Electronic Supplementary Information

Selective Aldehyde Reductions in Neutral Water Catalysed by Encapsulation in a Supramolecular Cage

Avishek Paul,[†] Michael A. Shipman,[†] Dolapo Y. Onabule, Stephen Sproules^{*} and Mark D. Symes^{*}

WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom

⁺*These authors contributed equally to this work*

*Email: mark.symes@glasgow.ac.uk; stephen.sproules@glasgow.ac.uk

Index	Page
General experimental remarks	S3
Figure S1	S4
Details of computational calculations	S 5
Figure S9	S30
Figure S10	S31
Figure S11	S32
Characterisation of isolated products	S33
Figure S23	S45
Figure S24	S46
References	S47

General Experimental Remarks: The Fe^{II}₄L₆ cage was prepared as previously reported by Nitschke and co-workers.^{S1} Iron(II) sulfate heptahydrate (\geq 99%), furfural (99%), benzaldehyde (≥99%), and 5-methylfurfural (99%) were purchased from Sigma-Aldrich. 4,4'diaminobiphenyl-2,2'-disulfonic acid (\geq 70%), tetramethylammonium hydroxide (98%), sodium cyanoborohydride (95%), dimethyl sulfoxide (99.8%), nitrobenzaldehyde (99%), acetaldehyde (95%), anisaldehyde (99%), phenyl acetophenone (99%) and chlorobenzaldehyde (99%) were purchased from Alfa Aesar. Hexane (≥95%), acid-washed sand and sodium bicarbonate (≥99.7%) were purchased from Fischer Scientific. Ethanol (100%), dichloromethane (100%), magnesium sulfate and acetone (≥95%) were purchased from VWR. Hydrochloric acid was purchased from Honeywell. Silica 60 (0.04-0.063 mm) was purchased from Merck. 4-(Diphenylamino)benzaldehyde was purchased from TCI. D_2O (99.9%) and CDCl₃ (99.8%) were purchased from Cambridge Isotope Laboratories. Pyridine-2-carboxaldehyde (99%) was purchased from Acros Organics. All chemical reagents and solvents were used as purchased. All ¹H and ¹³C NMR spectra were recorded on a Bruker AVI 400 instrument or a Bruker AVIII 500 instrument (as indicated in the text), at a constant temperature of 298 K. Chemical shifts are reported in parts per million from low to high field. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, t = triplet, d = doublet, s = singlet, br = broad. LC-MS mass spectra (ESI, positive mode, Bruker micrOTOF-Q machine) were collected by the services facility at the School of Chemistry, University of Glasgow.

Figure S1: NOESY spectrum of the Fe_4L_6 cage in D_2O in the presence of 10 equivalents of furfural after heating to 50 °C for 1 h, showing exchange cross-peaks between peaks assigned to free cage and the new set of cage-like peaks that appears upon addition of furfural. Mixing time = 0.3 s, T = 298 K, 500 MHz.

Details of computational calculations

The program package ORCA was used for all calculations.⁵² The input geometry for all molecules were generated using ArgusLab beginning from crystallographic coordinates.^{S3} Single point calculations on the generated structures were carried out at the BP86 level of theory.⁵⁴ Calculations were performed in the gas phase and in an infinite continuum using the conductor-like screening model (COSMO).^{S5} A segmented all-electron relativistically contracted basis set of triple- ζ quality (def2-TZVP) for C, H and O atoms of furfural substrate.^{S6} The cage atoms were described by a split-valence basis sets with one set of polarization functions (def2-SVP),^{S7} with Grimme's dispersion correction D3.^{S8} A scalar relativistic correction was applied using the zeroth-order regular approximation (ZORA) method^{s9} as implemented by van Wüllen.^{S10} The RI approximation combined with the appropriate Ahlrichs auxiliary basis set was used to speed up the calculations.^{S11} The selfconsistent field calculations were tightly converged (1 × 10⁻⁸ E_h in energy, 1 × 10⁻⁷ E_h in the density charge, and 1×10^{-7} in the maximum element of the DIIS^{S12} error vector). The geometry was converged with the following convergence criteria: change in energy $<10^{-5} E_{h}$, average force $<5 \times 10^{-4} E_h$ Bohr⁻¹, and the maximum force $10^{-4} E_h$ Bohr⁻¹. Canonical orbitals were generated with the program Molekel.^{S13}

Table S1. Optimized Coordinates for Furfural@Fe4

0	26.103496	1.982647	7.970626
С	25.014022	1.982235	8.600488
C	24 569007	0 784956	9 308091
0	25.202104	0.257142	0 270000
Ő	25.303194	-0.337143	9.376099
C	23.3/6906	0.686812	9.985882
С	24.518349	-1.179320	10.125756
С	23.338593	-0.580359	10.490723
Н	24.405118	2.874974	8.619591
н	24 799722	-2 186001	10 398557
и П	22 537962	-1 020300	11 064622
11	22.557902	-1.029399	10.004022
Н	22.61/684	1.454163	10.0966/4
Fe	29.529320	5.145010	7.752050
Fe	16.657645	4.240447	9.061381
Fe	23.269656	-4.943525	2.693838
Fe	24.451656	-3.836448	15.612484
S	24 232595	5 810595	10 777608
c	20.204602	-0.214092	10 707002
3	30.294003	-0.214082	10.707003
S	26.002374	2.680028	3.414229
S	16.803383	-1.159678	6.252870
S	20.141554	3.093404	13.904829
S	25.965752	-6.265770	10.198073
S	22 171554	8 184955	8 283488
c	27 514705	1 318093	14 563280
3	27.514705	1.510095	14.000200
S	28.21/439	-0.503189	2.210/55
S	20.001908	0.181186	2.532813
S	18.979970	-1.650650	14.038904
S	21.618683	-6.402377	8.349955
0	22.953396	6.845756	11.303112
0	30 176617	-1 582523	9 740740
0	22 022107	1 120757	11 /26021
0	23.932187	4.438/5/	11.426931
0	25.460520	6.266572	11.601614
0	25.911116	1.850450	2.113299
0	30.480760	-0.789568	12.211958
0	31.702657	0.371393	10.524639
0	15 317380	-0 728283	6 255951
0	21 272557	2 002042	2 000330
0	24.373337	3.093042	3.000550
0	26.604969	3.995087	2.864616
0	19.147607	4.226441	14.255478
0	16.930907	-2.336938	7.510881
0	26.469710	-7.274728	11.257488
0	20.472340	2.321304	15.414995
0	16 870589	-1 952625	4 925885
0	21 /15050	2 000600	12 555202
0	21.413030	3.090090	13.333302
0	25.530888	-/.224666	9.064470
0	27.387929	-5.473436	9.621107
0	23.468311	8.536355	9.049046
0	27.833216	1.131892	16.251312
0	21.144659	9.562059	8.468714
0	26 368761	2 353611	1/ /78998
0	20.300701	2.333011	14.470990
0	20.021494	U.9894UI	2.224815
0	22.641164	8.248522	6.810975
0	28.722985	2.121195	14.025434
0	29.361037	-1.151100	3.026048
0	21,158998	1,457143	2.397487
0	18 552981	-2 585798	15 427695
0	10.JJZJUI 20.400210	1 020500	10.42/090
0	28.488319	-1.030586	0.58/800
0	19.889273	-0.409438	1.107013
0	18.624425	0.872633	2.668791
0	21.896474	-7.325435	9.783952

