Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

> Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Electronic supporting information

Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic-lipophilic balance

Yang Wang,^{a,d} Qifei Wang,^a Baixian Wang,^a Ye Tian,^c Jiancheng Di, *^a Zuankai Wang,^d Lei Jiang^c and Jihong Yu^{*a,b}
^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
E-mail: jcdi@jlu.edu.cn; jihong@jlu.edu.cn.
^b International Center of Future Science, Jilin University, Changchun 130012, P. R. China.
^c Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
^d Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China.

Table of contents

Fig. S1. Fitted curves of SE for four kinds of representative grafted surfaces by OWRK methodS3
Fig. S2. Relationship between under-liquid wettabilities of solid surfaces with their HLB values in the
hexadecane-water systemS4
Fig. S3. The emulsion separation of CSTPNMS5
Table S1. Surface groups and the corresponding molecular formula S6
Table S2. Components of SEs for various liquids S7
Table S3. Components of SEs of the grafted surfaces, and the corresponding f values S8
Table S4. Wettabilities of surfaces with varied kinds of groups S9
Table S5. Characteristic volumes for atoms V_x (m ³ mol ⁻¹) (× 10 ⁻⁵)S10
Table S6. Calculated group numbers of some lipophilic fragments S11
Table S7. Calculated group numbers of some hydrophilic fragments S12
Table S8. HLB values of surfaces with varied kinds of groups S13
Table S9. The relationship between the reported wettabilities of surfaces with known chemical compositions
and the predicted results based on the HLB values
Table S10. Under-liquid wettabilities of two rough substrates S15
Note S1. The OWRK (Owen, Wendt, Rabel, and Kaelble) methodS16
Note S2. Comparison of the adhesion work (W _a)S17
References

Fig. S1. Fitted curves of SE for four kinds of representative grafted surfaces by OWRK method. a) polydopamine, b) glycidyloxypropyl group, c) methacrylate group, d) phenyl group.

Fig. S2. Relationship between under-liquid wettabilities of solid surfaces with their *f* values in hexadecane-water system. \blacksquare : $\theta_{o/w}$, \blacklozenge : $\theta_{w/o}$, red: under-water oleophilic and under-oil hydrophobic, yellow: under-water oleophobic and under-oil hydrophobic, blue: under-water oleophobic and under-oil hydrophilic. Black shaded regions in the figure are the transition regions.

Fig. S3. The emulsion separation of CSTPNM. a) Oil-in-water emulsion, cyclohexane/water, stabilized by surfactant CTAB. b) Water-in-oil emulsion, water/cyclohexane, stabilized by surfactant SDBS. Scale bar, 100 μ m. The emulsions were prepared by mixing liquids with a volume ratio of 1:100, and then 2 mg/mL of surfactant was added under high stirring. 60 mL emulsion could be separated within 10 minutes.

Surface group	Regent	Structural formula
Polydopamine	Dopamine	HO NH ₂
Cyanopropyl	3-Cyanopropyltriethoxysilane	
Cyanoethyl	2-Cyanoethyltriethoxysilane	
Chloropropyl	(3-Chloropropyl)triethoxysilane	
lodopropyl	(3-Iodopropyl)trimethoxysilane	
Mercaptopropyl	(3-Mercaptopropyl) trimethoxysilane	SH
Aminopropyl	(3-Aminopropyl)triethoxysilane	NH ₂
Diamino	N-(2-Aminoethyl)-3- aminopropyltriethoxysilane	NH2 0 Store NH2
Methacrylate	3-(Trimethoxysilyl)propyl methacrylate	
Isocyanate	3-(Triethoxysilyl)propyl isocyanate	
Glycidyloxypropyl	Triethoxy(3-glycidyloxypropyl) silane	
Phenyl	Triethoxyphenylsilane	
Hexadecyl	Hexadecyltrimethoxysilane	

Table S1. Surface groups and the corresponding molecular formula.

