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Synthesis of cross-linker NHS-cyclooctyne

We first synthesized the biocompatible cross-linker that contains cyclooctyne and
NHS functional groups (Figure S10). Detailed procedures for the synthesis of the NHS-
cyclooctyne cross-linker were described previously by Bernardin et al." Briefly, 8,8-
dibromobicyclo[5.0.1]Joctane was obtained by brominating cycloheptene with bromoform
and was purified by filtration using hexane/EtOAc (95:5, v/v). (yield 80%). Methyl 2-
bromocyclooct-1-en-3-glycolate was generated by adding methyl glycolate to the reaction
product in dry toluene and silver perchlorate. The crude product was purified by silica gel
chromatography (2-15% EtOAc in hexane, v/v). Subsequently, the product was added to
a solution of sodium methanolate, and 2-(cyclooct-2-yne-1-yloxy)acetic acid was yielded
produced as a slightly yellow oil. Purification was performed by silica gel chromatography
(0-8% Methanol in DCM) (yield 60%). The yielded product 2-(cyclooct-2-yne-1-
yloxy)acetic acid was dissolved in dry DCM (0.06 M) and further modified by stepwise
addition of NHS (1.5 eq.) and EDC<HCI (1.5 eq). The solution was stirred overnight at
room temperature under argon atmosphere. The final product was extracted from the
organic layer by washing twice with H,O and brine, and drying over MgSQ,. 2-(Ccyclooct-
2-yne-1-yloxy)acetic acid-NHS-Ester was collected as slightly yellow oil by concentration
under reduced pressure with a 70% yield. H-NMR (400 MHz; CDCI3): 6 4.56-4.38 (m,
2H), 3.68 (q, J = 13 6.1 Hz, 1H), 2.82 (s, 4H), 2.31-1.45 (m, 14H). The synthesis was
readily scaled to produce larger amounts for our cross-linking studies. NMR was

employed to characterize and confirm the structures (Figure S11).

Monitoring ManNAz incorporation using MS
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The cross-linking reactions between glycans and proteins depended greatly on the
efficiency of the ManNAz incorporation in the cell. To monitor the incorporation we used
liquid chromatography-tandem mass spectrometry (LC-MS/MS) and profiled the resulting
N-glycans using methods described previously.? The N-glycomic profile yielded over 300
sialylated N-glycans in the PNT2 cell line (Figure S12). The SiaNAz-modified glycans
were readily identified based on their corresponding masses. Tandem MS was used to
confirm the incorporation using diagnostic peaks corresponding to the SiaNAz cation (m/z
= 333.10). To obtain maximum incorporation, we further monitored the expression of
SiaNAz-containing N-glycans with regard to treatment time. As shown in Figure S1a and
b, up to 90% of the total sialic acid could be converted to SiaNAz after 72 hours of

ManNAz treatment.
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Validation of cross-linking reaction on cell lines

To determine first the extent of the cross-linking reactions, we employed gel
electrophoresis to analyze the products. The proteins were digested to peptides, and the
molecular weight ranged from 3k Da to 5kDa with the cross-linker while the masses of
around 2k Da were observed without the cross-linker modification (control) (Figure

S13a).

Validation of enrichment method

With methods for analyzing the crosslink products, we optimized enrichment
methods for the resulting GPX pairs. PPX products were commonly fractionated using
strong cation exchange (SCX) or size exclusion chromatography (SEC), while
glycopeptides were usually separated from peptide background using hydrophilic
interaction chromatography (HILIC).3# We tested the enrichment of GPX products using
SCX cartridge and HILIC. As shown in Figure S13b, around 200 GPX pairs were
identified using SCX, while only 30 GPX pairs were identified using the combination of
SCX and HILIC. These results suggested that one-step SCX is sufficient for the

enrichment of GPX products prior to MS analysis.
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Validation of GPX analysis workflow

We further validated the workflow with lectins that are known to bind sialic acid.
With the cross-linker in place, Sambucus nigra agglutinin (SNA) was reacted with the cell
membrane containing SiaNAz (Figure S14a). From the LC-MS/MS data, the resulting
GPX pairs included membrane glycopeptides with an SNA peptide. More than 100 of
GPX products containing SNA peptides were identified, which corresponded to
approximately 50 unique glycoprotein-SNA pairs. We compared the glycoproteins cross-
linked by SNA to those previously identified as potentially SNA-binding proteins using a
proximity approach (Lectin PROXL). In an earlier study, SNA was modified with Fe3*
probe to oxidize proteins that were in the proximity of SNA.5> As shown in Figure S14b, a
large fraction (60%) of SNA-cross-linked glycoproteins was also found by our previously

developed method further validating the results of the cross-linking method.
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1 SiaNAz-containing glycans in PNT2 cells. Different glycans have variable incorporation
2 rate, while over 80% was achieved on average. (¢) Tandem MS of released N-glycans
3 from cell membrane after click addition of a crosslinker. The MS/MS spectra validate the

4 composition and provide structural information regarding the reacted glycan.
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Figure S2 Representative identified tandem mass spectrums of cross-linked GPX pairs

using MeroX software. (a) ALB(K304)-5411-ITAV(N74) (b) ALB(K263)-5421-MPRD(N83)

(c) ALB(K559)-5421-MPRD(N83) (d) ALB(K100)-5431-L1CAM(N361) (e) ALB(K548)-

5511-L1CAM(N733)
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2 Figure S4 Target proteins captured by sialylated proteins were found to overlap with the
3 sialic acid-associated proteins as determined by a previously developed method POSE.
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Figure S6 (a) The biological function of source (left) and target (right) proteins. (b) The

subcellular locations of source (left) and target (right) proteins.
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