0	17.914891	-0.529796	13.980295
0	18.597397	-2.530749	12.825897
0	21.057944	-7.421320	7.329370
0	20.368151	-5.540430	8.642529
Ν	29.488634	7.029006	8.591260
Ν	31,425229	4.769829	8.475933
N	16 297919	6 049937	8 141910
N	1/ 935567	3 378713	8 335786
N	22 831306	-1 234261	16 826444
N	22.031300	5 5077/7	2 0 2 0 0 2 2
IN NT	27.033231	1 502060	0.030933
IN	20.709047	4.000900	9.02000
N	29.712411	3.165/31	7.019546
N	17.663938	3.831666	7.246622
Ν	16.93/642	2.332983	9.908462
Ν	23.123922	-4.440380	14.102410
Ν	18.309224	5.159598	9.925528
Ν	26.115359	-3.626053	14.339770
Ν	23.678765	-2.964689	2.214143
Ν	21.510299	-4.592992	3.789440
Ν	23.887371	-1.811813	15.550660
Ν	24.579839	-4.948674	4.354603
Ν	15.736503	4.854756	10.804316
Ν	25.147263	-5.775316	15.753902
Ν	22.160100	-4.860810	0.954012
Ν	22.775524	-6.912212	3.037995
N	25 609703	-3 190636	17 192157
N	24 993210	-5 419507	1 668370
C	31 585873	5 915831	5 562272
C	29 818011	8 223354	8 003321
C	32 213028	5 593691	0.0000021 0.0000021
C	15 525501	7 002025	9.230737
C	14 000212	2 02020	7 406950
	14.000312	3.939200	10 105000
C	22.739248	-4.078627	18.185630
C	31.896134	6.464469	4.315815
C	29.761435	9.396656	8.759366
C	33.503338	5.182052	9.5834/1
C	15.458210	8.268993	7.857259
С	12.862599	3.212824	7.163086
С	21.568478	-4.468048	18.840774
С	30.866660	6.939932	3.497706
С	29.379615	9.332429	10.104004
С	33.972721	3.942565	9.136556
С	16.158538	8.364846	6.649955
С	12.680267	1.930686	7.694539
С	20.514379	-5.016541	18.101513
С	29.538339	6.867701	3.927204
С	29.058599	8.102398	10.686964
С	33.156665	3.123467	8.350603
C	16.921948	7.286377	6.191751
С	13.639636	1.379321	8.550400
C	20.631709	-5.173424	16,716770
C	29 256981	6 310527	5 178700
C	29.200004	6 911297	9 907117
C	23. 270076	U.J4420/ 3 561761	2.20/14/ 2 010604
C	JI.0/09/0	S.JUL/04 6 110622	6 060060
C	10.300440 11 775160	0.119032 2 120215	0.900008
	14.//JL0U	2.129213	0.009232
C	21.815121	-4.//8666	16.086///
C	∠1.8/9633	6.199720	5.696320
C	28.//64/2	5.608876	10.442530
С	30.933570	2.733557	7.233683
С	17.713307	4.917010	6.513434

С	15.879864	1.587945	9.693856
С	21.993897	-4.851640	14.618109
C	26 357024	5 431761	7 270430
C	20.337024	2 250002	10 070027
C a	20.403079	3.330093	10.0/003/
С	28.795179	2.347665	6.410587
С	18.186150	2.655087	6.778502
С	17.986361	1.857150	10.645377
C	23 328073	-4 457338	12 754810
C	25.520075	5 607600	0 506022
C	23.977314	5.00/022	0.090922
С	29.305209	2.276829	10.068409
С	27.953873	2.817946	5.392214
С	17.441039	1.472023	6.820161
C	18 5/05//	2 610102	11 680000
c	10.010011	2.010102	10.000140
C	24.394392	-5.1/8441	12.208142
С	24.633112	5.632879	9.006036
С	29.013448	1.073236	10.731186
С	27 094275	1 956138	4 688013
C	17 012/20	0 201527	6 250/15
C	17.912439	0.201527	0.200410
С	19.555233	2.090594	12.509108
С	24.578473	-5.272453	10.823638
С	23.626072	5.383198	8.052012
C	27 782945	0 930917	11 /1068/
C	27.702943	0.550547	1 007511
C	27.099439	0.574104	4.98/511
С	19.180385	0.255820	5.627066
С	20.035520	0.782418	12.284945
С	23.665586	-4.642258	9,953494
C	23 986182	5 123624	6 728175
	25.900102	1 000000	11 207170
C	26.86/548	1.989609	11.38/1/9
С	27.916850	0.099743	6.017895
С	19.914976	1.447353	5.549949
С	19.500553	0.035748	11.225736
C	22 56/177	-3 06115/	10 193135
C	22.304177	-3.901134	10.495455
C	25.326/17	5.138219	6.345893
С	27.189120	3.189763	10.762541
С	28.754034	0.967893	6.716085
С	19.421967	2.631327	6.098995
C	18 /7/215	0 552862	10 131105
C	10.4/4213	0.004002	11.077707
C	22.38/191	-3.884008	11.8///2/
С	22.199101	5.361425	8.426758
С	27.443747	-0.270771	12.207882
C	26 261073	-0 396751	4 254807
C	10 770052		5 102722
C	19.770952	-1.001400	5.105725
С	21.020469	0.133768	13.186950
С	23.848695	-4.684598	8.485663
С	21.492517	6.550486	8.696051
C	27 185075	-0 184017	13 594085
C	26 506110	0.010017	2 050200
C	20.590119	-0.043220	2.959290
С	20.243971	-1.125982	3.772578
С	20.678841	-1.012911	13.937082
С	22.985158	-5.425685	7,656800
C	20 198516	6 177057	9 2238/1
0		1 210007	14 000050
C	20./31428	-1.31009/	14.286250
C	25.703622	-1.669111	2.264074
С	20.852355	-2.319797	3.355764
С	21.654130	-1.658541	14.701594
С	23 231918	-5 489241	6 278751
c	10 55000	5.100271	0.200010
	19.002309	5.234883	9.380818
C	26.518109	-2.528712	13.637977
С	24.542943	-2.163300	2.889334
С	20.990191	-3.408612	4.223658
С	22 977532	-1 210742	14 732158
\sim			

