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S1. Experimental methods and definitions

The particle size was estimated as a percentage of small particles in the sample being able to sift through 
the sieve of 45 m diameter pores. Chemical analysis of metal oxides content was carried out with ICP-OES 𝜇
Varian, Agilent 730. The mass loss by calcination was estimated in a Heraeus M110 oven. The cation 
interchange capacity (CIC) was measured with NH4 ion selective electrode, Metrohm 867-801 and Thermo 
Scientific Orion 960 titrator. The starting and final moisture (RH %g/g) were evaluated as weight loss at 
145°C in a HG53 Halogen Moisture Analyser. XRD patterns were recorded with a D8-ADVANCE 
diffractometer (Bruker), using Cu Kα radiation. The voltage and current sources were set at 40 kV and 30 
mA, respectively. Diffractograms were recorded at a goniometer speed of 0.5 s per step between 2° and 
70° (2θ). The samples were pre-treated separating the clay fraction (fine size material) by centrifugation 
and used as oriented aggregate mounts for clay-mineral identification and semi-quantification. The pH of a 
10 wt% suspension of raw clay in distilled water was measured with Crison Basic 20 pH-meter, at zero time 
and after 24 hours keeping the dispersion under stirring at 25°C. The free acidity was determined both by 
pH measurement of a filtered solution (by Filterlab 1240 with pore diameters of 14-18 m) of 5 wt% 𝜇
dispersion of raw clay in distilled water after keeping the temperature at 50°C during 5 minutes under 
stirring. 
Physisorption isotherms were measured using Micromeritics Gemini V surface area and pore size analyzer 
under N2 gas flow at 77K. The isotherms were obtained after a 18hrs degassing step at 124°C. N2 was 
selected as a gas probe following IUPAC recommendations.1,2 The desorption curves provide important 
information on the mesoporosity via Barrett-Joyner-Halenda (BJH) method,3–6 however, the low accuracy 
impedes quantitative conclusions.1,7–9 Thus, morphological parameters were calculated in the adsorption 
branch of N2 isotherm.6 Figure S1 shows examples of N2 physisorption isotherms and t-plot of the 5 clay 
categories investigated. The main calculated morphological features are reported in Table S1. The BET 
surface areas of fibrous clays are higher than the laminar shaped minerals, while the natural 
montmorillonites exhibit the lowest surface areas, similarly to the Mg-rich smectite. The micropores are 
attributed to the tunnels in sepiolite and palygorskite and to the interlayer space in smectites. While the 
presence of mesopores and macropores, as revealed by total pore volume and the main pore size, are 
assigned to the arrangement between fibers and plates themselves.10,11 
The surface activity of nanoclays in water was assessed in terms of acid-base character (pH), which is 
indirectly correlated to catalytic power of the active sites as well as to the affinity towards (certain) 
molecules to be adsorbed at the surfaces.12,13
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Fig. S1. Nitrogen adsorption isotherm linear plot and t-plots of natural clay minerals rich in sepiolite, saponite, 
palygorskite, stevensite and montmorillonite.
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Table S1. Properties of high-purity natural nanoclays.

Property Palygorskite Sepiolite Montmorillonite Saponite Stevensite
BET Surface area (m2/g) 149 302 43 131 239

External surface area (m2/g) 115 153 31 96 150
Main pore size (Å) 98 89 121 39 35

Total pore volume (cm3/g) 0.43 0.67 0.14 0.17 0.22
Micropores (%v/v) 6.3 10.1 4.7 19.9 20.9

pH 6.8 7.2 7.2 7.5 7.6

S2. The feature space coverage investigations with principal component analysis

Principal component analysis (PCA) was performed using Sci-kit learn library. The algorithm was applied to 
both datasets discussed in the manuscript. The whole vector space (41 descriptors), shown in Table 1, was 
reduced to 6 principal components (PCs) explaining the 80% and 75% of the total variance in the 
morphological and surface activity datasets, respectively.

We compared the coverage of the material space achieved by our two datasets with respect to 
hypothetical well-designed experiments. The latter consisted of the points sampled using the design of 
experiments (DoE) approach’s latin hypercube sampling with multidimensional uniformity. We reduced the 
whole feature descriptor space to the main six principal components, and we plotted the normalized PC2 vs 
PC1 assessing the data distribution and the feature space coverage (Figure S2). The collected data points 
are quite dispersed within the plot space, and our datasets provide significant overlap with the DoE points 
used as reference. Some small gaps in the point clouds representing out datasets (Fig. S2) can be attributed 
to experimental factors, which prevented practical realization of the corresponding material space region.

 

Figure S2. Graphical visualization of data point distribution into normalized PC1 and PC2 descriptors.

The novel prototype materials, i.e. the ones used to validate the outcomes of our approach (P1 and P2), 
reside in particular regions of the descriptor space, which have enough coverage by data, allowing us to  
trust in the models predictions. Their location within the space represented by 6 principal components is 
highlighted in Fig. S3.
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Figure S3. The plots of five principle components PC2-PC6 with respect to the PC1. The ranges of PCn values 
of prototype P1 is given in green box and P2 in red box.

S3. Hyperparameter optimization

Random Forest and Extremely Randomized Trees (Extra Trees) regressors were tested with a number of different 
combination of n_estimators in [25, 50, 100, 150, 200, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000], 
min_samples_split in [1, 2, 3, 4, 10], min_samples_leaf in [1, 2, 3, 4], max_features in [0 to 41] and max_depth in 
[50, 100, 300, 600, 900]. Decision Tree was fitted tuning min_samples_split, min_sample_leaf, max_features and 
maximum depths.  

