Supporting Information

Controllable Stereoinversion in DNA-catalyzed Olefin Cyclopropanation via Cofactor Modification

Jingya Hao,^{1, 2} Wenhui Miao,^{1, 2} Shengmei Lu,¹ Yu Cheng,^{1, 2} Guoqing Jia,¹ Can Li^{*, 1}

¹State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China

²University of Chinese Academy of Sciences, Beijing 101408, China

Table of Contents

Materials and Methods	
General Procedures	7
Supplementary Results	
Synthesis and Characterization	
HPLC Traces	
References	

Materials and Methods

Unless otherwise noted, all chemicals and reagents for chemical reactions were obtained from commercial suppliers (Sigma-Aldrich, Acros, TCI, Frontier scientific) and used without further purification. The DNA sequences were all purchased from Sangon (Shanghai, China). The DNA strand concentrations were determined by measuring the UV absorbance of sample at 260 nm by using the molar extinction coefficient values provided by the manufacturer. Water purified on a Milli-Q A10 water purification system (specific resistance of 18.2 M Ω at 25 °C) was used for all experiments.

High Performance Liquid Chromatography (HPLC). The enantioselectivity was determined by Agilent HPLC 1260 analysis using Daicel chiralcel OJH column and Daicel CHIRALPAK-IJ column with a UV-detector by using ethanol, isopropanol and n-hexane as eluents at 25 °C.

Circular Dichroism (CD) Spectroscopy. All CD spectra were recorded on a dual beam DSM 1000 CD spectrophotometer (Olis, Bogart, GA) with a 10 mm or 1.5 mm path-length quartz cell. Each measurement was recorded from 220 to 400 nm at 20 °C under N_2 purge. The scan rate was 0.5 nm per second. The average scan for each sample was subtracted by a background CD spectrum of corresponding buffer solution.

UV Melting Experiment. UV melting experiments were carried out on Shimadzu 2450

spectrophotometer (Shimadzu, Japan) equipped with a Peltier temperature control accessory. A sealed quartz cell with a path length of 1.0 cm was used. The UV melting curves of the G-quadruplexes and G4-based biocatalysts were monitored by UV absorption at 295 nm with a heating rate of 0.5 °C/min. Data were analyzed by using Origin 8 software. The melting temperatures (T_m) can be obtained from the best sigmoidal curve fit of the melting profile.

UV-Vis Absorption Titration Experiments. Absorption spectra were measured on Shimadzu 2600 spectrophotometer (Shimadzu, Japan) with a 1 cm path-length quarter cell. UV-vis absorption titrations were carried out by the stepwise addition of G-quadruplex solution to a cell containing FeTMPyPn (n = 4, 3, 2). Absorption spectra were recorded in the range of 300-550 nm at room temperature. The titration was terminated when the wavelength and intensity of the Soret band for FeTMPyPn did not change any more upon three successive additions of G-quadruplexes.

Nuclear Magnetic Resonance (NMR) Titration. NMR titration experiments were performed on Bruker-700MHz NMR instrument in potassium phosphate buffer (10mM, pH 7.0), containing 5% D_2O . The strand concentration of NMR samples was 0.25 mM. Before experiment the samples were heated at 95 °C for 3 min and annealed to room temperature.

Isothermal Titration Calorimetry (ITC).¹ ITC measurements were carried out at 25

°C using a MicroCal TM ITC 200 titration calorimeter (MicroCal, GE). Experiments were performed in potassium phosphate buffer (10mM, pH 7.0). The reference cell in the ITC was filled with ultrapure water (18.2 M Ω). A pre-folded G-quadruplex DNA was loaded into the calorimeter cell. Then the syringe was loaded with FeTMPyPn (n = 4, 3, 2) (1.5 mM) in corresponding buffers. Following the auto-equilibration and an initial 60 s delay, the FeTMPyPn titrant divided into 25 injections was added into the cell with 250s injection intervals. The stir rate was 1000 rpm. All data were recorded with the GE Instruments software provided. Calorimetric data were further analyzed according to relevant model using MicroCal ORIGIN software and MATLAB. Data analysis gives Δ H (binding enthalpy change, k_{cal} /mol), K_a (binding constant, M⁻¹), and n (number of bound FeTMPyPn cofactor) whereas the change in Gibbs energy and the entropic contribution were determined by the relationships Δ G = -RTlnK_a and Δ G = Δ H-T Δ S, respectively.