С	24.302684	-4.807271	5.689674
С	20.217980	4.071207	8.983646
C	26 883765	-2 634791	12 282229
C	20.000700	1 022040	1 202222
C	24.290000	-1.032049	4.224773
C	20.483788	-3.289/94	5.531246
С	23.293090	-0.018263	14.053774
С	25.166060	-4.078362	6.537537
С	21.540746	4.129481	8.542762
С	27.324282	-1.515030	11.572600
С	25.136985	-0.936702	4.893405
C	19 912165	-2 096938	5 970301
C	22 220204	0 620921	12 201502
C	22.320204	0.039021	13.201393
C	24.942027	-4.021646	7.912940
С	17.953320	5.862964	10.970041
С	26.814872	-4.732026	14.310226
С	23.262992	-2.683921	1.006625
С	20.884710	-5.723020	4.014291
С	24.436034	-1.149780	16.536510
C	25 812861	-5 123133	3 943483
C	16 583817	5 674847	11 502344
C	10.000014	5.0/101/ E 00E041	1 0 0 4 5 9 0
C	26.322634	-5.905941	15.064580
С	22.387750	-3.665110	0.324586
С	21.539186	-6.991326	3.618724
С	25.365152	-1.866184	17.442570
С	26.066878	-5.383917	2.512326
С	16.158401	6.257578	12.698913
С	26.990130	-7.133927	15.053840
С	21.778858	-3.399452	-0,904640
C	20.979035	-8.242394	3.891132
C	26 021855	-1 226355	18 / 97363
C	20.021000	-5 620027	2 015521
C	14 00241	-J.030037	12 150221
C	14.803441	5.996877	13.158231
С	26.445701	-8.209379	15.762580
С	20.947954	-4.369570	-1.474390
С	21.695557	-9.395127	3.552430
С	26.913209	-1.959455	19.287395
С	27.509970	-5.914819	0.655684
С	14.009429	5.164807	12.425442
С	25.248352	-8.053227	16.469364
С	20.736206	-5.588853	-0.820786
C	22 957366	-9 291383	2 955135
C	27 1/1900	-3 31/092	19 020652
C	26 206170	5.514052	0 100722
	20.390179	-5.956194	-0.109/33
Ĉ	14.459362	4.596064	11.231365
C	24.600518	-6.815/39	16.460830
С	21.359708	-5.830134	0.405888
С	23.494198	-8.027793	2.696266
С	26.474172	-3.928792	17.958752
С	25.125870	-5.706175	0.333475
Ν	30.273990	5.842144	5.959132
0	20.661516	0.577918	8.387260
0	23.412719	1.538263	6.081353
0	22.627443	-1.799926	7,345380
ч Н	32 383345	5 564975	6 203900
н	30 12777/	8 265569	6 966202
ц	31 855182	6 560152	9 567017
11	14 004200	0.JUU4JJ 7 01120E	0 E20E00
г1 11	14.9943UU	1.UII393	9.009002
п	14.10493/	4.93512/	10 754051
H	23.563939	-3.66/616	18./54351
Н	32.928629	6.526928	3.987145
Н	30.015768	10.350532	8.308280

H	34.138248	5.821880	10.188254
H	14.860742	9.103141	8.211079
H	12.118335	3.640555	6.498898
H	21.478925	-4.350342	19.916033
H	31.100243	7.369849	2.528753
Н	29.333107	10.240485	10.696755
Н	34.973449	3.615752	9.400426
Н	16.103316	9.276564	6.063525
Н	11.794084	1.359487	7.436694
Н	19.601302	-5.319139	18.604351
Н	28.740509	7.240216	3.291540
Н	28.760711	8.055033	11.730202
Н	33.520456	2.158386	8.010963
Н	17.453500	7.358381	5.247531
Н	13.505289	0.377300	8.946625
Н	19.807991	-5.588265	16.143557
Н	27.070865	6.618954	5.095805
H	28.480401	5.507416	11.488545
H	31.269887	1.758561	6.877226
H	18.180496	4.922866	5.527314
Н	15 796099	0 579307	10 102238
н	21 186405	-5 233914	13 991080
н	26 690397	6 042916	9 300885
н	30 295520	2 413397	9 679804
н	28 042822	3 826782	5 049776
н	16 430596	1 493071	7 163839
н	18 102118	3 550781	11 957468
и П	25 021477	-5 769989	12 8/8208
и П	23.0214/7	1 91650 <i>1</i>	5 983698
11 11	25.222599	1 007161	11 005026
11 11	27 01/206	-0.055260	6 27/101
п u	27.914290	1 457052	5 071002
п u	20.000071	_0 067953	J.071003
п	19.00J194	-0.907033	11.023233
п	21.04/UZI 25.550042	-3.473603	9.030093 E 200700
п	25.559945	4.920007	10 012202
п	20.404200	4.004239	7 512600
п	29.30/49/	0.007270	7.JI2090
H	20.028615	3.528/68	0.021013
H	18.077936	-0.060488	9.629867
H	21.525831	-3.350674	12.26/524
H	19.668662	1.396001	9.457006
H	26.6/0/26	-1.255846	10.355653
H	25.949138	-1.989068	1.255334
H	21.104411	-2.431188	2.31/45/
H	21.338386	-2.438854	15.366485
H	22.668303	-6.188294	5.703523
H	19.743231	3.105093	9.081185
H	26.787205	-3.579648	11.758638
Н	23.428432	-2.225864	4.733588
Н	20.568373	-4.114422	6.231465
H	24.29/032	0.390368	14.102894
Н	26.012613	-3.532307	6.132525
Н	22.057015	3.206963	8.304155
Н	27.535896	-1.612771	10.512069
Н	24.913087	-0.658213	5.916917
Н	19.584661	-2.024179	7.002891
Н	22.611454	1.532352	12.731980
Н	25.629412	-3.457505	8.534890
Н	18.671181	6.476271	11.516748
Н	27.739028	-4.808861	13.734326
Н	23.479482	-1.721820	0.539636

