## Supplementary Information

# Electrochemically Driven Stereoselective Approach to *syn*-1,2-Diol Derivatives from Vinylarenes and DMF

Da Sol Chung,<sup>†</sup> Steve H. Park,<sup>†</sup> Sang-gi Lee<sup>\*</sup> and Hyunwoo Kim<sup>\*</sup>

Department of Chemistry and Nano Science, Ewha Womans University, 03760 Seoul, Korea

Email:

sanggi@ewha.ac.kr (Sang-gi Lee)

khw7373@ewha.ac.kr (Hyunwoo Kim)

<sup>†</sup>These authors contributed equally to this work.

#### **Table of Contents**

| Section 1. | General Information                                                  | S2    |
|------------|----------------------------------------------------------------------|-------|
| Section 2. | General Procedures for Electrochemically Driven syn-Dioxygenation of |       |
|            | Olefins                                                              | S3    |
| Section 3. | Quantum Chemical Simulations                                         | . S5  |
| Section 4. | Procedures of Mechanistic Studies                                    | S8    |
| Section 5. | Spectral Data for Products                                           | S13   |
| Section 6. | References                                                           | . S63 |

#### Section 1. General Information

All reactions were performed in oven-dried two-neck glass tubes unless otherwise noted. The tubes were fitted with a rubber septum and a threaded Teflon cap with airtight, electrical feed-throughs. The reactions were conducted under a nitrogen atmosphere. Flash chromatography was performed using silica gel 60 (230-400 mesh) from SiliCycle. Commercial reagents were purchased from Sigma Aldrich, Alfa Aesar, Acros, and TCI and used as received. (8*R*,9*S*,13*S*,14*S*)-13-methyl-3-vinyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-

cyclopenta[a]phenanthren-17-one,<sup>1</sup> ethyl 2-benzamido-3-(4-vinylphenyl)propanoate<sup>2</sup>, Ncinnamyl-4-methylbenzenesulfonamide<sup>3</sup> (starting materials for 16, 17, and 23 respectivly) and 29<sup>4</sup> were synthesized by the previously reported procedures. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra was recorded on 300 MHz or 600 MHz, carbon nuclear magnetic resonance (13C NMR) spectra was recorded on 75 MHz or 100 MHz and fluorine nuclear magnetic resonance (19F NMR) was recorded on 282 MHz. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl<sub>3</sub> =  $\delta$  7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl<sub>3</sub> =  $\delta$  77.0). Data are represented as follows: chemical shift, multiplicity (br. s = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra of the newly synthesized compounds were obtained using a Bruker Alpha FT-IR spectrometer. Cyclic voltammetry data were measured with a Biologics SP-50 potentiostat. High resolution mass spectra was obtained from Korea Basic Science Institute (Daegu) by electron ionization (EI) and fast atom bombardment (FAB) method or from KAIST Research Analysis Center by using electrospray ionization (ESI) method.

Electrolysis experiments were performed using a Biologics SP-50 potentiostat/galvanostat or a DC power supply. Carbon Felt was purchased from Fuel Cell Store. The carbon was cut into 1 x 0.5 x 0.6 cm<sup>3</sup> pieces before use, and was connected to electrical feed-through on the Teflon cap of the electrochemical cell via a piece of graphite (2B pencil lead, 2 mm in diameter). The platinum plate was cut into 1 x 0.5 x 0.02 cm<sup>3</sup> and was connected to electrical feed-through on the Teflon cap of the electrochemical cell via a piece of graphite (2B pencil lead, 2 mm in diameter). Saturated calomel electrode (SCE) reference electrodes were obtained from CH Instruments.

Abbreviations: <sup>*t*</sup>Bu—*tert*-butyl, Me—methyl, Ac—acetyl, Ph—phenyl, Bz—benzoyl, DCM dichloromethane, MeCN—acetonitrile, THF—tetrahydrofuran, Tf—trifluoromethansulfonyl, TFA—Trifluoroacetic acid, TBA—tetrabutylammonium, DMF—*N*,*N*-dimethylformamide.

#### Section 2. General Procedures for Electrochemically Driven syn-Dioxygenation of Olefins



An oven-dried, 10 mL two-neck glass tube was equipped with a magnetic stir bar, a rubber septum, a threaded Teflon cap fitted with electrical feed-throughs, a carbon felt anode (1.0 \*0.5 cm<sup>2</sup>) (connected to the electrical feedthrough via a 9 cm in length, 2 mm in diameter graphite rod), and a platinum plate cathode (0.5 \* 1.0 cm<sup>2</sup>). To this reaction vessel, TBABF4 (131.6 mg, 0.4 mmol) was added. The cell was sealed and flushed with nitrogen gas for 5 minutes, followed by the sequential addition via syringe of olefin substrate (0.2 mmol, 1.0 equiv) in 3 mL of DMF and trifluoroacetic acid (1.0 mmol, 77  $\mu$ L) and water (0.6 mmol, 11  $\mu$ L). A nitrogen-filled balloon was adapted through the septum to sustain a nitrogen atmosphere. Electrolysis was initiated at a constant voltage of 2.5 mA at room temperature (22 °C) for 12 h. The mixture was then diluted with ethyl acetate (60 mL) and then washed with water, brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was subjected to flash column chromatography on silica gel (eluted with hexanes/ethyl acetate) to yield the desired product.



Figure S1. Setup for Electrochemical syn-Dioxygenation of Olefins

#### **Unsuccessful Substrates**

#### **Unactivated Simple Olefins**



decomposed decomposed S.M. recovered 99% Scheme S1. Unsuccessful Substrate Scopes: Unactivated Simple Olefins



**Unsuccessful Vinyl Heteroarene Scopes** 



Scheme S2. Unsuccessful Vinyl Heteroarene Scopes

#### Section 3. Quantum Chemical Simulations

Oxidation potential of **C** (Figure 2)

All DFT calculations were carried out using density functional theory<sup>5</sup> with Gaussian 09 prog ram.<sup>6</sup> Geometry optimizations to the stationary points were performed with B3LYP<sup>7–11</sup> levels of theory and the 6-31G\*\* basis set.<sup>12-14</sup> The electronic energies of optimized sturctures were ree valuated by single point calculations of M06 functionals<sup>15</sup> with 6-311++G\*\* basis set.<sup>16</sup> Thermo dynamic parameters including Gibbs free energies at 298.15 K were obtained by frequency cal culations. Vibrational frequencies were carried out at the same level of theory as the geometry optimizations. Then, solvation correction energies were calculated by using the optimized gas-phase geometries at the same level of theory as the single point calculations. Solvation of DM F ( $\epsilon$  = 37.51) was considered by single point calculation with integral equation formalism PCM model.