Fluorescence quench titration assay.² Fluorescently labelled oligonucleotide was dissolved in assay buffer (potassium phosphate buffer 10 mM, pH 7.0), which is in agreement with the catalytic buffer. The resultant strand concentration of oligonucleotide was 100 nM. FeTMPyPn (n = 4, 3, 2) was prepared at a concentration of 5 mM in water and diluted to an appropriate concentration before titration. The fluorescence experiments were recorded on a FLS920 fluorescence spectrometer (Edinburgh) with a 1 cm path length quartz cuvette at 20 °C. Fluorescence intensity of FAM-labeled DNA was recorded after the addition of FeTMPyPn. Interval time

between two titration points was 10-15 minutes in order to reach the binding equilibrium. Each quench titration assay was conducted in triplicate. If not stated otherwise, the titration curve was fitting as one site specific binding by using software Origin 8.1.

General Procedures

Typical procedure for cyclopropanation bioconversions under anaerobic conditions. Reactions (1 mL) were conducted in 10 mL Schlenk tubes (Synthware Glass, Beijing). G4-based biocatalysts were added to the tube with a small stir bar in phosphate buffer (10 mM, pH = 7.0) and a solution of the reductant (Na₂S₂O₄, or NADPH) were combined in tube and degassed by bubbling argon through the solution for 5 min. The headspace of tube was made anaerobic by flushing argon over the solution (with no bubbling). A styrene solution in DMSO (20 µL, typically 1.5 M) was added to the reaction vial via a glass syringe, and left to stir for about 30s. An EDA solution in DMSO was then added (20 µL, 0.5 M) and the reaction was left to stir for appropriate time. The final concentrations of the reagents were typically: 30 mM styrene, 10 mM EDA, 5 mM Na₂S₂O₄ or 0.5 mM NADPH, 12.5 µM mA9A-FeTMPyPn (n = 4, 3, 2). After 2 hours of reaction, the product was extracted with ethyl acetate (3) \times 2 mL). The organic layer was washed with brine (1 \times 5 mL). After a short flash chromatography containing anhydrous Na₂SO₄ and the evaporation of solvent, the crude product was analyzed by HPLC, using 2-methylanisole as internal standard.

Synthesis of cyclopropane products.³ Under inert gas conditions, $[Cu(MeCN)_4]PF_6$ (52 mg) was dissolved in 20 mL anhydrous dichloromethane. Under stirring, olefin (140 mmol) was added to the solution and stirred for further 90 min at room temperature. Subsequently, a solution of ethyl diazoacetate or butyldiazoacetate (14 mmol) in 20 mL anhydrous dichloromethane was dropped to the solution over 4 hours. The reaction mixture was allowed to stirrer at room temperature overnight. The pure product was obtained after flash chromatography.

Synthesis of cofactor FeTMPyPn.⁴

The pH of an aqueous solution of H_2TMPyP (0.15 mmol) in 60 ml water was adjusted to 2 (with 1 M HCl), and a 40-fold molar excess FeCl₂.4H₂O was added and the solution was stirred and heated under reflux. The course of the metalation was followed by the decrease of the fluorescence of the metal-free porphyrin using UV light at 356 nm. The metalation was completed in 24 hours. The solution was filtered through a filter paper. The Fe porphyrin was precipitated as the PF₆⁻ salt with a saturated aqueous solution of NH₄PF₆ (2 ml). The precipitate was thoroughly washed with diethyl ether (5 × 5 mL). The dried precipitate was then dissolved in acetone (the smallest possible amount) and precipitated as the chloride salt with saturated acetone solution of methyl-trinoctylammonium chloride (2 mL). The precipitate was washed with acetone and dissolved in the smallest possible amount of water. The whole precipitation procedure was repeated once again to ensure high purity. Synthesis of diazo esters.⁵

$$\begin{array}{c} & & \\$$

A solution of R-OH (50 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (50 mmol) in 10 mL of toluene was placed in a 50-ml flask. The flask was immersed in an oil bath that had been preheated to 150 °C, and the solution was vigorously stirred. The evolution of acetone became apparent within several minutes, heating was continued for a total of 6 hours. The reaction was cooled, and then the toluene was removed, and the product was distilled. To the solution of first step product (10 mmol) in acetonitrile (12ml) was added Et₃N (13 mmol). The reaction mixture was cooled in an ice bath and a solution of p-ABSA (11 mmol) in acetonitrile (12 ml) was added slowly. The reaction mixture was allowed to warm to r.t. After stirring for 10h, solvent was removed under reduced pressure. The residue was dissolved in ether (60 ml) and washed with 5% aqueous KOH solution. To a solution of the crude product in ethyl ether was added 5% KOH (50 ml), and the reaction mixture was stirred for 1h. The organic phase was separated, dried over Na₂SO₄, and concentrated under reduced pressure. Purification

Supplementary Results

Figure S1. UV-melting spectra of mA9A and mA9A-FeTMPyPn (n = 4, 3, 2).