Η	19.920273	-5.752340	4.524404
Н	24.220111	-0.092855	16.703541
Н	26.649912	-5.178272	4.640810
Н	16.821746	6.898144	13.272343
Н	27.916454	-7.258945	14.501032
Н	21.941001	-2.453573	-1.412815
Н	20.007458	-8.324923	4.369087
Н	25.851256	-0.173619	18.702027
Н	28.214956	-5.609666	2.672172
Н	14.519826	6.441044	14.087061
Н	26.953674	-9.168594	15.764298
Н	20.467285	-4.177004	-2.428330
Н	21.273856	-10.373754	3.758866
Н	27.430336	-1.475562	20.109933
Н	28.500347	-6.109314	0.256332
Н	13.002500	4.967482	12.779156
Н	24.827504	-8.886401	17.023195
Н	20.097919	-6.344715	-1.267237
Н	23.513269	-10.185760	2.692323
Н	27.830473	-3.884018	19.636372
Н	26.518203	-6.185048	-1.244076
Н	13.795488	3.968133	10.651430
Н	23.680864	-6.687287	17.017166
Н	21.215754	-6.780112	0.904249
Н	24.465955	-7.937248	2.226121
Н	26.637635	-4.979640	17.755014
Н	24.259974	-5.740478	-0.315771
Н	20.758275	-0.425930	8.608960
Н	21.504512	0.808679	7.839229
Н	23.198517	1.108281	5.166831
Н	22.885211	2.425802	6.083573
Н	22.436457	-1.069344	6.641242
Н	23.612864	-1.644888	7.600931

Table S2. Optimized Coordinates for Furfural+Fe4 cage

С	25.766242	-12.689030	6.584066
С	26.069608	-14.027515	6.606795
С	26.515861	-14.336449	5.335320
0	26.509615	-13.253025	4.504834
C	26.041848	-12,248642	5.302623
C	26 950462	-15 675627	4 913261
н	25 384695	-12 093142	7 410392
и П	25.004000	-1/ 703527	7.410592
11 11	25.070000	_11 22/022	1 060027
п	23.903309	-11.224033	4.900937
0	27.344172	-15.8/1966	3./313/2
Н	26.934364	-16.503999	5.619074
Fе	29.548918	5.153947	7.808217
Fe	16.749220	3.974397	9.156576
Fe	23.330022	-4.847207	2.577506
Fe	24.505599	-3.828559	15.419106
S	24.214256	6.057369	10.573064
S	30.401813	0.145426	11.381948
S	26.712082	2.448930	3.084197
S	17.160005	-1.419089	6.575953
S	20.824572	3.213660	13.218232
S	26.155249	-5.989781	10.019739
S	22.184740	7.767312	7.558209
S	27.163760	1.435565	14.531451
S	28.421040	-1.713444	3.901180
S	19.527113	-0.030542	2.726936
S	19.285184	0.057069	15.320490
ŝ	22 088199	-6 479588	8 341321
0	22.000199	7 255352	10 873171
0	30 519689	-1 302590	10.073171
0	23 770678	1 819/17	11 386211
0	25.770070	6 516401	11 205205
0	25.442020	1 206615	1 006205
0	20.990009	1.300013	1.996205
0	30.418617	-0.30/110	12.861306
0	31./91609	0.815086	11.262069
0	15.651628	-1.150099	6./92653
0	25.050416	2.881322	2.893346
0	27.505480	3.658011	2.533541
0	20.824970	4.582688	12.497094
0	17.585621	-2.581839	7.780568
0	26.795948	-6.800254	11.171600
0	20.465426	3.578197	14.867865
0	17.130861	-2.193561	5.236911
0	22.334057	2.876679	13.187276
0	25.707298	-7.124602	9.068863
0	27.481635	-5.213876	9.230347
0	23.436243	8.338782	8.263911
0	27.241694	1.314982	16.253503
0	21.101382	9.103827	7.398401
0	25.973556	2.381309	14.246070
0	29.284443	-0.450751	3.669758
0	22.708244	7.523420	6.123147
0	28.378463	2.310996	14.141664
0	28.909952	-2.194411	5.287537
0	20.447905	1.402653	2.439718
0	19.120916	-0.161689	17.026572
0	29.031337	-2.878628	2,780602
Õ	19 312913	-0 656882	1 328307
0	18 093921	0 449741	3 057114
0	22 537201	-7 361757	9 757286
\cup	J J / _ U I	1.JUL/J/	2.121200

0	18.634647	1.427432	15.024264
0	18.260958	-0.923364	14.702326
0	21.493521	-7.540483	7.384575
0	20.822340	-5.680210	8.730128
Ν	30.354972	5.738389	6.001044
N	29 487414	7 081322	8 537671
N	31 411683	4 791145	8 617707
N	16 5338/6	5 976159	8 585840
N	1/ 9/950/	3 185972	8 5/63/9
N	22 811071	-1 172226	16 542514
IN NI	22.011071	5 501614	6 706604
IN NT	27.720475	1 707660	0.790094
IN NI	20.700022	4.707000	9.003401
N	29.706402	3.151821	7.230603
IN N	17.000077	2 020021	0 002015
IN N	17.037917	2.029021	9.093013
N	23.166426	-4.120834	13.811/38
N	18.334562	5.010774	9.701069
N	26.227239	-3.618360	14.241084
N	23.655816	-2.803686	2.301419
N	21.6/3861	-4.590956	3.829/86
Ν	24.063279	-1.805763	15.582263
Ν	24.714456	-5.028301	4.137115
Ν	16.026065	4.538232	10.968266
Ν	25.047335	-5.815162	15.375399
Ν	22.106400	-4.603570	0.935599
Ν	22.845896	-6.840921	2.787633
Ν	25.645514	-3.444718	17.096930
Ν	24.985706	-5.258207	1.417807
С	31.680409	5.807652	5.654311
С	29.855272	8.238033	7.900671
С	32.207192	5.656708	9.323204
С	15.357586	6.690842	8.775762
С	14.001864	3.785727	7.759437
С	22.706910	-4.235525	17.908658
С	32.033052	6.270412	4.384291
С	29.772450	9.451859	8.587314
С	33.470745	5.235007	9.744113
С	15.047052	7.783427	7.963576
С	12.828068	3.092377	7.454163
С	21.450814	-4.417374	18.491657
С	31.030265	6.660684	3.490356
С	29.322447	9.465372	9.912699
С	33.905366	3.941594	9.432505
С	15.829276	8.043523	6.843004
С	12.646984	1.794724	7.946294
С	20.321824	-4.532298	17.673371
С	29.685654	6.590019	3.867041
C	28.957833	8.272610	10.545956
C	33.080818	3.077100	8.705214
C	16.826306	7.142468	6.482247
C	13.640568	1.192510	8.725227
C	20.452005	-4.474163	16.282346
C	29.361560	6.125656	5.145080
C	29.049941	7.072267	9.836555
C	31.822779	3.525495	8 293788
Č	17 086520	6 041525	7 308979
č	14 804146	1 911434	9 01389/
C	21 721627	-4 292922	15 725607
C	27 963038	5 992007	5 601230
C	28 6515/8	5 770031	10 4230
C	20.031340	2 651726	10.423414 7 573570
\cup	JU.UUU1/9	2.004/00	1.010010