We performed quantum chemical simulations to predict electrochemical property of the proposed intermediate **C** (Figure 2). Oxidation potential (*E*) could be estimated from the Gibbs free energy change during the reduction:

$$E(V \text{ vs. SCE}) = -\frac{\Delta G}{nF} - E(\text{SCE})$$

where  $\Delta G$  is the Gibbs free energy difference between cation **C** and dication **D**, where **D** is for med by an electrochemical oxidation of **C**. n is the number of electrons involved (n=1 in this st udy), and F is Faraday constant of 23.06 kcal/mol. The calculated oxidation potential was refer enced to the absolute reduction potential of NHE— 4.43 V.<sup>17,18</sup> For the calculations of oxidation potential, electronic energies were further correcte d by single point calculations of M06-D3 and M06-2X functionals.<sup>19</sup> We chose an oxidation pot ential calculated from M06 functional, because the results from three different functions showe d less than 0.02 V of deviations.

Table S1. Cartesian Coodinates of DFT-optimized Stucture of C



C12NH17O

| С | 2.870356000000  | -0.938036000000 | -1.398648000000 |
|---|-----------------|-----------------|-----------------|
| С | 1.799839000000  | -0.115625000000 | -1.089933000000 |
| С | 1.657646000000  | 0.438056000000  | 0.218521000000  |
| С | 2.651915000000  | 0.106265000000  | 1.188369000000  |
| С | 3.718034000000  | -0.715579000000 | 0.866908000000  |
| С | 3.835820000000  | -1.243149000000 | -0.427268000000 |
| Н | 2.965335000000  | -1.345072000000 | -2.400259000000 |
| Н | 1.067980000000  | 0.109581000000  | -1.859633000000 |
| Н | 2.566222000000  | 0.521035000000  | 2.188666000000  |
| Н | 4.466411000000  | -0.948581000000 | 1.617373000000  |
| Н | 4.674303000000  | -1.884241000000 | -0.678901000000 |
| С | 0.590548000000  | 1.292824000000  | 0.595838000000  |
| Н | 0.560868000000  | 1.640125000000  | 1.626264000000  |
| С | -1.051995000000 | 3.139420000000  | 0.097560000000  |
| Н | -0.285352000000 | 3.912917000000  | -0.008650000000 |
| н | -1 892589000000 | 3 400972000000  | -0 548428000000 |

| Н | -1.386927000000 | 3.130501000000  | 1.138362000000  |
|---|-----------------|-----------------|-----------------|
| 0 | -1.748881000000 | 0.846408000000  | -0.363860000000 |
| С | -1.734873000000 | -0.312577000000 | 0.180090000000  |
| Н | -0.841782000000 | -0.654866000000 | 0.703282000000  |
| Ν | -2.77001000000  | -1.114032000000 | 0.131867000000  |
| С | -4.021812000000 | -0.742930000000 | -0.545179000000 |
| Н | -3.927733000000 | 0.252875000000  | -0.971673000000 |
| Н | -4.228730000000 | -1.468159000000 | -1.336237000000 |
| Н | -4.839124000000 | -0.760867000000 | 0.180323000000  |
| С | -2.726112000000 | -2.439956000000 | 0.763965000000  |
| Н | -1.754848000000 | -2.600709000000 | 1.232777000000  |
| Н | -3.509556000000 | -2.507260000000 | 1.523003000000  |
| Н | -2.893493000000 | -3.209845000000 | 0.006518000000  |
| С | -0.453272000000 | 1.807508000000  | -0.296121000000 |
| Н | -0.176429000000 | 1.781232000000  | -1.349580000000 |

Table S2. Cartesian Coodinates of DFT-optimized Stucture of D



#### C12NH17O

| С | -3.920388000000 | 1.121018000000  | 0.683402000000  |
|---|-----------------|-----------------|-----------------|
| С | -2.579546000000 | 1.011267000000  | 0.409372000000  |
| С | -2.035122000000 | -0.252658000000 | -0.033573000000 |
| С | -2.924767000000 | -1.387292000000 | -0.164452000000 |
| С | -4.266012000000 | -1.257683000000 | 0.116344000000  |
| С | -4.761936000000 | -0.008589000000 | 0.537456000000  |
| Н | -4.341072000000 | 2.063437000000  | 1.016849000000  |
| Н | -1.933070000000 | 1.873954000000  | 0.531324000000  |
| Н | -2.519321000000 | -2.339609000000 | -0.493489000000 |
| Н | -4.937412000000 | -2.103522000000 | 0.016781000000  |
| Н | -5.820597000000 | 0.092270000000  | 0.762292000000  |
| С | -0.708970000000 | -0.442054000000 | -0.351866000000 |
| Н | -0.397316000000 | -1.438313000000 | -0.665188000000 |
| С | 0.397567000000  | 1.308355000000  | -1.757527000000 |
| Н | -0.527179000000 | 1.873385000000  | -1.895558000000 |
| Н | 1.234523000000  | 2.012010000000  | -1.787801000000 |
| Н | 0.502354000000  | 0.595591000000  | -2.578610000000 |
| 0 | 1.628680000000  | -0.175025000000 | -0.234789000000 |
| С | 2.671001000000  | 0.422781000000  | 0.293043000000  |
| Н | 2.565211000000  | 1.427840000000  | 0.699196000000  |
| Ν | 3.824517000000  | -0.159874000000 | 0.355178000000  |
| С | 4.077138000000  | -1.515298000000 | -0.178392000000 |
| Н | 3.178705000000  | -1.911490000000 | -0.644017000000 |
| Н | 4.883697000000  | -1.450652000000 | -0.912217000000 |
| Н | 4.390386000000  | -2.159406000000 | 0.646543000000  |
| С | 4.977772000000  | 0.520986000000  | 0.987903000000  |
| Н | 4.685095000000  | 1.507949000000  | 1.346349000000  |
| Н | 5.327286000000  | -0.087081000000 | 1.824937000000  |
| Н | 5.775328000000  | 0.617881000000  | 0.248290000000  |
| С | 0.378293000000  | 0.586677000000  | -0.400192000000 |
| Н | 0.302137000000  | 1.300010000000  | 0.427278000000  |

### Table S3. Vibrational Frequencies of Optimized Geometries

The vibrational frequencies of optimized geometries are given in below (units: cm-1).