Figure S2. (a) The diagrams of site-specific FAM labelled mA9A G-quadruplex. (b) CD spectra of FAM labelled mA9A (FAM labelled G4 strand concentration 15 μ M, potassium phosphate buffer 10 mM, pH 7.0).

Figure S3. FeTMPyPn (n = 4, 3, 2)-dose-responsive FAM-mA9A emission spectra.

Synthesis and Characterization

(1RS, 2RS)-Ethyl 2-phenylcyclopropane-1-carboxylate.⁴ Prepared using general procedure, starting from styrene. Purified by column

chromatography (SiO₂, EtOAc: pentane = 1: 10), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 1 mL/min, λ =

225 nm. 2-methylanisole as internal standard.

methylstyrene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 10), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 1 mL/min, $\lambda =$

225 nm. 2-methylanisole as internal standard.

(1RS, 2RS)-Ethyl 2-(4-methoxyphenyl) cyclopropane-1carboxylate.⁴ Prepared using general procedure, starting from 4-methoxystyrene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1:

20), to afford the product as liquid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane: ethanol = 98: 2, flow rate

0.8 mL/min, $\lambda = 225$ nm. 2-methylanisole as internal standard.

clicities (1RS, 2RS)-Ethyl 2-(4-chlorophenyl) cyclopropane-1carboxylate.⁴ Prepared using general procedure, starting from

4-chlorostyrene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 50), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane: ethanol = 98: 2, flow rate

0.5 mL/min, λ = 225 nm. 2-methylanisole as internal standard.

(1RS, 2RS)-Ethyl 2-(4-fluorophenyl) cyclopropane-1carboxylate.⁷ Prepared using general procedure, starting from 4-

fluorostyrene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 50), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane: ethanol = 98: 2, flow rate

0.5 mL/min, $\lambda = 225$ nm. 2-methylanisole as internal standard.

(1RS, 2RS)-Ethyl 2-(3,4-difluorophenyl) cyclopropane-1carboxylate.⁸ Prepared using general procedure, starting from 3,4-difluorostyrene. Purified by column chromatography (SiO₂,

EtOAc: pentane = 1: 50), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane: isopropanol = 98: 2, flow

rate 0.3 mL/min, $\lambda = 235$ nm. 2-methylanisole as internal standard.

(1RS, 2RS)-Ethyl 2-methyl-2-phenylcyclopropane-1-carboxylate.⁶

Prepared using general procedure, starting from 2-phenyl-1propene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 10), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 1 mL/min, λ =

225 nm. Thioanisole as internal standard.

(1RS, 2RS)-tert-Butyl 2-phenylcyclopropane-1-carboxylate.⁶Prepared using general procedure, starting from styrene and *t*-BuDA. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 30), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane, flow rate 1 mL/min, $\lambda =$

225 nm. Thioanisole as internal standard.

(1RS, 2RS)- 2-methyl-1-(1-methylethyl)propyl 2phenylcyclopropane-1-carboxylate.⁹ Prepared using general procedure, starting from 2-Methyl-1-(1-methylethyl)propyl 2-diazoacetate. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 30), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane, flow rate 0.8 mL/min,

 $\lambda = 225$ nm. 4-Methoxystrene as internal standard.

(1RS, 2RS)- 1,2-dimethyl-1-(1-methylethyl)propyl 2phenylcyclopropane-1-carboxylate.¹⁰ Prepared using general procedure, starting from 2,3,4-Trimethyl-3-pentyl diazoacetate. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 50), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane, flow rate 0.5 mL/min,

 $\lambda = 225$ nm. 4-Methoxystrene as internal standard.