С	17.719631	4.834585	6.699419
С	15.946581	1.316850	9.736683
С	21.944500	-4.253648	14.265842
C	26 441207	5 289063	7 213521
C	28 360788	3 182888	10 151705
C	20.309700	2 20001	10.131703
C	28.750885	2.386611	6.636498
С	18.183465	2.537664	6.813985
С	18.067037	1.575324	10.668535
С	23.426508	-4.153989	12.468380
С	26.004762	5.744396	8.462085
С	29.362786	2,530108	10.411231
C	28 220543	2 756964	5 396517
C	17 522640	1 200206	6 012205
C	10 700700	1.309000	0.91330J
C ~	18.766702	2.449009	11.010383
C	24.496659	-4.900/98	11.966/31
С	24.674380	5.591754	8.872696
С	29.056533	1.316726	11.039505
С	27.313634	1.932957	4.719728
С	18.109084	0.125832	6.452702
С	19.837185	1,994166	12.299894
C	21 755965	-1 982069	10 59/088
C	22.70000	F 0502000	7 070560
C a	23.729002	5.050556	1.9/9500
C	27.730425	1.05/166	11.440936
С	26.935641	0.699789	5.287653
С	19.388767	0.165626	5.863340
С	20.145726	0.618072	12.324161
С	23.905560	-4.325260	9.686346
С	24.148008	4.599328	6.723311
С	26.736774	2.012359	11.193092
С	27.463597	0.321918	6.529885
C	20 048754	1 394740	5 735415
C	19 //9318	-0 259062	11 486450
C	22 010051	-2 500400	10 160724
	22.010001	-3.399499	10.109724
Ĉ	25.485255	4.720378	6.342402
C	27.059973	3.223102	10.583164
С	28.379198	1.145583	7.187613
С	19.446114	2.570658	6.183842
С	18.434074	0.212393	10.658421
С	22.561607	-3.530293	11.541294
С	22.294183	5.043808	8.311188
С	27.378003	-0.159272	12.196855
С	26.082838	-0.249211	4.546252
C	20 019804	-1 051748	5 316576
C	21 180803	0 062671	13 2150/2
C	21.100000	_1 105720	0 221711
C	24.079704	-4.405750	0.231711
	21.346334	0.235929	8.304308
C	2/.0/4/34	-0.104357	13.5/3812
С	26.640569	-1.358980	3.878096
С	20.135620	-1.252963	3.925879
С	20.933883	-0.157308	14.587321
С	23.327504	-5.437644	7.516523
С	20.237770	6.233048	8.794953
С	26.725417	-1.275077	14.251567
С	25.813250	-2.208007	3.138115
С	20.704193	-2.437149	3.444469
C	21 938692	-0 713161	15 387623
C	22.5505560	_5 600011	£ 1/6500
C	20.002000	-J.000314 5 031340	0.140022
	$\pm 9.0 \pm 4/3$	0.U3134U	9.2U1663
C	20.049290	-2.5018/1	13.586935
C	24.434409	-1.989932	3.061664
С	21.177134	-3.422338	4.317175

С	23.145223	-1.159129	14.820217
С	24 493118	-4 830404	5 464729
C	20 220072	2 022020	0.056111
C	20.520975	5.055020	9.0J0111
C	27.030754	-2.560381	12.232157
С	23.894793	-0.846898	3.677047
С	20.996179	-3.240661	5,699363
C	22 256122	_0 001729	12 //7017
C	23.330122	-0.991728	13.44/21/
C	25.286328	-3.930881	6.201441
С	21.667400	3.841881	8.656677
С	27.367132	-1.396572	11.539225
C	24 707509	0 001052	4 434070
C	24.707303	0.001032	
C	20.452259	-2.054917	6.195064
С	22.399669	-0.350413	12.658863
С	25.065159	-3.743318	7.567649
С	17.485258	6.005821	9.775788
0	26 077410	4 751700	14 101754
C	20.0//410	-4.751782	14.101/54
C	23.023391	-2.360467	1.247851
С	21.101512	-5.736051	4.092914
С	24.489147	-1.327131	16.721734
C	25 896201	-5 351233	3 681466
C	16 604700	5.551255	11 001010
C	16.694/80	5.719902	11.021213
С	26.269490	-5.957062	14.773670
С	22.193922	-3.315755	0.474493
С	21.703176	-6.969072	3.532721
C	25 /01511	-2 167092	17 521702
C	23.401311	-2.10/982	17.331703
С	26.068467	-5.509213	2.218/0/
С	16.585091	6.523136	12.157790
С	26.852357	-7.223430	14.677778
C	21 465625	-2 932423	-0 654859
C	21.175020	0 0 0 0 0 7 0	2 701772
C	21.1/5649	-8.238872	3./81//3
С	26.025664	-1.697230	18.689711
С	27.295025	-5.849205	1.641733
С	15.785078	6.067493	13.219006
C	26 175205	_0 224420	15 212162
C	20.175295	-0.324430	13.213103
C	20.666685	-3.88101/	-1.301952
С	21.824009	-9.359470	3.252464
С	26.889974	-2.546685	19.388221
C	27 389284	-5 937269	0 249010
C	16 117162	4 930000	12 124050
C	15.11/155	4.830986	13.134950
С	24.929491	-8.155972	15.829111
С	20.598605	-5.193374	-0.819876
С	22,985479	-9.206222	2.486671
C	27 120119	-3 8/973/	18 931886
C	27.120115	5.049734	0 551000
C	26.269225	-5.684040	-0.551149
C	15.252573	4.050760	11.980896
С	24.367995	-6.879196	15.908104
С	21.333969	-5.549565	0.313192
C	22,000505	-7 025627	2 255251
C	23.493391	-7.923037	2.233331
С	26.480340	-4.296667	1/.//3241
С	25.055673	-5.343371	0.051275
Н	32.454068	5.515976	6.353011
н	30 212839	8 218717	6 878616
11	21 070E02	0.210/1/	0 640570
п	ST.010323	0.000904	9.5485/9
H	14.696581	6.4/1400	9.608438
Н	14.162151	4.779334	7.361681
Н	23.584065	-4.144798	18.537102
н	33 077290	6 329733	4 094256
11	20 057422	10 277467	
п	30.03/433	10.3//40/	0.09/293
H	34.112017	5.906962	10.305632
Н	14.187388	8.406976	8.188263
Н	12.066235	3.553595	6.833892