| С                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C<br>16.5092<br>89.4316<br>141.3342<br>231.5333<br>283.3787<br>406.0083<br>459.0018<br>614.7477<br>689.2711<br>835.3893<br>926.1160<br>996.5558<br>1027.7776<br>1101.8325<br>1150.7645<br>1191.2381<br>1263.0436<br>1358.0273<br>1428.1401<br>1469.5943<br>1493.0423<br>1505.5942<br>1536.5815<br>1730.5587<br>3074.7412<br>3146.5509<br>3165.5927<br>3190 5200 | $\begin{array}{c} 29.4367\\ 100.5585\\ 160.5697\\ 253.7423\\ 371.9902\\ 409.6778\\ 482.6692\\ 621.1488\\ 746.0455\\ 837.1480\\ 942.5387\\ 1011.0963\\ 1044.7560\\ 1125.7914\\ 1177.4477\\ 1209.3991\\ 1270.0378\\ 1369.6581\\ 1456.8214\\ 1476.5402\\ 1502.5380\\ 1508.1434\\ 1589.5363\\ 3063.7211\\ 3135.1215\\ 3146.6543\\ 3174.3395\\ 3192\ 4315 \end{array}$ | 51.5236<br>131.5983<br>190.8940<br>265.9705<br>401.0506<br>414.5405<br>534.9034<br>680.7811<br>790.6258<br>875.6887<br>983.5881<br>1022.4235<br>1070.5122<br>1135.5814<br>1179.6152<br>1247.9095<br>1337.8350<br>1378.3943<br>1458.2410<br>1485.1481<br>1503.3739<br>1526.7218<br>3068.2909<br>3145.8162<br>3175.5499<br>32055361 |
| 3206.7727                                                                                                                                                                                                                                                                                                                                                       | 3212.8751                                                                                                                                                                                                                                                                                                                                                         | 3223.0329                                                                                                                                                                                                                                                                                                                         |
| D<br>28.0620<br>79.1857<br>160.5034<br>228.5289<br>316.9544<br>409.4189<br>474.2384                                                                                                                                                                                                                                                                             | 31.6703<br>93.5247<br>166.5480<br>259.0968<br>341.0859<br>431.5030<br>517 3516                                                                                                                                                                                                                                                                                    | 56.3303<br>102.5728<br>180.7970<br>275.9886<br>377.8783<br>433.5552<br>558.6833                                                                                                                                                                                                                                                   |
| 605.1076<br>797.6734<br>839.5481<br>948.7817<br>1000.1036<br>1028.8098<br>1099.6098<br>1153.0059<br>1207.1140                                                                                                                                                                                                                                                   | 636.9188<br>825.6086<br>885.9098<br>984.5515<br>1017.7494<br>1051.8083<br>1117.4051<br>1169.8935<br>1222.2174                                                                                                                                                                                                                                                     | 648.8749<br>827.5683<br>927.4206<br>998.6774<br>1024.2644<br>1055.4946<br>1119.9743<br>1176.2748<br>1244.9268                                                                                                                                                                                                                     |
| 1272.1769<br>1361.6264<br>1428.8875<br>1469.9673<br>1488.7754<br>1500.7443<br>1576.7384<br>1761.3301                                                                                                                                                                                                                                                            | 1297.6814<br>1381.2718<br>1446.8583<br>1475.8629<br>1491.1160<br>1502.5885<br>1602.4902<br>3067.0071                                                                                                                                                                                                                                                              | 1332.9551<br>1420.9901<br>1457.0437<br>1481.2393<br>1495.4720<br>1524.2877<br>1663.8219<br>3078.1595                                                                                                                                                                                                                              |
| 3082.3241<br>3162.2019<br>3177.7064<br>3209.8027<br>3217.7599                                                                                                                                                                                                                                                                                                   | 3084.2074<br>3165.4571<br>3183.4308<br>3212.5289<br>3232.5649                                                                                                                                                                                                                                                                                                     | 3150.9894<br>3167.8684<br>3188.1334<br>3217.5708<br>3235.0889                                                                                                                                                                                                                                                                     |

#### Section 4. Procedures of Mechanistic Studies

- 1. Deuterium Labeling Experiments
- 1.1. Reaction under DMF- $d_7$  as a solvent

An identical procedure was followed as described in **Section 2** with the exception that the reaction was carried out in 3 mL of DMF- $d_7$  as a solvent. When the reaction was finished, the mixture was then diluted with ethyl acetate (60 mL) and then washed with water, brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The <sup>1</sup>H NMR yield and the ratio of proton/deuterium (H/D) of desired product was determined by integration using an internal standard (1,2-dimethoxyethane).



Figure S2. 1H NMR of Deuterium Scrambling Experiment Using DMF-d7

#### 1.2. Reaction under formic acid- $d_2$ as an acid additive

An identical procedure was followed as described in **Section 2** with the exception that the reaction was carried out with 5.0 equiv of formic acid- $d_2$  (1.0 mmol, 38 µL) instead of trifluoroacetic acid. When the reaction was finished, the mixture was then diluted with ethyl acetate (60 mL) and then washed with water, brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The <sup>1</sup>H NMR yield and the ratio of proton/deuterium (H/D) of desired product was determined by integration using an internal standard (1,2-dimethoxyethane).



Figure S3. 1H NMR of Deuterium Scrambling Experiment Using Formic acid-d<sub>2</sub>

#### 2. <sup>18</sup>O-Oxygen labeling experiments

|                           | CF₃COOŀ                                                                                               | <i>Undivided Cell</i><br>I (10 equiv), H <sub>2</sub> <sup>18</sup> O (10 equiv) | $\land$            |                 |
|---------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|-----------------|
| 36                        | <pre>✓ C(+)/Pt(-), U<sub>cell</sub> = 2.5 V<br/>TBABF₄ (0.13 M), DMF (3 mL), N₂<br/>22 °C, 12 h</pre> |                                                                                  | 26 (syn- or anti-) |                 |
| calculated of I           | ESI-MS                                                                                                | m/z [M+Na] <sup>+</sup>                                                          | syn- <b>26</b>     | anti <b>-26</b> |
| unlabeled                 |                                                                                                       | 229.0471                                                                         | 4.0%               | 3.2%            |
| <sup>18</sup> O-labeled   |                                                                                                       | 231.0514                                                                         | 26.7%              | 26.9%           |
| doubly <sup>18</sup> O-la | beled                                                                                                 | 233.0556                                                                         | 69.3%              | 69.9%           |

abundance was calculated by integration of peak area

An identical procedure was followed as described in **Section 2** with the exception that the reaction was carried out with 10.0 equiv of  $H_2^{18}O$  (97 % <sup>18</sup>O-enriched, 2 mmol, 36 µL) instead of water. When the reaction was finished, the mixture was then diluted with ethyl acetate (60 mL) and then washed with water, brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was subjected to flash column chromatography on silica gel (eluted with hexanes/ethyl acetate) to separate each isomer (*syn*-**26** (40%) and *anti*-**26** (9%)). High-resolution mass spectrum (ESI) showed the following isotope pattern:











A solution of the syn- or anti-26 obtained in the <sup>18</sup>O-labeling experiment (5.2 mg, 0.035 mmol, in 1 mL of THF) was stirred with NaOH (5.6 mg, 0.14 mmol, 4.0 equiv.) and H<sub>2</sub>O (2.5 µL, 0.14 mmol, 4.0 equiv.) at room temperature for 6 hours. The resulting mixture was filtered through Na<sub>2</sub>SO<sub>4</sub> and concentrated on a rotary evaporator. The desired product (syn-37 or anti-37) was obtained by column chromatography in quantative yields. High-resolution mass spectrum (ESI) of each isomers of 37 showed the following isotope pattern:







#### 3. Voltammetric studies

General information: Cyclic voltammetry (CV) was conducted in a 10 mL glass vial fitted with a glassy carbon working electrode (3 mm in diameter), SCE reference electrode, and a platinum wire counter electrode. The solution of interest was sparged with nitrogen for 3-5 minutes before data collection.