Table S2. Cross-validation accuracy performed on trainset with K=10.

Assessment pSA pESA pVol pMicro pMS ppH
R2 0.83 0.65 0.86 0.59  0.1 0.76

MEA 28 17 0.05 2.7 22 0.6

S4. Dimensionality reduction.

Principal component analysis (PCA) was implemented in Sci-kit learn Python library. The algorithm was 
applied to both datasets. The vector space which identify the properties of raw clay (20 descriptors) was 
reduced to 4 principal components (PC (n)) explaining the 92% and 88% of the total variance in the 
morphological and surface activity datasets, respectively. The individual contributions of the principal 
components to the variance are shown in Figure S4.
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Figure S4. Individual contributions of the principal component in explain the total variance of the employed 
dataset (morphology and pH). The contribution score of 0.05 was chosen as threshold allowing the feature 
reduction to 4 main principal components.

The singular contribution of the pristine descriptors (20 features) in morphological dataset associated to 
the main 4 PC is shown in Figure S5. while the contribution in the surface activity dataset is reported in 
Figure S6. 

Figure S5. Contribution of the pristine features describing the properties of raw clay materials in the 
morphological dataset reduced by PCA. The 4 main PC are shown.
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Figure S6. Contribution of the pristine features describing the properties of raw clay materials in the 
surface activity dataset reduced by PCA. The 4 main PC are shown.

The reduced vector space, together with the group of features of additive and modification process (Table 
1) create a space of 25 descriptors which were implemented assessing the effect of the dimensionality 
reduction on the model predictability. The 6 models predicting pSA, pESA, pMS, pVol, pMicro and ppH were 
optimized selecting the best hyperparameter on the base of k-fold cross-validation (K=3) on the trainset 
(85%) and the assessment on the testset (15%) is summarized in Table S3.

Table S3. Model assessment results for the six ML models using the test set. The reduced vector space of 25 descriptors was used in this analysis.

Assessment pSA pESA pMS pVol pMicro ppH

R2 0.932 0.83 0.87 0.90 0.89 0.92

MAE 14 10.8 3 0.02 1.47 0.45

MSE 332 214 19 0.0008 3.8 0.37

S5. Material preparation and catalytic efficiency test

A new acid nano-catalyzer, referred-to as P1, was prepared using the formulation that maximized the value 
of the design function DF for palygorskite-based materials. Herein, the palygorskite mineral with purity 
grade >70% was modified by sulfuric acid. The latter additive was added while stirring the mixture for 15 
minutes. The modified material was then milled in a Restch ZM200 equipment tuning the speed from 8000 
to 18000 rpm until obtaining the final particle size desired. The H2SO4/clay was fixed at optimal value of 
8%g/g, the acid concentration was 5M, the starting and final RH(%) was fixed to 10 and 16% respectively and 
the size to 75% of particles <45 µm. 
The properties as well as the performance in the catalytic degradation of chlorophyll-a of P1 were 
compared with the ones associated with the raw palygorskite as well as another clay material, sepiolite, 
both raw and modified by the same treatment as P1 (the latter is referred-to as P2). 
Thermal degradation experiments were conducted using a laboratory-scale equipment, reproducing the 
industrial process. For each test, 150 mg of lipid media with the proper amount of chlorophyll-a (ca. 3 ppm) 
was introduced into a glass batch (250 ml) under stirring with controlled pressure and temperature. The 
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nano-catalyzer materials were added with a dosage of 0.4%g/g keeping pressure at 60 mbar and the 
temperature at 100°C. The mixture was stirred for 30 minutes, then the nano-catalyzer was separated by 
filtration over a Buchner funnel with Filterlab 1250 with the pore diameter of 10-13 m and the resulting 𝜇
amount of chlorophyll-a was photometrically measured using a Lovibond Tintometer Color Scale in a 0.25” 
(10 mm) glass cell. 
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Fig S7. Visual assessment of BET surface area prediction models for modified clay. The dataset includes 49 data 
points, which were split 85-15% respectively into the training and test sets. 

Table S4. Characterization of the BET surface area models based on various machine learning algorithms.  

Assessment Decision Tree Regressor Random Forest Regressor Extra Tree Regressor Multilayer Perceptron

R2 0.59 0.64 0.943 0.92
MAE 35 33 11 14.9
MSE 2027 1715 276 393
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Fig S8. Feature importance scores for the Extra Trees Regressor-based models of properties of modified clay-based 
materials.
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Fig S9. The plots of the design function improvements (in %) in the selected ranges of the additive/clay ratio and 
starting moisture content (RH %g/g) for five stevensites with different grade of purity (from 80% to 62% of 
phyllosilicate content).

Table S5.  Properties of P1 and P2 materials as predicted by the Extra Tree models and measured experimentally.

Predicted Experimental
Property

P1 P2 P1 P2

BET Surface area (m2/g) 101 203 106 184

External surface area (m2/g) 65 105 69 81

Main pore size (Å) 151 87 111 85

Total pore volume (cm3/g) 0.38 0.51 0.36 0.49

Micropores (%v/v) 5.2 8.6 4.6 9.4
pH 3.8 6.5 4.2 6.8

Design function 5.0 3.6 5.5 2.9
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Fig S10. Visual assessment of the quality of Extra Tree model predictions for the novel materials synthesized in this 
work (P1 and P2). 
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