent dependent photophysical properties of **NIMC5**, fluorescence quantum yield is calculated with respect to fluorescein in 0.1 N NaOH.

Solvent	Absorption	Extinction	Emission	Stokes	Lifetime	Quantum
	Max. (nm)	coefficient	Max.	shift	(ns)	Yield
		<i>ε</i> (M⁻¹cm ¹)	(nm)	(nm)		${\pmb \phi}_{\mathrm{f}}$
Water (pH 6.0)	452	11600	553	101	4.3	0.27
EG	448	6000	544	96	8.1	0.73
Methanol	443	5560	534	91	8.8	1.16
MeCN	432	5820	520	88	10.2	1.19
DMSO	445	8833	533	88	10.4	1.00
DMF	440	8675	526	86	10.1	0.66
DCM	429	5610	508	79	10.4	1.03
CHCI ₃	428	5800	502	74	9.4	1.09
EtOAc	428	5380	508	80	9.6	1.06
Dioxane	426	5600	506	80	10.1	1.21
Toluene	423	4940	498	75	8.4	1.00

Table S5. Solvent dependent photophysical properties of **NIMC6**, fluorescence quantum yield in water is calculated with respect to fluorescein in 0.1 N NaOH and for other solvents the calculation was done with respect to the quantum yield in water.

Solvent	Absorption Max (nm)	Extinction	Emission Max (nm)	Stokes shift	Lifetime	Quantum Vield
		ε (M ⁻¹ cm ⁻¹)		(nm)	(113)	φ _f
Water (pH 6.0)	453	13064	556	103	4.2	0.32
EG	448	13633	543	95	6.9	0.73
Methanol	444	13737	538	94	8.4	0.73
MeCN	433	13686	524	91	10.4	0.92
DMSO	446	13893	535	89	10.5	0.99
DMF	441	13494	524	83	10.3	1.00
DCM	427	10611	517	90	10.6	0.99
CHCI ₃	429	12452	512	83	9.8	1.17
EtOAc	429	12279	513	84	9.7	1.03
Dioxane	428	12334	513	85	10.3	1.06
Toluene	426	12069	502	76	8.6	0.99

Table S6. Solvent dependent photophysical properties of **NIMC8**, fluorescence quantum yield in water is calculated with respect to fluorescein in 0.1 N NaOH and for other solvents the calculation was done with respect to the quantum yield in water.

Solvent	Absorption	Extinction	Emission	Stokes	Lifetime	Quantum
	Max. (nm)	coefficient	Max.	shift	(ns)	Yield
		<i>ε</i> (M⁻¹cm ¹)	(nm)	(nm)		$oldsymbol{\phi}_{\mathrm{f}}$
Water (pH 6.0)	453	11000	559	106	4.1	0.23
EG	448	12240	545	97	8.1	0.77
Methanol	443	11700	541	98	8.4	0.75
MeCN	432	11800	526	94	10.3	0.95
DMSO	444	11560	535	91	10.5	0.99
DMF	439	12250	527	88	10.3	0.01
DCM	428	10190	517	89	10.5	0.92
EtOAc	429	12240	513	84	9.8	1.02
Dioxane	428	11158	516	88	10.5	1.09
Toluene	426	10935	503	77	8.6	0.98

Table S7. Solvent dependent photophysical properties of **NIMC10**, fluorescence quantum yield in water is calculated with respect to fluorescein in 0.1 N NaOH and for other solvents the calculation was done with respect to the quantum yield in water.

Solvent	Absorption	Extinction	Emission	Stokes	Lifetime	Quantum
	Max. (nm)	coefficient	Max.	shift	(ns)	Yield
		<i>ε</i> (M⁻¹cm ¹)	(nm)	(nm)		$oldsymbol{\phi}_{ extsf{f}}$
Water (pH 6.0)	452	11400	558	107	4.2	0.08
EG	449	13834	545	96	7.1	0.75
Methanol	443	13921	538	95	8.4	0.75
MeCN	433	13338	524	91	9.5	0.92
DMSO	444	13621	535	90	10.2	1.03
DMF	444	13096	525	81	10.2	0.98
DCM	429	12408	516	87	10.4	0.99
CHCI ₃	428	14109	511	83	9.8	0.91
EtOAc	428	13158	512	84	9.6	1.00
Dioxane	428	12596	513	85	10.0	1.13
Toluene	423	12708	507	84	8.6	1.03

 Table S8. Crystal data and structure refinement details.