H	21.351333	-4.465966	19.571311
H	31.296785	7.019151	2.501151
H	29.254632	10.405444	10.450988
H	34.885184	3.607161	9.758446
Н	15.591314	8.881303	6.195284
Н	11.740617	1.247345	7.707457
Н	19.342215	-4.671636	18.119433
Н	28.908460	6.888424	3.169742
Н	28.603206	8.286510	11.572310
Н	33.415816	2.070524	8.473378
Н	17.309794	7.240011	5.514367
Н	13.513133	0.173829	9.079305
H	19.574886	-4.571667	15.649394
H	27.153414	6.285034	4.933435
H	28.296327	5.716348	11.454189
н	31 130804	1 619602	7 351140
н	18 176102	4 917189	5 711983
н	15 839151	0 316691	10 157004
н	21 098388	-4 421338	13 598193
и П	26 660298	6 316738	9 083323
и П	20.000200	2 769329	10 2208/5
11 11	20.595000	2.709529	1 002060
п u	20.001303	1 201750	4.095000
п u	10.303073	2 101670	11 502177
п	10.475005	5.404070	12 02100
H II	23.033337	-5.532/93	12.621668
H II	23.42948/	4.182133	0.022924
H	25./1239/	1.833720	11.508904
H	27.192005	-0.632223	6.9/3510
H	21.033662	1.442909	5.2/8/8/
H	19.695237	-1.31/48/	11.4/3800
H	22.1313/4	-3.10/154	9.4/89/8
H	25.773108	4.3/3534	5.356001
H	26.284548	3.962195	10.456554
H	28.796689	0.815368	8.133467
Н	19.995898	3.501707	6.084144
H	17.949293	-0.492877	9.990384
H	21.698613	-2.965992	11.878848
H	19.707552	7.175523	8.787709
H	26.598071	-1.234960	15.318769
H	26.268082	-2.985204	2.546613
H	20.679010	-2.627516	2.386477
Н	21.740746	-0.897045	16.439945
Н	23.058018	-6.416494	5.637458
Н	19.865586	2.880500	9.248525
Н	27.016414	-3.501201	11.693266
H	22.840149	-0.617415	3.583724
Н	21.286459	-4.013329	6.398762
Н	24.266617	-1.342252	12.979584
Н	26.068485	-3.360226	5.715538
Н	22.216503	2.905289	8.614228
Н	27.612398	-1.458467	10.482453
Н	24.267056	0.868457	4.918175
Н	20.348427	-1.926054	7.268983
Н	22.591376	-0.216384	11.597645
Н	25.676790	-3.030544	8.114464
Н	17.921034	6.994435	9.897254
Н	27.816849	-4.834682	13.612849
Н	23.094115	-1.316008	0.939209
Н	20.206538	-5.795853	4.714869
Н	24.247159	-0.311096	17.037566
Н	26.744524	-5.499138	4.352000

Η	17.103639	7.474282	12.223366
Н	27.810549	-7.358929	14.185078
Н	21.509176	-1.912499	-1.025035
Н	20.279277	-8.360733	4.382526
Н	25.849359	-0.686238	19.044696
Н	28.167205	-6.038742	2.260315
Н	15.684902	6.672722	14.114220
Н	26.614980	-9.314379	15.145557
Н	20.095648	-3.597754	-2.180478
Н	21.425625	-10.351978	3.437716
Н	27.382095	-2.194727	20.289303
Н	28.335101	-6.202028	-0.213048
Н	14.509094	4.480359	13.962769
Н	24.404903	-9.010526	16.244627
Н	19.981230	-5.929937	-1.324313
Н	23.486606	-10.075810	2.073487
Н	27.784876	-4.511218	19.478395
Н	26.341766	-5.755747	-1.631760
Н	14.769203	3.083895	11.894596
Н	23.407908	-6.737355	16.389568
Н	21.294267	-6.565620	0.686025
Н	24.386719	-7.799336	1.656061
Н	26.638806	-5.310319	17.428005
Н	24.182137	-5.157983	-0.561330

Table S3. Optimized Coordinates for Furfuralium@Fe₄

0	26.018845	1.887731	8.108643
С	24,931166	1,905073	8.743157
C	24 470010	0 704712	0 /31133
C	24.470010	0./04/12	9.431133
0	25.206881	-0.434326	9.509848
С	23.265386	0.599590	10.083540
С	24.412304	-1.262507	10.238473
C	23 222751	-0 670396	10 581396
U U	24 338082	2 811/28	8 785608
	24.550002	2.011420	0.705000
Н	24.69/421	-2.266266	10.51593/
Н	22.415447	-1.123606	11.141624
Н	22.501928	1.364398	10.182938
Н	26 343986	2 716200	7 637683
E o	20.510000	5 156260	7 740710
re	29.557622	5.156566	7.740710
F,6	16.663426	4.249305	9.056319
Fe	23.273327	-4.932412	2.690294
Fe	24.453681	-3.842579	15.610057
S	24.238163	5.814975	10.760896
c	20.250066	-0 220002	10 722022
3	50.259000	-0.230882	10.723023
S	26.011842	2.6/6044	3.40853/
S	16.811730	-1.160297	6.263467
S	20.123821	3.113607	13.917169
S	25 975056	-6 245011	10 197002
c	20.070000	0.162420	0 220262
3	22.104012	0.103430	0.239202
S	27.526562	1.315215	14.563/11
S	28.230247	-0.512362	2.220348
S	19.986889	0.182185	2.529598
S	18 967888	-1 668049	14 055160
c	21 621740	-6 481142	8 326208
2	21.021/40	-0.401142	0.520290
0	22.956653	6.854/98	11.2/1292
0	30.107373	-1.582600	9.657936
0	23.938058	4.450202	11.424988
0	25.463021	6.283047	11.582576
0	25 930889	1 853068	2 102228
0	20.450040	1.000000	2.102220
0	30.459949	-0.828695	12.135848
0	31.670104	0.340658	10.445885
0	15.325365	-0.730394	6.278685
0	24.377396	3.058049	3.810597
0	26 591765	4 005001	2 867959
0	10 124250	4.000001	14 267250
0	19.124259	4.241858	14.20/238
0	16.949875	-2.338869	7.519076
0	26.523854	-7.222299	11.263867
0	20.467915	2.351999	15.429714
0	16.869573	-1.951478	4.935009
0	21 389890	3 925799	13 556677
0	21.309090	5.925799	13.330077
0	25.556/02	-7.232982	9.082316
0	27.363969	-5.416196	9.589984
0	23.496728	8.509362	8.979825
0	27.865316	1.115022	16.246248
0	21 160206	0 547224	0 130000
0	21.109200	9.547524	0.439000
0	26.382319	2.354149	14.501921
0	28.625338	0.982515	2.197250
0	22.626796	8.219840	6.758197
0	28.730167	2.119733	14.017569
\bigcirc	29 371373	-1 121215	3 061333
0	27.J/1J/J 01 107174	1 400040	2 200400
U	$\angle \perp \cdot \perp 3 / \perp / 4$	1.403846	2.390400
0	18.546655	-2.601910	15.446590
0	28.517585	-1.082531	0.614794
0	19.871767	-0.408354	1.103931
0	18 606606	0 866967	2 670832
<u> </u>			2.010002