Figure S8. Cyclic voltammogram of **1**, DMF, TFA and their mixtures in MeCN. Conditions: TBABF<sub>4</sub> (0.10 M), **1** (5 mM), DMF (5 mM), TFA (5 mM). Scan rate: 100 mV/s.

4. Evaluation of Diastereoselectivity by Control Experiments with Different Acids





**1-[4-(tert-Butyl)phenyl]ethane-1,2-diyl diformate (2).** Purified using silica gel chromatography to give 45.0 mg (90% yield) of **2** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (s, 1H), 8.07 (s, 1H), 7.41 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.16 (dd, J = 7.3, 4.9 Hz, 1H), 4.49 – 4.37 (m, 2H), 1.31 (s, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.5, 160.1, 152.3, 132.4, 126.7, 125.9, 72.7, 65.3, 34.8, 31.4; IR (Film): 2959, 2906, 2859, 1722, 1512, 1463, 1365, 1269, 1151, 1111 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>14</sub>H<sub>18</sub>O<sub>4</sub><sup>+</sup>]: 250.1200, found 250.1205.



**1-(***p***-Tolyl)ethane-1,2-diyl diformate (3)**. Purified using silica gel chromatography to give 20.8 mg (50% yield) of **3** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (s, 1H), 8.09 (s, 1H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 6.16 (dd, *J* = 7.6, 4.6 Hz, 1H), 4.63 – 4.32 (m, 2H), 2.38 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.3, 159.9, 139.0, 132.4, 129.5, 126.7, 72.7, 65.1, 21.2. IR (Film): 2952, 2919, 2850, 1721, 1516, 1454, 1377, 1313, 1285, 1153, 1037, cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>11</sub>H<sub>12</sub>O<sub>4</sub><sup>+</sup>]: 208.0736, found 208.0734.



**1-Phenylethane-1,2-diyl diformate (4)**. Purified using silica gel chromatography to give 28.0 mg (72% yield) of **4** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (s, 1H), 8.08 (s, 1H), 7.42 (d, *J* = 3.2 Hz, 5H), 6.19 (t, *J* = 6.5 Hz, 1H), 4.53 – 4.40 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.3, 159.8, 135.3, 129.0, 128.8, 126.7, 72.7, 65.1; IR (Film): 3055, 2984, 2937, 1726, 1606, 1496, 1454, 1374, 1265, 1156, 1027 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>10</sub>H<sub>10</sub>O<sub>4</sub><sup>+</sup>]: 194.0579, found 194.0581.



**4-[1,2-Bis(formyloxy)ethyl]phenyl acetate (5)**. Purified using silica gel chromatography to give 25.2 mg (50% yield) of **5** as a white solid; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 1H), 8.08 (s, 1H), 7.44 (d, *J* = 8.6 Hz, 2H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.20 (t, *J* = 6.0 Hz, 1H), 4.45 (d, *J* = 6.0 Hz, 2H), 2.33 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  169.2, 160.3, 159.7, 151.1, 132.9, 128.0, 122.0, 72.1, 64.9, 21.1; IR (Film): 2925, 2852, 1753, 1719, 1608, 1509, 1428, 1370, 1182, 1157, 1042 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>12</sub>H<sub>12</sub>O<sub>6</sub><sup>+</sup>]: 252.0634, found 252.0634.



**Methyl 4-(1,2-bis(formyloxy)ethyl)benzoate (6)**. Purified using silica gel chromatography to give 24.2 mg (48% yield) of **6** as a white solid; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (s, 1H), 8.14 – 8.01 (m, 3H), 7.50 (d, J = 8.3 Hz, 2H), 6.23 (dd, J = 7.1, 4.5 Hz, 1H), 4.56 – 4.42 (m, 2H), 3.95 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 160.2, 159.6, 140.2, 130.8, 130.1, 126.7, 72.2, 64.8, 52.3; IR (Film): 2953, 2923, 2851, 1718, 1613, 1436, 1280, 1151, 1112, 1019 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>12</sub>H<sub>12</sub>O<sub>6</sub><sup>+</sup>]: 252.0634, found 252.0634.



**1-(4-Fluorophenyl)ethane-1,2-diyl diformate (7)**. Purified using silica gel chromatography to give 31.8 mg (75% yield) of **7** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 1H), 8.08 (s, 1H), 7.41 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.10 (t, *J* = 8.6 Hz, 2H), 6.16 (t, *J* = 6.0 Hz, 1H), 4.65 – 4.32 (m, 2H);  $\delta$  <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  163.0 (d, *J* = 246.8 Hz), 160.3, 159.8, 131.3 (d, *J* = 3.5 Hz), 128.7 (d, *J* = 8.4 Hz), 115.9 (d, *J* = 21.7 Hz), 72.1, 64.9; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -112.14 (dtt, *J* = 10.7, 6.5, 2.6 Hz); IR (Film): 3032, 2923, 2850, 1718, 1495, 1454, 1374, 1333, 1266, 1155, 1026 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>10</sub>H<sub>9</sub>FO<sub>4</sub><sup>+</sup>]: 212.0485, found 212.0487.



**1-(4-Chlorophenyl)ethane-1,2-diyl diformate (8)**. Purified using silica gel chromatography to give 27.4 mg (60% yield) of **8** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (s, 1H), 8.05 (s, 1H), 7.41 – 7.29 (m, 4H), 6.12 (t, *J* = 5.9 Hz, 1H), 4.42 (d, *J* = 6.0 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.2, 159.7, 135.1, 133.9, 129.1, 128.2, 72.0, 64.8; IR (Film): 2922, 2851, 1720, 1600, 1493, 1376, 1345, 1149, 1092, 1014 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>10</sub>H<sub>9</sub>ClO<sub>4</sub><sup>+</sup>]: 228.0189, found 228.0188.

**1-(4-Bromophenyl)ethane-1,2-diyl diformate (9)**. Purified using silica gel chromatography to give 60% yield of **9**. The yield was determined by <sup>1</sup>H NMR using 1,2-dimethoxyethane as an internal standard for this case because of an inseparable impurity; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.15 (s, 1H), 8.07 (s, 1H), 7.55 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.13 (t, J = 5.9 Hz, 1H), 4.52 – 4.29 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 160.2, 159.7, 134.4, 132.0, 128.4, 123.1, 72.0, 64.7; IR (Film): 2924, 2850, 1720, 1593, 1489, 1407, 1376, 1345, 1152, 1073 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>10</sub>H<sub>9</sub>BrO<sub>4</sub><sup>+</sup>]: 271.9684, found 271.9687.