NIMCs	NIMC2	NIMC3	NIMC4	NIMC5	NIMC10
Formula	$C_{22} H_{22} N_3 O_3$	$C_{23} H_{29} N_3 O_3$	$C_{24} H_{31} N_3 O_3$	$C_{25} H_{33} N_3 O_3$	$C_{33} H_{50} N_4 O_4$
Formula weight	381.46	395.49	409.52	423.54	566.77
Temperature/ K	100(2)	100(2)	100(2)	100(2)	100(2)
Wavelength/ Å	0.71073	0.71073	0.71073	0.71073	0.71073
Solvent system for crystallization	DCM + MeOH + DMF	DCM + MeOH + DMF	DCM + MeOH + DMF	DCM + MeOH + DMF	DCM + MeOH + DMF

Crystal size / mm	0.380 x 0.070 x 0.040	0.380 x 0.210 x 0.120	0.400 x 0.080 x 0.040	0.350 x 0.180 x 0.080	0.180 x 0.060 x 0.040
Morphology	Plate	Block	Plate	Block	Needle
Crystal system	Orthorhombic	Orthorhombic	Triclinic	Triclinic	Triclinic
Space group	P212121	Pbcn	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a/ Å	6.9422(9)	24.1436(7)	8.6541(15)	9.5249(5)	4.9200(4)
b/ Å	18.635(2)	9.2164(3)	9.2597(18)	9.5481(6)	16.6625(17)
c/ Å	29.823(3)	18.0242(5)	13.842(3)	12.5232(7)	18.9799(17)
α/ °	90	90	104.249(8)	90.010(4)	87.245(3)
<i>β</i> / °	90	90	97.838(8)	96.492(4)	87.143(3)
γ/ °	90	90	96.127(8)	105.918(4)	86.580(3)
V/ Å ³	3858.1(8)	4010.7(2)	1053.6(3)	1087.64(11)	1549.7(2)
Z	8	8	2	2	2
ρ (calcd)/ g cm⁻³	1.313	1.310	1.229	1.293	1.215
F (000), μ / mm ⁻¹	1632, 0.088	1696, 0.088	440, 0.086	456, 0.085	616, 0.080
θ (min, max)/ °	2.186, 26.661	2.260, 28.281	2.294, 29.126	1.637, 29.129	2.45, 29.65
h _{min,max} , k _{min,max} , I _{min,max}	(-8, 8), (-22, 23), (-36, 36)	(-32, 30), (- 12, 9), (-22, 24)	(-11, 11), (- 12, 12), (-18, 18)	(-13, 12), (- 13, 13), (-17, 17)	(6, -6), (23, - 23), (26, -26)
Treatment of hydrogens	Located	Located	Located	Located	Located
No. of unique ref./ obs. refls.	3983, 2337	4933, 3972	5665, 4456	5806, 3192	8557, 4527
No. of	361	378	272	412	570

parameters					
	0.0686,	0.0470,	0.0462,	0.0591,	0.0679,
$K_1, WK_2 (I \ge 20(I))$	0.1574	0.1089	0.1142	0.1241	0.1123
B wB (all data)	0.1247,	0.0615,	0.0640,	0.1185,	0.1653,
π_1 , $W\pi_2$ (all uata)	0.1931	0.1159	0.1242	0.1504	0.1405
$\Delta\rho_{min,\ max/}e {{\hat A}^3}$	-0.326, 0.248	-0.229, 0.338	-0.393, 0.339	-0.275, 0.292	-0.297, 0.374
goodness-of-fit,	1 030	1 028	1 050	0 968	1 016
S	1.000	1.020	1.000	0.000	1.010
CCDC No.	2053600	2053601	2053602	2053603	2053604

Table S9. Intermolecular	hydrogen	bonds and	other interactions in	NIMCs
--------------------------	----------	-----------	-----------------------	-------