-	-		
Liquid	SE (γ)	DSE (γ^{d})	PSE (γ ^ρ)
Liquid	mJ m⁻²	mJ m ⁻²	mJ m ⁻²
water	72.80	21.80	51.00 ¹
diiodomethane	50.80	49.00	1.80 ²
ethylene glycol	48.80	32.80	16.00 ³
N, N'-dimethylformamide	36.50	25.20	11.30 ⁴
hexadecane	27.47	27.47	01
cyclohexane	25.24	25.24	01

Table S2. Components of SEs for various liquids.

	Surface energy (mJ m ⁻²)				
Surface group	DSE	PSE	SE	f	
Silicon hydroxyl	12.18	54.61	66.79	4.484	
Polydopamine	22.10	31.16	53.26	1.410	
Cyanoethyl	22.65	23.48	46.13	1.037	
Isocyanate	21.20	21.06	42.26	0.993	
Mercaptopropyl	25.27	23.32	48.59	0.923	
Cyanopropyl	23.52	20.60	44.11	0.876	
Diamino	26.19	19.08	45.28	0.729	
Methacrylate	25.91	14.38	40.30	0.555	
Aminopropyl	27.62	15.12	42.74	0.547	
Glycidyloxypropyl	26.23	10.23	36.46	0.390	
Chloropropyl	29.34	7.46	36.80	0.254	
Phenyl	31.63	5.52	37.15	0.175	
Iodopropyl	38.47	2.37	40.84	0.062	
Hexadecyl	26.20	0.01	26.21	~0	

Table S3. Components of SEs of the grafted surfaces, and the corresponding *f* values.

	Contact angle (°)					
Surface group	$ heta_{w}$	$ heta_{ m o/w}$	$ heta_{ m w/o}$			
Silicon hydroxyl	<5	164.4 ± 2.9	$\textbf{27.9} \pm \textbf{1.1}$			
Polydopamine	39.1 ± 3.8	166.8 ± 0.4	$\textbf{78.0} \pm \textbf{7.6}$			
Cyanoethyl	51.7 ± 0.8	$\textbf{127.9} \pm \textbf{4.8}$	100.2 ± 3.7			
Isocyanate	56.8 ± 3.7	116.9 ± 5.6	105.8 ± 7.8			
Mercaptopropyl	48.9 ± 2.8	98.4 ± 4.7	122.0 ± 7.4			
Cyanopropyl	56.0 ± 1.3	115.2 ± 1.8	97.4 ± 5.0			
Diamino	56.4 ± 3.2	156.1 ± 3.4	142.3 ± 4.8			
Methacrylate	64.1 ± 0.6	100.6 ± 0.5	116.3 ± 3.1			
Aminopropyl	61.5 ± 2.6	153.9 ± 1.8	120.0 ± 8.5			
Glycidyloxypropyl	70.8 ± 2.4	104.0 ± 2.1	113.2 ± 4.8			
Chloropropyl	75.4 ± 1.5	68.3 ± 3.2	130.9 ± 0.9			
Phenyl	$\textbf{77.9} \pm \textbf{0.7}$	41.5 ± 1.3	135.3 ± 3.2			
Iodopropyl	81.9 ± 2.0	43.5 ± 1.1	135.4 ± 3.8			
Hexadecyl	109.1 ± 2.6	<5	166.5 ± 1.4			

Table S4. Wettabilities of surfaces with varied kinds of groups.