**1-(o-Tolyl)ethane-1,2-diyl diformate (10).** Purified using silica gel chromatography to give 29.1 mg (70% yield) of **10** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (s, 1H), 8.10 (s, 1H), 7.44 – 7.38 (m, 1H), 7.30 – 7.19 (m, 3H), 6.41 (dd, *J* = 7.3, 4.8 Hz, 1H), 4.60 – 4.14 (m, 2H), 2.49 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.4, 159.9, 135.5, 133.7, 130.7, 128.8, 126.4, 126.2, 69.8, 64.5, 19.1; IR (Film): 2923, 2852, 1719, 1491, 1462, 1376, 1358, 1287, 1264, 1148 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>11</sub>H<sub>12</sub>O<sub>4</sub><sup>+</sup>]: 208.0736, found 208.0737.



**1-(Naphthalen-2-yl)ethane-1,2-diyl diformate (11).** Purified using silica gel chromatography to give 31.7 mg (65% yield) of **11** as a white solid; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (s, 1H), 8.08 (s, 1H), 8.00 – 7.73 (m, 4H), 7.61 – 7.39 (m, 3H), 6.34 (dd, *J* = 7.2, 4.8 Hz, 1H), 4.64 – 4.44 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.3, 159.9, 133.4, 133.0, 132.7, 128.8, 128.1, 127.7, 126.7, 126.6, 126.4, 123.9, 72.9, 65.1; IR (Film): 3055, 2927, 2851, 1717, 1495, 1447, 1376, 1286, 1152, 1070 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>14</sub>H<sub>12</sub>O<sub>4</sub><sup>+</sup>]: 244.0736, found 244.0734.



**2-Phenylpropane-1,2-diyl diformate (12)**. Purified using silica gel chromatography to give 27.0 mg (65% yield) of **12** as a white solid; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (s, 2H), 7.54 – 7.33 (m, 5H), 4.70 – 4.26 (m, 2H), 1.99 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.2, 159.5, 139.9, 128.7, 128.3, 125.1, 82.3, 69.0, 22.1; IR (Film): 2979, 2922, 2851, 1717, 1495, 1447, 1376, 1286, 1152, 1070 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M-H<sup>+</sup>, C<sub>11</sub>H<sub>12</sub>O<sub>4</sub><sup>+</sup>]: 207.0652, found 207.0659.



**1-(Dibenzo[b,d]furan-2-yl)ethane-1,2-diyl diformate (13)**. Purified using silica gel chromatography to give 31.2 mg (55% yield) of **13** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.21 (s, 1H), 8.12 (s, 1H), 8.07 – 7.92 (m, 2H), 7.66 – 7.58 (m, 2H), 7.52 (ddd, J = 8.3, 4.4, 2.4 Hz, 2H), 7.40 (td, J = 7.5, 1.1 Hz, 1H), 6.36 (dd, J = 8.1, 4.1 Hz, 1H), 4.68 – 4.45 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 160.3, 159.9, 156.6, 156.3, 130.0, 127.7, 125.8, 124.7, 123.6, 123.0, 120.8, 119.4, 112.1, 111.8, 72.8, 65.2; IR (Film): 2939, 1719, 1603, 1589, 1481, 1450, 1377, 1339, 1322, 1245, 1153 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>16</sub>H<sub>12</sub>O<sub>5</sub><sup>+</sup>]: 284.0685, found 284.0687.



**1-(9-Tosyl-9***H***-carbazol-3-yl)ethane-1,2-diyl diformate (14).** Purified using silica gel chromatography to give 48.1 mg (55% yield) of **14** as a pale yellow oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.33 (dd, J = 8.5, 5.0 Hz, 2H), 8.18 (s, 1H), 8.08 (s, 1H), 7.97 – 7.87 (m, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.59 – 7.47 (m, 2H), 7.38 (td, J = 7.5, 1.0 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 6.31 (dd, J = 7.7, 4.4 Hz, 1H), 4.63 – 4.41 (m, 2H), 2.26 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.4, 159.9, 145.2, 138.7, 138.6, 134.9, 131.1, 129.8, 127.9, 126.7, 126.5, 125.9, 125.7, 124.1, 120.2, 118.6, 115.4, 115.1, 72.7, 65.2, 21.6; IR (Film): 2946, 1724, 1598, 1485, 1446, 1369, 1231, 1172, 1153, 1090 cm<sup>-1</sup>; HRMS (ESI) exact mass calculated for [M+Na<sup>+</sup>, C23H19NNaO6S<sup>+</sup>]: 460.0825, found 460.0855.



**1-[4-(***tert***-butyl)phenyl]ethane-1,2-diyl diacetate (15).** Purified using silica gel chromatography to give 17.2 mg (31% yield) of **15** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.01 (dd, *J* = 7.8, 4.2 Hz, 1H), 4.41 – 4.19 (m, 2H), 2.11 (s, 3H), 2.06 (s, 3H), 1.31 (s, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  170.7, 170.1, 151.6, 133.4, 126.5, 125.5, 73.1, 66.1, 34.6, 31.2, 21.1, 20.8; IR (Film): 2959, 2868, 1741, 1512, 1462, 1435, 1366, 1219, 1107, 1042, 1018 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>16</sub>H<sub>22</sub>O<sub>4</sub><sup>+</sup>]: 278.1518, found 278.1518.



#### 1-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

**cyclopenta[a]phenanthren-3-yl)ethane-1,2-diyl diformate (16).** Isolated as a 1:1 mixture of diastereomers. Purified using silica gel chromatography to give 46.6 mg (63% yield) of **16** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (s, 1H), 8.09 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.14 (s, 1H), 6.13 (dd, *J* = 7.5, 4.7 Hz, 1H), 4.54 – 4.37 (m, 2H), 2.97 – 2.93 (m, 2H), 2.62 – 2.41 (m, 2H), 2.32 (td, *J* = 10.4, 4.0 Hz, 1H), 2.25 – 1.93 (m, 4H), 1.80 – 1.31 (m, 6H), 0.93 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  220.7, 160.4, 159.9, 140.8, 137.1, 132.8, 127.4 (2C), 125.9, 124.1 (2C), 72.6 (2C), 65.1, 50.4, 47.9, 44.3, 37.9, 35.8, 31.5, 29.3 (2C), 26.3, 25.6, 21.5, 13.8; IR (Film): x cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>22</sub>H<sub>26</sub>O<sub>5</sub><sup>+</sup>]: 370.1780, found 370.1780.



**Ethyl 2-benzamido-3-{4-[1,2-bis(formyloxy)ethyl]phenyl}propanoate (17).** Purified using silica gel chromatography to give 53.7 mg (65% yield) of **17** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (s, 1H), 8.04 (s, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.51 (t, *J* = 6.6 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 6.64 (d, *J* = 7.6 Hz, 1H), 6.14 (t, *J* = 6.0 Hz, 1H), 5.12 – 4.99 (m, 1H), 4.41 (d, *J* = 6.0 Hz, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.38 – 3.15 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.4, 166.8, 160.3, 159.8, 137.1, 134.1, 133.8, 131.8, 129.9, 128.6, 127.0, 126.9, 72.4, 65.0, 61.7, 53.4, 37.6, 14.1; IR (Film): 3341, 2979, 2933, 1723, 1646, 1525, 1487, 1446, 1374, 1153 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>22</sub>H<sub>23</sub>NO<sub>7</sub><sup>+</sup>]: 413.1475, found 413.1476.