(1RS, 2RS)- dicyclohexylmethyl 2-phenylcyclopropane-1carboxylate.¹¹ Prepared using general procedure, starting from 2,3,4-Trimethyl-3-pentyl diazoacetate. Purified by column

chromatography (SiO₂, EtOAc: pentane = 1: 30), to afford the product as pale yellow

liquid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 0.6 mL/min, λ =

235 nm. Thioanisole as internal standard.

HPLC Traces of Products

(1) Racemic trans product catalyzed by FeTMPyP4

Signal 1: VWD1 A, Wavelength=225 nm

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	°s
1	17.246	BB	0.5033	1276.79822	37.38312	50.1381
2	24.850	VB	0.4749	1269.76685	41.00116	49.8619
Tota	ls:			2546.5650	78.3842	28

(2) Racemic trans product catalyzed by FeTMPyP3

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
1	17.929 VB	0.4202	3165.36792	114.99096	49.9849
2	25.449 BB	0.5448	3167.27930	88.68572	50.0151
Tota	ls:		6332.6472	2 203.6766	8

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	g.
1	17.639	BB	0.4778	1929.94141	61.08487	49.8039
2	25.047	BB	0.5935	1945.14063	49.85826	50.1961
Tota	ls:			3875.0820	3 110.9431	3

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.698	MM	0.4853	734.51807	25.22478	18.8650
2	25.001	BB	0.5467	3159.02954	87.44763	81.1350
Tot	als:			3893.54	761 112.672	242

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	÷
1	17.606	BB	0.4342	3670.93481	128.31760	73.2178
2	24.872	BB	0.5489	1342.78650	37.10139	26.7822
Tota	ls:			5013.7213	31 165.4189	99

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	95
1	23.333	BB	0.4669	3607.62500	119.15497	50.0601
2	28.016	BB	0.6321	3598.96021	86.85562	49.9399
Tota	als:			7206.585	21 206.0105	59

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	23.620	BB	0.4530	608.94958	20.75915	50.6158
2	28.471	BB	0.5904	594.13354	15.48688	49.3842
Tota	als:			1203.083	L3 36.2460)3

Peak	RetTime Ty	vpe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	ofo
1	22.724 MF	0.4883	1773.17981	60.51929	15.2097
2	26.848 BE	0.7475	9885.05078	197.88264	84.7903
Tota	ls:		1.16582e4	258.4019	33

Signal 1: VWD1 A, Wavelength=225 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	9b
1	22.622	BB	0.4584	2293.74512	77.30296	19.6823
2	26.834	BB	0.7756	9360.07715	181.36884	80.3177
Tota	le·			1 165380	1 258 6718	30

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
		-				
1	22.772	BB	0.6007	4132.17041	105.30273	73.5773
2	27.425	BB	0.5446	1483.92273	42.17602	26.4227
Tota	ls:			5616.0931	4 147.4787	6

(1) Racemic trans product catalyzed by FeTMPyP4

#	[min]		[min]	[mAU*s]	[mAU]	26
1	17.329	BB	0.3045	930.77545	46.88914	50.1834
2	24.542	BB	0.4425	923.97205	32.21429	49.8166
Tot	als:			1854.747	50 79.103	44

Peak Reti	'ime Type	Width	Area	Height	Area
# [mi	n]	[min]	[mAU*s]	[mAU]	dio
	-				
1 17.	924 FM	0.4126	4927.31396	199.02786	51.1998
2 22.	663 BV	0.3989	4696.38379	179.25935	48.8002
Totals:			9623.6977	75 378.2872	22

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	96
1	17.758	BB	0.3457	7474.04639	316.19641	49.9475
2	22.448	MM	0.4440	7489.76221	281.14175	50.0525
Tota	als:			1.49638e	4 597.338	17

Signal 1: VWD1 A, Wavelength=225 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.560	BV	0.3003	2313.20581	118.69658	21.0114
2	22.148	VV	0.4373	8696.06348	307.99966	78.9886
Tota	ls:			1.10093e4	426.6962	24

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.256	BV	0.2975	4117.81885	213.84589	24.0873
2	21.711	BV	0.4339	1.29776e4	460.30869	75.9127
Tota	ls:			1.70954e4	674.1545	57

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

S29

Totals:

(1) Racemic trans product catalyzed by FeTMPyP4

1478.75793 76.24911

Totals: 7584.18262 385.58861

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	96
1	15.851	MF	0.3030	2373.68726	130.57697	51.4237
2	18.676	VV	0.3235	2242.25073	105.60941	48.5763
Tota	ls:			4615.9379	9 236.1863	17
Tota	ls:			4615.9379	9 236.1863	7