Н	С	Ν	0	F
0.871	1.635	1.439	1.243	1.048
	Si	Р	S	CI
	2.683	2.487	2.291	2.095
	Ge	As	Se	Br
	3.102	2.942	2.781	2.621
	Sn	Sb	Те	I
	3.935	3.774	3.614	3.453

Table S5. Characteristic volumes for atoms V_x (m³ mol⁻¹) (× 10⁻⁵).⁵

Note: For any bond between two atoms, whether it is single, double or triple bond, the V_x should be diminished value of $0.656 \cdot 10^{-5} \text{ m}^3 \text{ mol}^{-1.6}$

Fragmont	V	n	Group
Hagment	v _x		number
>C<	0.323	0	-0.109
-CH<	0.866	0	-0.292
-CH ₂ -	1.409	0	-0.475
-CH ₃	1.952	0	-0.658
=CH-	1.194	0	-0.402
-CCI<	2.09	0	-0.704
-CI<	3.448	0	-1.162
C ₆ H ₅ -	6.621	0	-2.231
=C<	0.651	0	-0.219
=CH ₂	1.737	0	-0.585
-CF ₂ -	1.761	0	-0.593
-CF ₃	2.48	0	-0.836
-C ₆ H ₄ -	6.078	0	-2.048

Table S6. Calculated group numbers of some lipophilic fragments.

Note: For lipophilic fragments, n = 0.

Fragment	V _x	п	Group number
-C≡N	2.09	1	0.796
-N=C=O	2.677	2	2.098
-SH	2.178	1	0.766
-NH ₂	1.541	1	0.981
>NH	0.998	1	1.164
-COOCH ₂ -	3.562	2	1.800
-O- (ether)	0.587	1	1.302
-OH	1.13	1	1.119

Table S7. Calculated group numbers of some hydrophilic fragments.

Surface groupHLBSilicon hydroxyl8.119Polydopamine7.770	
Silicon hydroxyl8.119Polydopamine7.770	
Polydopamine 7.770	_
Mercaptopropyl 7.673	
Glycidyloxypropyl 6.937	
Cyanoethyl 6.846	
Diamino 6.770	
Methacrylate 6.571	
Aminopropyl 6.556	
Cyanopropyl 6.371	
lsocyanate 6.341	
Chloropropyl 5.346	
lodopropyl 4.888	
Phenyl 4.769	
Hexadecyl -0.783	

Table S8. HLB values of surfaces with varied kinds of groups.

Table	S9.	The	relationship	between	the	reported	wettabilities	of	surfaces	with	known
chemi	cal c	ompo	ositions and t	he predict	ed re	esults base	d on the HLB	valı	ues.		

Surface group	HLB	Prediction	Correctness ^a	Ref.
Hydroxyl (plasma)	8.119	Under-water lipophobic/	Y	7
Polydopamine	7.770	Under-oil hydrophilic	Y	7
Cyanopropyl	6.371	Under-liquid dual-lyophobic	Y	7
Perfluorooctyl	2.243		Y	7
Perfluorodecyl	1.055	Under-water lipophilic/	Y	8
Octadecyl	-1.733	Under-oil hydrophobic	Y	7
SU8	-4.881		Y	7

^a Y: yes, the prediction is in accordance with the experimental result. N: no, the prediction is different from the experimental result. All the data are measured on the smooth solid surface.

Surface group	SiN	Ws	STPI	STPNMs		
Surface group	$ heta^*_{o/w}$	${ heta}^*_{w/o}$	$ heta^*_{o/w}$	$ heta^*_{w/o}$	TILD	
Mercaptopropyl	160.5 ± 2.7	166.3 ± 1.6	162.6 ± 2.1	$\textbf{158.9} \pm \textbf{2.7}$	7.673	
Glycidyloxypropyl	162.3 ± 2.0	$\textbf{161.2} \pm \textbf{7.8}$	158.1 ± 2.5	$\textbf{157.3} \pm \textbf{0.7}$	6.937	
Cyanoethyl	$\textbf{161.0} \pm \textbf{1.3}$	$\textbf{129.6} \pm \textbf{5.8}$	$\textbf{159.2} \pm \textbf{1.9}$	$\textbf{151.2} \pm \textbf{1.5}$	6.846	
Diamino	$\textbf{165.2} \pm \textbf{4.1}$	153.5 ± 5	$\textbf{163.3}\pm\textbf{3.6}$	$\textbf{155.7} \pm \textbf{4.2}$	6.770	
Methacrylate	$\textbf{166.4} \pm \textbf{0.4}$	$\textbf{168} \pm \textbf{1.7}$	160.7 ± 2.3	155.2 ± 3.8	6.571	
Aminopropyl	164.7 ± 2.1	163.6 ± 1.4	162.5 ± 3.2	154.2 ± 3.4	6.556	
Cyanopropyl	$\textbf{163.5} \pm \textbf{2.2}$	150.2 ± 3.7	159.4 ± 2.7	157.4 ± 2.6	6.371	
Isocyanate	163.4 ± 1.9	164.7 ± 1	160.7 ± 3.1	162.6 ± 2.4	6.341	