0	21.903523	-7.392789	9.766821
0	17.897254	-0.552529	13.995847
0	18.588151	-2.552247	12.844219
0	21.102887	-7.517721	7.301310
0	20.344917	-5.651628	8.598139
N	29 493225	7 040617	8 579065
N	31 433025	4 783076	8 469297
N	16 309516	6 058045	8 131607
N	1/ 0388/5	3 301015	8 331/82
IN NI	22 011570	_1 245497	16 027125
IN NI	22.044070	5 507200	6 922056
IN	27.004009	5.59/300	0.022030
N	28.773518	4.594385	9.615452
N	29.128218	3.1/8694	7.005462
N	1/.669/64	3.833060	7.243448
Ν	16.935643	2.343053	9.910021
Ν	23.115336	-4.458678	14.109590
Ν	18.318257	5.163176	9.917498
N	26.109167	-3.622856	14.327868
N	23.679134	-2.950572	2.218751
N	21.510130	-4.588879	3.778790
N	23.880130	-1.818910	15.552376
Ν	24.572850	-4.939258	4.358311
Ν	15.744018	4.872392	10.796505
Ν	25.160685	-5.777583	15.748292
N	22.171504	-4.847048	0.945543
Ν	22.781442	-6.903218	3.025727
N	25.620266	-3.191495	17.181711
N	25 003787	-5 399725	1 673305
C	31 598202	5 928981	5 555391
C	20 823211	8 234930	7 001106
C	22 21 2651	5 607270	0 22/052
C	JZ.ZI00J4	7 104050	9.234932
C	13.330121	7.104059	8.591329
C	14.013/28	3.953/86	7.491099
С	22.760736	-4.081/19	18.195901
C	31.910925	6.475312	4.308614
С	29.766685	9.408359	8.747087
С	33.507941	5.197079	9.582360
С	15.474568	8.278116	7.838532
С	12.866168	3.230192	7.157623
С	21.594334	-4.467671	18.860672
С	30.882727	6.946136	3.486175
С	29.383044	9.344520	10.091236
С	33.980734	3.959020	9.134919
С	16.172851	8.366824	6.629549
С	12.679943	1.949244	7.690559
С	20.536146	-5.021511	18.131400
С	29.553349	6.871713	3.911833
С	29.060646	8.114712	10.673776
C	33.168495	3.140222	8.344830
C	16 932545	7 284388	6 174764
C	13 637306	1 396316	8 547594
C	20 6/5/50	_5 127512	16 7/7106
C	20.043430	6 217010	10.14/120 5 16/25C
C	29.2090U/ 20 125077	0.JI/OIZ 6 056201	J.104330 Q 001105
C	29.1239// 21 000000	0.330321 2 576707	y.0944U3 0 011000
	JI.00200U	3.3/0/0/	0.UII089
C	TP. 383363	0.12112/	6.948390
C	14.//4592	2.14361/	8.866299
С	21.824518	-4./95273	16.107391
С	27.890818	6.204810	5.677588
С	28.779665	5.621372	10.430432
С	30.950027	2.749126	7.220241

С	17.719577	4.915379	6.505848
С	15.875711	1,601243	9.694659
C	21 992839	-4 875471	14 638199
C	21.992099	5 444275	7 251045
C a	20.304309	5.444575	7.251945
C	28.4023/1	3.362233	10.0/1/9/
С	28.815461	2.358118	6.394715
С	18.193617	2.655500	6.780298
С	17.977499	1.866004	10.656293
С	23 306137	-4 489228	12 759267
C	25 08/723	5 689939	8 580/17
0	23.904723	0.070100	10.0400417
C	29.289884	2.278193	10.042249
С	27.980636	2.822760	5.368476
С	17.449153	1.472387	6.825270
С	18.530410	2.621922	11.698631
С	24.386895	-5.186244	12.209736
C	24 641789	5 620296	8 991704
C	29.091/09	1 072702	10 702007
C	20.994470	1.073702	10.702907
C	27.114531	1.958327	4.6/5541
С	17.919480	0.281841	6.255037
С	19.536722	2.101317	12.528569
С	24.563503	-5.287630	10.824717
С	23.635869	5,358987	8.039926
C	27 774401	0 941887	11 403860
C	27.7711605	0.541007	1 000250
C a	27.111025	0.579179	4.909559
C	19.185/19	0.256297	5.628051
С	20.009378	0.788025	12.316670
С	23.626974	-4.691627	9.955552
С	23.995581	5.111061	6.713983
С	26.871811	2.011604	11.400602
C	27 9258/2	0 110667	6 025/12
C	10 001 011	1 447100	0.023412 E EE0001
C a	19.921041	1.44/109	5.550901
C	19.4/5585	0.0386/5	11.2583/4
С	22.507000	-4.043299	10.498135
С	25.334837	5.145909	6.327621
С	27.196949	3.211095	10.775923
С	28.766668	0.982218	6.714828
C	19 429554	2 631046	6 100706
C	10 157026	0 557021	10 457277
C	10.437920	0.337221	10.437377
C	22.339650	-3.956379	11.883528
С	22.208207	5.341119	8.414596
С	27.432637	-0.261554	12.199495
С	26.271578	-0.394004	4.260962
С	19.781872	-1.000500	5.101822
С	20.994691	0.140819	13.220698
C	23 815474	-1 718928	8 / 87/58
C	23.013474	-4.710920	0.407430
C ~	21.502627	0.334289	8.669340
С	27.180996	-0.179244	13.587788
С	26.605346	-0.842568	2.965924
С	20.239230	-1.124393	3.768119
С	20.663492	-1.021437	13.951939
С	22.971066	-5.470792	7.648581
C	20 208956	6 169011	0 1002/8
C	20.200900	_1 205075	11 077070
	20.124019	-1.3039/3	14.2//9/3
C	25./09314	-1.6638/6	2.2/01/8
С	20.847016	-2.317300	3.348317
С	21.645903	-1.674218	14.701696
С	23.224393	-5.517085	6.270959
С	19.561533	5.229857	9.371992
С	26.506688	-2.522608	13 627219
C	24 5/58/2	-2 152619	2 201721
	27.070042	2.102010	2.094/24 1 015772
C	∠∪.990519	-3.405/9/	4.215//6