Intermolecular Interactions	Symmetry Code	H…A/ Å	D…A/ Å	D–H…A/ °	
NIMC2					
H2N⋯H14	x, y, z	2.35	2.7457(3)	103	
C19–H19A…O2	-x, -1/2+y, 1/2-z	2.65	3.5805(3)	152	
C17–H17A…O2	-x, -1/2+y, 1/2-z	2.60	3.5919(3)	175	
C18–H18A…O1	-1/2+x, y, 1/2-z	2.67	3.5310(3)	149	
C20–H20B…O1	-1/2+x, y, 1/2-z	2.50	3.4142(2)	152	
C8(π)…C13(π)	-1/2+x, y, 1/2-z		3.3893(4)		
NIMC3					
N2–H2N⋯N3	x, y, z	2.11	2.8938(1)	143	
C20–H20A…O2	-x, y, 1/2-z	2.41	3.2780(1)	146	
C1–H1B…O2	1/2-x, -1/2+y, z	2.48	3.4726(1)	175	
С23–Н23А…С5(π)	-x, -y, 1-z	2.88	3.8326(1)	169	
C6(π)…C13(π)	-x, y, 1/2-z		3.2877(1)		
C15(π)…C16(π)	-x, y, 1/2-z		3.3708(1)		
C16(π)…C16(π)	-x, y, 1/2-z		3.3516(1)		

C12(π)····C12(π)	-x, -y, 1-z		3.3961(1)		
NIMC4					
N2–H2N…O3	x, -1+y, z	2.051 2.8881(1)		159	
C14–H14…O3	x, -1+y, z	2.504	3.4324(1)	166	
C15–H15…O1	x, -1+y, z	2.462	2.462 3.3194(2)		
C21–H21A…O2	-x, 1-y, 1-z	2.497	3.4761(2)	170	
C22–H22B…O1	-x, 2-y, 1-z	2.700	3.6242(2)	155	
C23–H23B…O1	1-x, 2-y, 1-z	2.691	3.5829(2)	150	
C24–H24A…C16(π)	1-x, 1-y, 1-z	2.791	3.7606(2)	167	
NIMC5					
C24–H24B…O1	-1+x, y, -1+z	2.50	3.4523(2)	157	
C15–H15…O1	-1+x, y, z	2.51	3.4261(2)	165	
C22–H22A…O2	x, -1+y, 1+z	2.55	3.2598(2)	127	
C14–H14…O3	-1-x, 1-y, -1-z	2.29	3.2693(2)	168	
N2–H2N…O3	-1-x, 1-y, -1-z	z 2.10 3.0405(2)		163	
C1–H1B…O2	-x, -y, 1-z	2.57 3.54		160	
C24–H24B…C10(π)	-1+x, y, -1+z	2.89 3.7238(2)		140	
C4–H4A····C12(π)	-x, -y, -z	2.82 3.2849(2)		111	
С17–Н17В…С8(π)	-x, 1-y, -z	2.84 3.5048(2)		124	
C6(π)…C10(π)	-x, -y, -z	3.3998(2)			
C12(π)····C12(π)	-x, 1-y, -z	-x, 1-y, -z 3.3345(2)			
NIMC10					
C27–H27B…O1	1-x, 1-y, 1-z	2.43	3.4243(3)	167	
C23–H23A…O1	2-x, 1-y, 1-z	2.64	2.64 3.5654(2)		
C14–H14…O4	x, y, z	2.27	3.2498(2)	172	
N2–H2…O4	x, y, z	2.21	3.0534(2)	173	
C33–H33A…O3	-x, 1-y, -z	2.50 3.4387(3)		155	
C33–H33C…O4	-1+x, y, z	2.68 3.5653(3)		148	
C17–H17A…C12(π)	-1+x, y, z	2.85 3.6461(2)		139	

C17–H17A…C13(π)	-1+x, y, z	2.83	3.4700(3)	124

Table S10. Topological parameters	s for the intra an	nd inter-molecular	hydrogen bonds	present
in NIMC2, NIMC3, and NIMC4				

Code	Interaction	BPL	$ ho_{BCP}$	$ abla^2 ho_{BCP}$	V (au)	G _b (a.u.)	$ V_{\cdot} _{\cdot}G_{\cdot}$
		(Å)	(eÅ ⁻³)	(eÅ⁻⁵)	v _b (a.u.)		I' bI J ~b
NIMC2	H2N…H14	1.949	0.099	1.521	-0.009591	0.012688	0.756
NIMC3	H2N…N3	2.014	0.159	1.931	-0.016218	0.018126	0.895
	H2N…H14	2.266	0.082	1.349	-0.008087	0.011044	0.732
NIMC4	H11…N3	2.593	0.052	0.479	-0.003854	0.004415	0.873
	H2N…O3	1.961	0.135	2.063	-0.015133	0.018267	0.828
	H14…O3	2.387	0.063	0.715	-0.005618	0.006519	0.862
	H15…O1	2.346	0.058	0.735	-0.005068	0.006349	0.798