5954.38928 279.22431

Signal 1: VWD1 A, Wavelength=225 nm

Totals:

Peak RetTime	e Tvpe	Width	Area	Height	Area
# [min]	-11	[min]	[mAU*s]	[mAU]	8
				[
1 15.862	BB	0.2566	1054.52954	63.44704	23.5063
2 18.551	BV	0.3692	3431.63135	142.85867	76.4937
Tetala			1196 1600	20 206 205	10

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Peak	RetTime Ty	rpe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	16.007 VB	0.3207	2046.27869	101.11288	74.8640
2	18.683 BB	0.2575	687.04791	41.13651	25.1360
Tota	als:		2733.3266	50 142.2493	39

(1) Racemic trans product catalyzed by FeTMPyP4

(3) Racemic trans product catalyzed by FeTMPyP2

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
1	14.131 VB	0.2636	1512.62354	87.19427	52.1810
2	16.959 VB	0.3074	1386.17859	68.52414	47.8190
Tota	als:		2898.8021	2 155.718	41

Signal 1: VWD1 A, Wavelength=225 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.202	VB	0.2396	874.29047	55.82927	17.1389
2	17.016	BV	0.3121	4226.92725	207.41016	82.8611
Tota	ls:			5096.8659	1 263.2451	.2

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 14.316 VB	0.2650	1031.82813	57.43111	29.3377
2 17.161 BV	0.3605	2485.24097	107.33364	70.6623
Totals:		3517.0690	9 164.7647	5

Peak	RetTime 1	Type Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	14.460 N	VB 0.3152	2623.39624	117.16426	80.2797
2	17.225 E	BV 0.2244	644.42249	43.71943	19.7203
Tota	ls:		3267.8187	3 160.8836	9

(1) Racemic trans product catalyzed by FeTMPyP4

Signal 1: VWD1 A, Wavelength=235 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	40
		-				
1	18.633	BB	0.3744	2981.03467	118.15169	49.2549
2	21.876	BB	0.4324	3071.22632	105.16261	50.7451
						0
Tota	ls:			6052.260	<i>i</i> 9 223.3142	9

(2) Racemic trans product catalyzed by FeTMPyP3

					2	
#	[min]		[min]	[mAU*s]	[mAU]	25
1	18.004	BB	0.3844	3712.28394	140.29503	49.3660
2	21.177	BB	0.4430	3807.63623	125.42380	50.6340
Tota	ls:			7519.920	17 265.718	83

(3) Racemic trans product catalyzed by FeTMPyP2

Peak	RetTime '	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	-					
1	18.142 E	BB	0.3658	2957.25635	118.91586	49.2929
2	21.323 E	BB	0.4309	3042.10400	104.17883	50.7071
122 13						
Tota	uls:			5999.360.	35 223.0946	59

0,0

(4) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] # 1 18.203 MM 0.4314 896.16675 34.62307 22.7724 2 21.358 BB 0.4290 3039.14722 104.67245 77.2276

Totals: 3935.31396 139.29552

Signal 1: VWD1 A, Wavelength=235 nm

Peak # 	RetTime Type [min] 	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	17.883 MM	0.4409	1297.94507	49.06865	29.8083
2	20.946 BB	0.4341	3056.36743	104.14095	70.1917
Tota	ls:		4354.3125	0 153.2096	50

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	96
1 17.843 BB	0.3843	4409.87988	166.69745	85.6408
2 20.980 BB	0.4468	739.39587	24.19450	14.3592
Tatalas		5140 0757	C 100 0010	E
TOTAIS:		5149.2/5/	0 190.0919	20

(1) Racemic trans product catalyzed by FeTMPyP4

Signal 1: VWD1 A, Wavelength=225 nm

Peak	RetTime Typ	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	90
			-		
1	14.888 BB	0.2871	876.25323	46.46601	49.3497
2	16.793 MM	0.3916	899.34650	38.27814	50.6503
Tota	ls:		1775.59973	84.744	15

(2) Racemic trans product catalyzed by FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm

Peak # 	RetTime [min]	e Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.001	MM	0.3079	691.40973	37.42679	51.5734
2	16.959	MM	0.3505	649.22241	30.86921	48.4266
Tota	ls:			1340.63214	68.2960	0