**1-Phenoxyethane-1,2-diyl diformate (18)**. Purified using silica gel chromatography to give 15.5 mg (37% yield) of **18** as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, *J* = 4.0 Hz, 2H), 7.38 – 7.29 (m, 2H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.01 (d, *J* = 7.6 Hz, 3H), 6.78 (t, *J* = 5.0 Hz, 1H), 4.50 (ddd, *J* = 58.8, 11.5, 5.0 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.0, 159.3, 155.3, 129.8, 123.8, 116.9, 91.4, 62.5; IR (Film): 2920, 2850, 1723, 1495, 1449, 1377, 1151, 1096, 1062, 1030 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>10</sub>H<sub>10</sub>O<sub>5</sub><sup>+</sup>]: 210.0528, found 210.0528.



**1-Phenylpropane-1,2-diyl diformate (19)**. <sup>1</sup>H NMR analysis [integration of formyl resonances at 8.11 (major) and 8.17 (minor) ppm] or the unpurified reaction indicated a 10:1 d.r.; **18** was obtained as a major diastereomer from the reaction using *trans-***34** (*trans-*β-methylstyrene) (Figure 4C) as a starting material. Purified using silica gel chromatography to give 26.6 mg (64% yield) of **18** as a colorless oil. Relative configuration was determined after hydrolysis of **18** using the same method provided in page S10 and compared with the spectral data known in the precedent literature<sup>20</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.11 (s, 1H), 8.06 (s, 1H), 7.42 – 7.33 (m, 5H), 5.88 (d, *J* = 7.5 Hz, 1H), 5.43 (p, *J* = 6.6 Hz, 1H), 1.15 (d, *J* = 6.6 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 160.2, 159.8, 135.8, 129.0, 128.8, 127.4, 76.8, 71.1, 16.6.



**1-Phenylpropane-1,2-diyl diformate (19')**. <sup>1</sup>H NMR analysis [integration of formyl resonances at 8.17 (major) and 8.11 (minor) ppm] or the unpurified reaction indicated a 3:1 d.r.; **18'** was obtained as a major diastereomer from the reaction using *cis*-**34** (*cis*-β-methylstyrene) (Figure 4C) as a starting material. Purified using silica gel chromatography to give 20.4 mg (49% yield) of **18'** as a colorless oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.20 (s, 1H), 8.04 (s, 1H), 7.41 – 7.37 (m, 5H), 6.08 (d, *J* = 5.2 Hz, 1H), 5.54 – 5.28 (m, 1H), 1.27 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 160.3, 159.9, 135.6, 128.8, 128.7, 127.2, 75.8, 71.4, 14.8; Properties for mixture of diastereomers: IR (Film): 2987, 2934, 1718, 1495, 1454, 1381, 1263, 1155, 1079, 1051 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>11</sub>H<sub>12</sub>O<sub>4</sub><sup>+</sup>]: 208.0736, found 208.0736.



**1,2-Diphenylethane-1,2-diyl diformate (20).** Purified using silica gel chromatography to give 9.2 mg (17% yield) of **20** was obtained as a sole diastereomer as a white solid; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (s, 2H), 7.25 – 7.10 (m, 10H), 6.19 (s, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 135.1, 128.8, 128.4, 127.6, 76.6; IR (Film): 3034, 2932, 1720, 1494, 1455, 1329, 1282, 1254, 1145, 1076 cm<sup>-1</sup>; HRMS (ESI) exact mass calculated for [M+Na<sup>+</sup>, C<sub>16</sub>H<sub>14</sub>O<sub>4</sub>Na<sup>+</sup>]: 293.0784, found 293.0785.



**3-Chloro-1-phenylpropane-1,2-diyl diformate (21).** <sup>1</sup>H NMR analysis [integration of formyl resonances at 8.09 (major) and 8.03 (minor) ppm] or the unpurified reaction indicated a 10:1 d.r. Purified using silica gel chromatography to afford the title as a colorless oil (24.2 mg, 50% yield).

Major diastereomer: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (s, 1H), 8.10 (s, 1H), 7.46 – 7.35 (m, 8H), 6.18 (d, *J* = 7.4 Hz, 1H), 5.56 (dt, *J* = 8.3, 4.6 Hz, 1H), 3.64 (dd, *J* = 12.3, 4.0 Hz, 1H), 3.34 (dd, *J* = 12.3, 4.8 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 159.5, 134.8, 129.5, 129.1, 127.4, 73.7, 73.0, 42.3; Properties for mixture of diastereomers: IR (Film): 2925, 2852, 1722, 1587, 1495, 1455, 1432, 1374, 1330, 1143, 1079 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>11</sub>H<sub>11</sub>ClO<sub>4</sub><sup>+</sup>]: 242.0346, found 242.0348.



**2,3-bis(formyloxy)-3-phenylpropyl acetate (22)**. <sup>1</sup>H NMR analysis [integration of benzyl resonances at 6.10 (major) and 5.90 (minor) ppm] or the unpurified reaction indicated a 10:1 d.r. Purified using silica gel chromatography to afford the title as a colorless oil (31.9 mg, 56% yield).

Major diastereomer: <sup>1</sup>H NMR (600 MHz, cdcl<sub>3</sub>)  $\delta$  8.09 (s, 2H), 7.43 – 7.32 (m, 5H), 6.10 (d, J = 7.7 Hz, 1H), 5.65 – 5.53 (m, 1H), 4.27 (dd, J = 12.4, 3.3 Hz, 1H), 3.83 (dd, J = 12.3, 5.6 Hz, 1H), 2.06 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  170.3, 159.8, 159.5, 134.8, 129.4, 129.0, 127.2, 73.4, 71.6, 61.9, 20.6; Properties for mixture of diastereomers: IR (Film): 2926, 2853, 1722, 1666, 1496, 1454, 1370, 1229, 1151, 1047 cm<sup>-1</sup>; HRMS (ESI) exact mass calculated for [M+Na<sup>+</sup>, C<sub>13</sub>H<sub>14</sub>O<sub>6</sub>Na<sup>+</sup>]: 289.0683, found 289.0732.