Fig. S24b: $^{\rm 13}C$ NMR of PHC4Br in CDCl_3

Fig. S25b: ¹³C NMR of PHC4M in CDCl₃

Fig. S26b: ¹³C NMR of PHC5Br in CDCl₃

Fig. S27a: ¹H NMR of PHC5M in CDCI₃

Fig. S27b: ¹³C NMR of PHC5M in CDCl₃

Fig. S28a: ¹H NMR of PHC6Br in CDCl₃

Fig. S28b: ¹³C NMR of PHC6Br in CDCl₃

120 110 100 f1 (ppm)

Fig. S30a: ¹H NMR of PHC8Br in CDCl₃

Fig. S30b: ¹³C NMR of PHC8Br in CDCl₃

Fig. S31a: ¹H NMR of PHC8M in CDCl₃

Fig. S31b: ¹³C NMR of PHC8M in CDCl₃

Fig. S32a: ¹H NMR of PHC10Br in CDCl₃

Fig. S32b: ^{13}C NMR of PHC10Br in CDCl_3

Fig. S33b: $^{\rm 13}C$ NMR of PHC10M in CDCl_3

Fig. S34b: ¹³C NMR of NIMC2 in CDCl₃

Fig. S35a: ¹H NMR of NIMC3 in CDCl₃

Fig. S35b: ¹³C NMR of NIMC3 in CDCl₃

Fig. S36b: ¹³C NMR of NIMC4 in CDCl₃

Fig. S37a: ¹H NMR of NIMC5 in CDCl₃

Fig. S37b: ¹³C NMR of NIMC5 in CDCl₃

Fig. S38b: ¹³C NMR of NIMC6 in CDCl₃

Fig. S39b: ¹³C NMR of NIMC8 in CDCl₃

Fig. S41: ESI Mass of PHC4Br

Fig. S43: ESI Mass of PHC5Br

Fig. S44: ESI Mass of PHC5M

Fig. S45: ESI Mass of PHC6Br

Fig. S46: ESI Mass of PHC6M

Fig. S49: ESI Mass of PHC10Br

Fig. S52: APCI Mass of NIMC3

Fig. S54: APCI Mass of NIMC5

Fig. S57: APCI Mass of NIMC10

References:

- 1. Bruker Analytical X-ray Systems Bruker Analytical X-ray Systems Madison, WI, 2006.
- 2. Siemens Analytical X-ray Instruments Inc., Siemens: Madison, MI, 1995.
- 3. SADABS; Bruker AXS, Inc., Bruker AXS, Inc., Madison, WI, 2014.
- 4. M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, *J. Appl. Cryst.*, 2015, **48**, 306-309.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 6. G. Sheldrick, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- 7. M. Nardelli, J. Appl. Cryst., 1995, 28, 659.
- 8. A. Spek, Acta Crystallogr. D, 2009, 65, 148-155.
- 9. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466-470.
- G. W. T. M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,, V. B. G. Scalmani, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,, H. P. H. X. Li, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada,, K. T. M. Ehara, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,, H. N. O. Kitao, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,, J. H. M.J. Bearpark, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi,, K. R. J. Normand, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi,, N. R. M. Cossi, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken,, J. J. C. Adamo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,, C. P. R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, P. S. G.A. Voth, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, and J. V. O. J.B. Foresman, J. Cioslowski, D.J. Fox, *Journal*, 2009.
- 11. *Journal*, 2019, AIMAII.
- 12. S. Biswas, V. Sharma, P. Kumar and A. L. Koner, *Sens. Actuators B*, 2018, **260**, 460-464.

- M. Hoffmann, C. Stiller, E. Endres, M. Scheiner, S. Gunesch, C. Sotriffer, T. Maurice and M. Decker, *J. Med. Chem.*, 2019, **62**, 9116-9140. R. Sjöback, J. Nygren and M. Kubista, *Spectrochim. Acta A*, 1995, **51**, 7-21. 13.
- 14.