(3) Racemic trans product catalyzed by FeTMPyP2

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
				-		
1	14.676	BB	0.2744	630.75702	34.99970	50.4532
2	16.550	MM	0.3541	619.42499	29.15617	49.5468
Tota	als:			1250.18203	1 64.1558	37

Signal 1: VWD1 A, Wavelength=225 nm

Peak # 	RetTime [min]	e Type	Width [min]	Area [mAU*s] -	Height [mAU]	Area %
1	15.382	FM	0.3560	1303.87903	61.04063	40.9001
2	17.361	MM	0.3939	1884.08057	79.70947	59.0999
Tota	ls:			3187.95959	140.7501	0

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm

Peak #	RetTime Type	Width	Area	Height	Area
#	[IIIII]	[111 11]	[IIIAO ~ S]	[IIIAO]	6
1	15.348 MM	0.3336	1569.93311	78.42530	45.1246
2	17.314 BV	0.3620	1909.17249	79.87239	54.8754
Tota	ls:		3479.10559	158.2976	9

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Signal 1: VWD1 A, Wavelength=225 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.001	MF	0.3198	724.20697	37.74258	51.6815
2	16.959	FM	0.3618	677.08167	31.18903	48.3185

Totals: 1401.28864 68.93161

(1) Racemic trans product catalyzed by FeTMPyP4

Totals: 1740.30072 130.93741

(2) Racemic trans product catalyzed by FeTMPyP3

Totals: 1433.88708 97.82702

(3) Racemic trans product catalyzed by FeTMPyP2

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1			-		
1	8.436 VB	0.1908	777.01953	61.62082	50.6113
2	9.626 VB	0.2093	758.24988	55.37621	49.3887
Tota	ls:		1535.26941	116.9970	3

Signal 1: VWD1 A, Wavelength=225 nm

Peak Ret	Time	Type	Width	Area	Height	Area
# [m:	in]		[min]	[mAU*s]	[mAU]	8
			-			
1 8	.573 1	MF	0.2953	77.96986	4.40032	9.0409
2 9	.813	FM	0.2628	784.43921	49.74258	90.9591
Totals:				862.40907	54.14290	

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
			-		
1	8.638 BB	0.2073	151.08315	11.07085	19.7433
2	9.874 VB	0.2288	614.15540	40.98235	80.2567
Tota	ls:		765.23854	52.05319	

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

(1) Racemic trans product catalyzed by FeTMPyP4

Signal 1: VWD1 A, Wavelength=225 nm

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	26
)					
1	7.072 BB	0.1286	1343.86194	159.94370	49.9669
2	8.139 BB	0.1473	1345.64233	139.78761	50.0331
Tota	ls:		2689.5042	7 299.7313	1

(2) Racemic trans product catalyzed by FeTMPyP3

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	ş
1	7.096 BB	0.1282	812.85834	97.11717	50.0823
2	8.169 VB	0.1485	810.18530	84.33962	49.9177
	-				
Tota	ls:		1623.0436	4 181.456/	9

Signa	1 1: VWD1 A,	Wavelen	gth=225 nm		
Peak #	RetTime Type [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.066 BB	0.1289	145.37338	17.25607	8.1401
2	8.131 BB	0.1478	1640.51172	169.65576	91.8599
Tota	uls:		1785.8851	.0 186.9118	34

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.105 BB	0.1284	262.00031	31.24370	16.1732
2	8.177 BB	0.1497	1357.96790	139.81061	83.8268
Tota	ls:		1619.9682	0 171.0543	31

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

#	[min]		[min]	[mAU*s]	[mAU]	cho
1	7.056	BB	0.1278	1260.31360	151.22862	69.0247
2	8.104	MM	0.1616	565.57422	58.33767	30.9753
Tota	ls:			1825.8878	32 209.5662	29

(1) Racemic trans product catalyzed by FeTMPyP4

Signal 1: VWD1 A, Wavelength=225 nm

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	do
1	10.713 MM	0.2456	1845.59424	125.22459	48.8721
2	12.730 MM	0.4078	1930.78052	78.90295	51.1279
Tota	ls:		3776.3747	6 204.1275	5

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.785 BB	0.2124	2421.90723	172.01741	47.5126
2	12.908 VB	0.3132	2675.48975	126.80769	52.4874
Tota	ls:		5097.3969	7 298.8251	.0