**2,3-Bis(formyloxy)-3-phenylpropyl benzoate (23).** <sup>1</sup>H NMR analysis [integration of formyl resonances at 8.13 (major) and 8.17 (minor) ppm] or the unpurified reaction indicated a 16:1 d.r. Purified using silica gel chromatography to afford the title as a colorless oil (38.7 mg, 59% yield);

Major diastereomer: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, J = 4.4 Hz, 2H), 8.06 – 7.96 (m, 2H), 7.63 – 7.54 (m, 1H), 7.51 – 7.33 (m, 7H), 6.20 (d, J = 8.0 Hz, 1H), 5.82 – 5.69 (m, 1H), 4.46 (dd, J = 12.3, 3.3 Hz, 1H), 4.12 (dd, J = 12.3, 5.6 Hz, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 159.8, 159.5, 134.8, 133.4, 129.7, 129.4, 129.2, 129.0, 128.5, 127.3, 73.6, 71.7, 62.5; Properties for mixture of diastereomers: IR (Film): 2935, 1720, 1601, 1584, 1494, 1452, 1315, 1217, 1150, 1115, 1071 cm<sup>-1</sup>; HRMS (ESI) exact mass calculated for [M+Na<sup>+</sup>, C<sub>18</sub>H<sub>16</sub>O<sub>6</sub>Na<sup>+</sup>]: 351.0839, found 351.0895.



**3-[(4-Methylphenyl)sulfonamide]-1-phenylpropane-1,2-diyl diformate (24).** <sup>1</sup>H NMR analysis [integration of aromatic resonances at 7.66 (major) and 7.81 (minor) ppm] or the unpurified reaction indicated a 7:1 d.r. Purified using silica gel chromatography to afford the title as a colorless oil (32.4 mg , 43% yield).

Major diastereomer: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (s, 1H), 7.93 (s, 1H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.37 – 7.19 (m, 8H), 6.02 (d, *J* = 6.9 Hz, 1H), 5.36 (q, *J* = 5.8 Hz, 1H), 5.19 (t, *J* = 6.6 Hz, 1H), 3.05 (t, *J* = 5.5 Hz, 2H), 2.42 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  159.8, 159.6, 143.8, 136.3, 134.7, 129.8, 129.2, 128.9, 127.2, 127.1, 73.5, 72.6, 42.7, 21.5; Properties for mixture of diastereomers: IR (Film): 3036, 2928, 1724, 1597, 1494, 1432, 1376, 1330, 1267, 1155, 1093 cm<sup>-1</sup> HRMS (ESI) exact mass calculated for [M+Na<sup>+</sup>, C<sub>18</sub>H<sub>16</sub>O<sub>6</sub>Na<sup>+</sup>]: 400.0825, found 400.0860.



**5-Oxo-10,11-dihydro-5H-dibenzo**[*a,d*][7]annulene-10,11-diyl diformate (25). <sup>1</sup>H NMR analysis [integration of benzyl resonances at 6.57 (major) and 6.47 (minor) ppm] or the unpurified reaction indicated a 8:1 d.r. Purified using silica gel chromatography to afford the title as a white solid (35.5 mg, 60% yield).

Major diastereomer: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (s, 2H), 8.01 (dd, *J* = 8.1, 1.6 Hz, 2H), 7.63 – 7.55 (m, 2H), 7.50 (t, *J* = 6.9 Hz, 4H), 6.57 (s, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 159.8, 137.5, 132.8 (2C), 130.4, 129.3, 128.5, 73.9; Properties for mixture of diastereomers: IR (Film): 2929, 1723, 1655, 1597, 1451, 1344, 1294, 1240, 1143, 1076 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>17</sub>H<sub>12</sub>O<sub>5</sub><sup>+</sup>]: 296.0685, found 296.0683.



**2,3-Dihydro-1***H***-indene-1,2-diyl diformate (26).** <sup>1</sup>H NMR analysis [integration of benzyl resonances at 6.36 (major) and 6.43 (minor) ppm] or the unpurified reaction indicated a 4:1 d.r. Purified using silica gel chromatography to afford the title as a white solid (22.4 mg, 49% yield).

Major diastereomer: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (s, 1H), 8.09 (s, 1H), 7.48 – 7.39 (m, 1H), 7.43 – 7.31 (m, 1H), 7.35 – 7.26 (m, 2H), 6.36 (d, *J* = 5.2 Hz, 1H), 5.66 (q, *J* = 5.5 Hz, 1H), 3.38 – 3.08 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.2 (2C), 130.1, 127.7, 126.0, 125.1, 74.6, 72.8, 35.8; Properties for mixture of diastereomers: IR (Film): 2924, 2850, 1720, 1593, 1489, 1407, 1376, 1345, 1152, 1073 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>11</sub>H<sub>10</sub>O<sub>4</sub><sup>+</sup>]: 206.0579, found 206.0582.



**2,3-Bis(formyloxy)-3-phenylpropyl cinnamate (27).** Purified using silica gel chromatography to afford the title as a white solid (62.3 mg, 88% yield); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, *J* = 4.3 Hz, 2H), 7.72 (d, *J* = 16.0 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.49 – 7.37 (m, 8H), 6.47 (d, *J* = 16.0 Hz, 1H), 6.21 (d, *J* = 7.9 Hz, 1H), 5.77 – 5.65 (m, 1H), 4.39 (dd, *J* = 12.3, 3.3 Hz, 1H), 4.04 (dd, *J* = 12.3, 5.5 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 159.8, 159.5, 146.0, 134.9, 134.0, 130.6, 129.4, 129.0, 128.9, 128.2, 127.3, 116.8, 73.5, 71.8, 62.0; IR (Film): 2942, 1718, 1635, 1578, 1495, 1451, 1310, 1270, 1202, 1148 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>20</sub>H<sub>18</sub>O<sub>6</sub><sup>+</sup>]: 354.1103, found 354.1102.



**2-Methyl-1-phenylpropane-1,2-diyl diformate (28).** Purified using silica gel chromatography to afford the title as a white solid (19.1 mg, 43% yield); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, *J* = 1.0 Hz, 1H), 8.01 (s, 1H), 7.45 – 7.30 (m, 5H), 6.08 (s, 1H), 1.54 (d, *J* = 2.7 Hz, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.07, 159.70, 135.51, 128.68, 128.25, 128.17, 83.34, 78.94, 22.97, 22.09; IR (Film): 2988, 2925, 2853, 1718, 1495, 1454, 1386, 1370, 1285, 1142 cm<sup>-1</sup>; HRMS (ESI) exact mass calculated for [M+Na<sup>+</sup>, C<sub>12</sub>H<sub>14</sub>O<sub>4</sub>Na<sup>+</sup>]: 245.0784, found 245.0824.



**1,2-Diphenylpropane-1,2-diyl diformate (29).** <sup>1</sup>H NMR analysis [integration of formyl resonances at 8.08 (major) and 8.02 (minor) ppm] or the unpurified reaction indicated a 10:1 d.r. Purified using silica gel chromatography to afford the title as a colorless oil (27.8 mg, 49% yield).

Major diastereomer: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (s, 1H), 8.08 (s, 1H), 7.31 – 7.26 (m, 4H), 7.20 – 7.11 (m, 4H), 6.91 (d, *J* = 7.6 Hz, 2H), 6.15 (s, 1H), 1.95 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  159.5 (2C), 139.4, 134.3, 128.5, 128.3 (2C), 128.2, 127.7, 126.2, 85.4, 79.9, 19.0; Properties for mixture of diastereomers: IR (Film): 2929, 2853, 1720, 1606, 1512, 1452, 1422, 1376, 1347, 1153 cm<sup>-1</sup>; HRMS (ESI) exact mass calculated for [M+Na<sup>+</sup>, C<sub>17</sub>H<sub>16</sub>O<sub>4</sub>Na<sup>+</sup>]: 307.0941, found 307.0979.