Table S10. Under-liquid wettabilities of two rough substrates.

Note S1. The OWRK (Owen, Wendt, Rabel and Kaelble) method.^{9,10}

For the interface of solid surface and liquid, the work of adhesion can be expressed as follows:

$$W_{\rm a} = \gamma_{\rm S} + \gamma_{\rm L} - \gamma_{\rm SL} \tag{S1}$$

The adhesion can be divided into polar and dispersion parts. As proposed by Fowkes, the polar and dispersive interfacial attractions can be treated independently, and the polar-dispersive interactions can be neglected.

$$W_{\rm a} = W_{\rm a}^{\rm d} + W_{\rm a}^{\rm p} = 2\left(\sqrt{\gamma_{\rm s}^{\rm d}\gamma_{\rm L}^{\rm d}} + \sqrt{\gamma_{\rm s}^{\rm p}\gamma_{\rm L}^{\rm p}}\right)$$
(S2)

where W_a^d and W_a^p are the dispersive and polar component of W_a , and γ_S^d , γ_S^p , γ_L^d , γ_L^p are DSE and PSE of solid and liquid, respectively.

According to Young's equation, when contact angle $\theta > 0$,

$$\gamma_{\rm S} = \gamma_{\rm SL} + \gamma_{\rm L} \cos\theta \tag{S3}$$

Combine these equations,

$$\frac{\gamma_{\rm L} \left(1 + \cos\theta\right)}{2\sqrt{\gamma_{\rm L}^{\rm d}}} = \sqrt{\gamma_{\rm S}^{\rm d}} + \sqrt{\gamma_{\rm S}^{\rm p}} \frac{\sqrt{\gamma_{\rm L}^{\rm p}}}{\sqrt{\gamma_{\rm L}^{\rm d}}}$$
(S4)

The polar and dispersive components of the solvent are known, thus plotting the left side of Equation (S4) against $\sqrt{\gamma_L^p} / \sqrt{\gamma_L^d}$ will theoretically produce a linear line of data points. Then $\sqrt{\gamma_s^d}$ and $\sqrt{\gamma_s^p}$ can be calculated with more than two liquids with given surface tension components (water, ethylene glycol, *N*, *N'*-dimethylformamide, nitromethane, and diiodomethane are used in this work).

Note S2. Comparison of the adhesion work (W_a) .

In the OWRK method, the interaction between liquid and solid surface, called adhesion work (W_a), can be expressed as following equation:^{9,10}

$$W_{a} = W_{a}^{d} + W_{a}^{p} = 2\left(\sqrt{\gamma_{s}^{d}\gamma_{L}^{d}} + \sqrt{\gamma_{s}^{p}\gamma_{L}^{p}}\right)$$
(S5)

where W_a^d and W_a^p are the adhesion work generated by the DSE-DSE and PSE-PSE interfacial attractions, respectively. γ_s^d , γ_s^p , and γ_L^d , γ_L^p represent DSE and PSE of solid surface and the liquid, respectively. By introducing the concept of *f*, the above equation can be evolved into:

$$W_{\rm a} = 2\sqrt{\gamma_{\rm s}^{\rm d}\gamma_{\rm L}^{\rm d}} \left(1 + \sqrt{f_{\rm s}f_{\rm L}}\right) \tag{S6}$$

where $f_{\rm S}$ and $f_{\rm L}$ are the f values of the solid surface and the liquid, respectively. In the cyclohexane–water–solid system, the adhesion work between cyclohexane and solid surface is determined by the DSE-DSE interfacial attraction because of the f value of cyclohexane (denoted as $f_{\rm O}$) is approximately equal to 0 due to the nonpolar property (Supporting Information, Table S2), and $\sqrt{f_{\rm S}f_{\rm L}}$ in Equation (S6) can be neglected.

The ratio of W_a at water–solid interface (W_{aSW}) to that at nonpolar oil–solid interface (W_{aSO}) that can reflect the competitive affinity of solid surface to water and oil is expressed as the following equation:

$$W_{\rm asw} / W_{\rm aso} = \sqrt{\gamma_{\rm w}^{\rm d} \gamma_{\rm o}^{\rm d}} \left(1 + \sqrt{f_{\rm s} f_{\rm w}} \right)$$
(S7)

where the γ_{w}^{d} and γ_{o}^{d} are the DSE of water and oil, respectively. f_{w} is the f value of water, which is a constant value of 2.34 (Supporting Information, Table S2). In the cyclohexane– water–solid system, Equation (S7) can be converted into:

$$W_{aSW} / W_{aSO} = \sqrt{21.80 / 25.24} \left(1 + \sqrt{2.34 f_s} \right) \approx 0.929 \left(1 + \sqrt{2.34 f_s} \right)$$
 (S8)

Therefore, the ratio of W_{aSW} to W_{aSO} is proportional to the square root of f_S value. Specifically, solid surfaces with higher f_S values exhibit stronger interfacial affinity to water; conversely, lower f_S means a stronger interfacial affinity to oil.

On the contrary, the ratio of W_a at water–solid interface (W_{aSW}) to that at polar oil–solid interface (W_{aSO}) is expressed as the following equation:

$$W_{aSW} / W_{aSO} = \sqrt{\gamma_{W}^{d} \gamma_{O}^{d}} \left(1 + \sqrt{f_{S} f_{W}} \right) \left(1 + \sqrt{f_{S} f_{O}} \right)$$
(S9)

Since both the numerator and denominator contain f_s value in this equation, the change of W_{aSW}/W_{aSO} with f_s is complex, not monotonically increasing or decreasing. Therefore, it can be inferred that the effect of f_s on the under-liquid wettability of the solid surface should be different in the polar oil/water/solid and non-polar oil/water/solid systems.

References

- 1. C. J. Van Oss, *Interfacial forces in aqueous media*, CRC Press, Boca Raton, FL, second edn., 2006.
- 2. S. Wu, *Polymer interface and adhesion*, M. Dekker, New York, 1982.
- 3. A. Toussaint, P. Luner and K. Mittal, *Contact angle, wettability and adhesion*, VSP Press, Utrecht, The Netherlands, 1993.
- 4. P.-J. Sell and D. Renzow, *Prog. Org. Coat.*, 1975, **3**, 323-348.
- 5. J. C. McGowan and R. Sowada, J. Chem. Technol. Biotechnol., 1993, 58, 357-361.
- 6. J. C. McGowan, *Tenside, Surfactants, Deterg.*, 1990, **27**, 229-230.
- 7. X. Tian, V. Jokinen, J. Li, J. Sainio and R. H. Ras, *Adv. Mater.*, 2016, **28**, 10652-10658.
- 8. P. Zhang, S. Wang and L. Jiang, *Small*, 2015, **11**, 1939-1946.
- 9. D. H. Kaelble, J. Adhesion, 1970, **2**, 66-81.
- 10. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 1969, 13, 1741-1747.