#	[min]		[min]	[mAU*s]	[mAU]	op
1	10.713	MM	0.2330	1747.22778	124.99615	48.2356
2	12.730	MM	0.3989	1875.04919	78.34483	51.7644
Tota	als:			3622.276	98 203.340	97

Peak #	RetTime	Туре	Width	Area	Height	Area %
		-		[mro 5]		。
1	10.556	MM	0.2902	113.22777	6.50344	4.4336
2	12.732	VB	0.3317	2440.62915	109.42220	95.5664
Tota	ls:			2553.8569	2 115.925	64

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.448 MM	0.2120	826.29364	64.94648	18.1963
2	12.554 VV	0.2501	3714.70581	225.94635	81.8037
Tota	ls:		4540.9994	5 290.8928	33

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.403 VB	0.2001	4474.54492	340.25177	65.5142
2	12.460 VV	0.2695	2355.33862	130.09409	34.4858
Tota	ls:		6829,8835	54 470.3458	36

S43

(1) Racemic trans product catalyzed by FeTMPyP4

Signal 1: VWD1 A, Wavelength=235 nm

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.644 BB	0.3210	2358.11255	112.14309	50.0232
2	22.168 BB	0.3979	2355.92896	91.08597	49.9768
Totals:			4714.0415	50 203.2290	06

(2) Racemic trans product catalyzed by FeTMPyP3

Totals:

5038.71753 217.22250

(3) Racemic *trans* product catalyzed by FeTMPyP2

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.341	BB	0.3143	1803.07214	87.62695	50.3330
2	21.594	BB	0.3893	1779.21704	70.45657	49.6670
Tota	ls:			3582.2891	158.0835	1

Signa	I I: VWL)1 A,	wavelen	gth=235 nm		
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.431	BB	0.3212	1203.09607	57.50661	31.7402
2	21.767	BB	0.3899	2587.35376	101.72431	68.2598
Totals:			3790.44983 159.23092			

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=235 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.426	MM	0.3949	1795.60107	75.77421	37.2007
2	21.798	MM	0.4298	3031.19507	117.54772	62.7993
Totals:			4826.79614 193.32193			

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Totals: 3826.53601 171.10024

References

- 1. Y. Li, M. Cheng, J. Hao, C. Wang, G. Jia and C. Li, *Chemical Science*, 2015, 6, 5578-5585.
- M. P. Cheng, J. Y. Hao, Y. H. Li, Y. Cheng, G. Q. Jia, J. Zhou and C. Li, *Biochimie*, 2018, 146, 20-27.
- 3. T. D. J. Stumpf, M. Steinbach, M. Holtke, G. Heuger, F. Grasemann, R. Frohlich, S. Schindler and R. Gottlich, *Eur J Org Chem*, 2018, **2018**, 5538-5547.
- 4. A. Rioz-Martinez, J. Oelerich, N. Segaud and G. Roelfes, *Angewandte Chemie-International Edition*, 2016, **55**, 14136-14140.
- 5. H. B. Mao, A. J. Lin, Y. Shi, Z. J. Mao, X. B. Zhu, W. P. Li, H. W. Hu, Y. X. Cheng and C. J. Zhu, *Angewandte Chemie-International Edition*, 2013, **52**, 6288-6292.
- 6. P. S. Coelho, E. M. Brustad, A. Kannan and F. H. Arnold, *Science*, 2013, **339**, 307-310.
- A. Sarkar, D. Formenti, F. Ferretti, C. Kreyenschulte, S. Bartling, K. Junge, M. Beller and F. Ragaini, *Chemical Science*, 2020, 11, 6217-6221.
- K. E. Hernandez, H. Renata, R. D. Lewis, S. B. J. Kan, C. Zhang, J. Forte, D. Rozzell, J. A. McIntosh and F. H. Arnold, *Acs Catalysis*, 2016, 6, 7810-7813.
- N. Watanabe, H. Matsuda, H. Kuribayashi and S. Hashimoto, *Heterocycles*, 1996, 42, 537-542.
- M. P. Doyle, B. D. Brandes, A. P. Kazala, R. J. Pieters, M. B. Jarstfer, L. M. Watkins and C. T. Eagle, *Tetrahedron Lett*, 1990, **31**, 6613-6616.
- J. A. Ma, L. X. Wang, W. Zhang and Q. L. Zhou, *Tetrahedron-Asymmetr*, 2001, **12**, 2801-2804.