**2,5-Diphenylpent-2-ene-1,5-diyl diformate (31).** Purified using silica gel chromatography to afford **30** as a mixture of diastereomers (white solid, 30.4 mg, 49% yield).

Major diastereomer: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 1H), 8.02 (s, 1H), 7.45 – 7.36 (m, 4H), 7.40 – 7.29 (m, 6H), 6.04 (t, *J* = 6.7 Hz, 1H), 5.97 (t, *J* = 7.5 Hz, 1H), 5.07 - 4.98 (m, 2H), 3.22 – 2.81 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.8, 160.2, 140.0, 139.0, 137.1, 128.8, 128.7, 128.5 (2C), 127.7, 126.5, 126.3, 75.0, 60.3, 35.6; Properties for mixture of diastereomers: IR (Film): 3032, 2922, 2848, 1718, 1494, 1454, 1374, 1333, 1158, 1026 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [M<sup>+</sup>, C<sub>19</sub>H<sub>18</sub>O<sub>4</sub><sup>+</sup>]: 310.1205, found 310.1207.



(*E*)-1-(Formyloxy)-4-phenylbut-3-en-2-yl 2,2,2-trifluoroacetate (33). Purified using silica gel chromatography to afford **32** as a colorless oil (25.9 mg, 45% yield); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (s, 1H), 7.42 – 7.19 (m, 5H), 6.77 (d, *J* = 15.8 Hz, 1H), 6.07 (dd, *J* = 15.9, 7.9 Hz, 1H), 5.77 (td, *J* = 7.8, 3.5 Hz, 1H), 4.45 (ddd, *J* = 12.2, 3.5, 0.9 Hz, 1H), 4.31 (ddd, *J* = 12.2, 7.7, 0.7 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 156.6 (q, *J* = 32.3 Hz), 137.5, 134.9, 129.1, 128.8, 127.0, 119.6, 114.4 (q, *J* = 285.7 Hz), 76.5, 63.5; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -75.0; IR (Film): 2921, 2851, 1786, 1728, 1494, 1451, 1378, 1222, 1148, 1026 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [C<sub>13</sub>H<sub>11</sub>F<sub>3</sub>O<sub>4</sub>+]: 288.0609, found 288.0609.



(*E*)-4-Phenylbut-3-ene-1,2-diyl diformate (34). Colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta 8.14$  (s, 1H), 8.09 (s, 1H), 7.44 – 7.28 (m, 5H), 6.77 (d, *J* = 16.2 Hz, 1H), 6.14 (dd, *J* = 16.0, 7.3 Hz, 1H), 5.83 (td, *J* = 7.2, 3.7 Hz, 1H), 4.45 (dd, *J* = 11.9, 3.7 Hz, 1H), 4.34 (dd, *J* = 11.9, 7.1 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  160.4, 159.9, 135.5, 135.4, 128.7, 128.6, 126.8, 121.8, 71.6, 64.1; IR (Film): 2924, 2849, 1787, 1721, 1493, 1450, 1376, 1352, 1154, 1029 cm<sup>-1</sup>; HRMS (EI) exact mass calculated for [C<sub>12</sub>H<sub>12</sub>O<sub>4</sub>+]: 220.0736, found 220.0736.



**2,3-Dihydro-1H-indene-1,2-diol** (*syn-***37**). Relative configuration of **36** was determined by comparing with the spectral data known in the precedent literature.<sup>20</sup> White Solid. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 – 7.40 (m, 1H), 7.34 – 7.14 (m, 4H), 4.97 (d, *J* = 4.9 Hz, 1H), 4.46 (q, *J* = 5.5 Hz, 1H), 3.11 (dd, *J* = 16.3, 5.7 Hz, 1H), 2.94 (dd, *J* = 16.2, 3.8 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  141.9, 140.1, 128.8, 127.1, 125.3, 125.0, 75.9, 73.4, 38.5; HRMS (EI) exact mass calculated for [C<sub>9</sub>H<sub>10</sub>O<sub>2</sub><sup>+</sup>]: 150.0681, found 150.0679.



**2,3-Dihydro-1H-indene-1,2-diol** (*anti-***37**). White Solid. <sup>1</sup>H NMR (300 MHz, MeOD)  $\delta$  7.39 – 7.32 (m, 1H), 7.28 – 7.15 (m, 4H), 4.88 (d, *J* = 4.4 Hz, 1H), 4.26 (td, *J* = 6.9, 5.3 Hz, 1H), 3.24 (dd, *J* = 15.7, 7.1 Hz, 1H), 2.74 (dd, *J* = 15.7, 6.7 Hz, 1H); <sup>13</sup>C NMR (75 MHz, MeOD)  $\delta$  142.5, 139.3, 127.9, 126.5, 124.4, 124.0, 81.1, 80.2, 37.6; HRMS (EI) exact mass calculated for [C<sub>9</sub>H<sub>10</sub>O<sub>2</sub>+]: 150.0681, found 150.0680.















































![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_61_Figure_0.jpeg)

#### References

- [1] D. S. Rao, T. R. Reddy, A. Gurawa, M. Kumar and S. Kashyap, Org. Lett., 2019, 21, 9990-9994.
- [2] Y. Arai, R. Tomita, G. Ando, T. Koike and M. Akita, *Chem.–Eur. J.*, 2016, 22, 1262-1265.
- [3] Y. Liang and X. Zhao, ACS Catal., 2019, 9, 6896-6902.
- [4] S. Bazzi, E. Schulz and M. Mellah, Org. Lett., 2019, 21, 10033-10037.
- [5] R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1994.
- [6] Gaussian 09, Revision D01 (Gaussian Inc., Wallingford, CT, 2009).
- [7] J. C. Slater, Quantum Theory of Molecules and Solids, Vol.4: The Self-Consistent Field for Molecules and Solids, McGraw-Hill, 1974.
- [8) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200.
- [9] A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- [10] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- [11] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- [12] R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
- [13] P. C. Hariharan and J. A. Pople, Theor. Chim. Acta., 1973, 28, 213-222.
- [14] W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- [15] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- [16] T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comput. Chem., 1983, 4, 294-301.
- [17] D. G. Truhlar, C. J. Cramer, A. Lewis and J. A. Bumpus, J. Chem. Educ., 2004, 81, 596.
- [18] H. Reiss and A. Heller, J. Phys. Chem., 1985, 89, 4207-4213.
- [19] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- [20] J. C. Griffith, K. M. Jones, S. Picon, M. J. Rawling, B. M. Kariuki, M. Campbell and N. C. O. Tomkinson, J. Am. Chem. Soc. 2010, 132, 14409-14411.