С	22.965684	-1.216168	14.739492
С	24.285168	-4.810619	5.692332
C	20 225500	1 060336	8 988919
C	20.225500	000550	10.00000
C	20.80/235	-2.625188	12.270095
С	24.302546	-1.821484	4.230219
С	20.490823	-3.288205	5.525787
С	23.270382	-0.009776	14.080436
С	25.131122	-4.073111	6.549864
C	21 5/83/1	1 111/73	8 5/7213
C	21.01001	1 502514	11 50070
C	27.304002	-1.503514	11.560972
С	25.144651	-0.928940	4.899345
С	19.920590	-2.095813	5.967785
С	22.298935	0.654686	13.322469
С	24.896919	-4.027825	7,924220
C	17 964569	5 874216	10 957461
C	17.904303	1 700050	14 200502
C	26.818136	-4.722856	14.300502
С	23.264811	-2.665930	1.011617
С	20.885798	-5.720039	3.999960
С	24.433195	-1.156124	16.535672
С	25.809338	-5.103850	3.954168
C	16 593583	5 69/009	11 /00170
C	10.00000	5.004000	15 05 (217)
C	26.335476	-5.900131	15.056317
С	22.395539	-3.647362	0.322571
С	21.542255	-6.986117	3.600155
С	25.370548	-1.868893	17.435431
С	26.072687	-5.359842	2.523397
C	16 168870	6 285050	12 683001
C	10.100070	7 100071	15 042462
C	27.010947	-/.1230/1	15.043463
С	21.787617	-3.3///65	-0.906328
С	20.983133	-8.238875	3.866533
С	26.029210	-1.227287	18.488007
С	27.360150	-5.597153	2.032713
C	1/ 872680	6 030694	13 1/2878
C	14.072000	0.000000	15.142070
C	26.4/4913	-8.203196	15./52386
С	20.961576	-4.348245	-1.482472
С	21.703784	-9.389340	3.528895
С	26.927884	-1.957091	19.272697
С	27.528879	-5.875879	0.672819
C	14 016798	5 196546	12 414580
C	25 270205	0 055007	16 462175
C	23.270295	-0.000207	10.402175
С	20./53519	-5.5/1643	-0.835420
С	22.968751	-9.281725	2.938924
С	27.161733	-3.310155	19.002949
С	26.420089	-5.922416	-0.179064
C	14 465953	4 619412	11 224268
C	24 622724	_6 021711	16 456560
C	24.022/34	-0.021/11	10.430300
С	21.3/5510	-5.816510	0.391290
С	23.504386	-8.016477	2.685618
С	26.491848	-3.926521	17.943408
С	25.145433	-5.679782	0.337982
N	30 285450	5 854266	5 949196
0	20 622002	0 542001	0 200546
0	20.023003	U.J4Z991 1 FC2041	0.300340
U	∠3.435566	1.563241	6.131056
0	22.638703	-1.788011	7.353724
H	32.394575	5.580270	6.199427
Н	30.133511	8.277183	6.954918
Н	31 857261	6 572819	9 564202
 Ц	15 000,201	7 028760	0 576761
11	14 162200	1.020/09	7 000440
H	14.103388	4.948650	/.089448
H	23.588018	-3.665652	18.756983
Н	32.944401	6.539071	3.983190

H	30.022649	10.361902	8.296170
Н	34.139861	5.836487	10.190546
Н	14.879419	9.115278	8.189303
Н	12.123614	3.659101	6.492307
Н	21.511205	-4.342507	19.935584
Н	31.117799	7.373783	2.516608
н	29 336519	10 252488	10 684169
н	34 980906	3 632888	9 402051
и П	16 118326	9.052000	6 038759
и П	11 702/22	1 380106	0.030735
и П	19 626091	-5 320950	18 6/1531
11	19.020091	-3.320930	2 272267
H	28./30013	7.240118	3.2/230/
H	28./60588	8.06/728	11./16411
H	33.534950	2.1/641/	8.003984
H	17.461645	7.350427	5.228/19
Н	13.499861	0.395206	8.945179
H	19.818472	-5.606357	16.181501
H	27.083561	6.621786	5.073499
Н	28.482877	5.522711	11.476494
Н	31.288169	1.774691	6.863721
Н	18.186282	4.916908	5.519520
Н	15.786521	0.594691	10.106772
Н	21.182670	-5.268693	14.021483
H	26.695646	6.050391	9.283819
Н	30.274967	2.404993	9.638564
Н	28.070239	3.830776	5.021774
Н	16.439631	1.493508	7.171876
Н	18.097458	3.567486	11.957713
Н	25.032887	-5.756816	12.848392
Н	23.232079	4.901623	5.970073
H	25 917324	1 927198	11 912964
H	27 919771	-0 942536	6 293373
н	20 891664	1 457345	5 071691
н	19 834959	-0 967954	11 064692
и П	21 772258	-3 580707	9 8/5093
и П	25 567258	1 910890	5 290268
11 11	26 501205	4.940090	10 0/1657
11 11	20.301303	9.032109	7 515000
п	29.370091	0.577457	7.515909
H	20.036139	3.528517	0.022420
H	18.062637	-0.059254	9.654706
H	21.46/220	-3.442062	12.2/5111
H	19.680472	7.391382	9.422177
H	26.66/980	-1.254409	15.34//18
H	25.954290	-1.984835	1.261636
H	21.094199	-2.428556	2.308655
H	21.336718	-2.467081	15.354061
H	22.675892	-6.221449	5.687362
H	19.749608	3.095795	9.097742
Н	26.767488	-3.568595	11.744535
Н	23.429785	-2.211053	4.738266
H	20.579841	-4.113191	6.225256
Н	24.271963	0.404894	14.132725
Н	25.972265	-3.512292	6.153589
Н	22.062394	3.184950	8.321557
Н	27.506755	-1.598404	10.498465
Н	24.921486	-0.649374	5.922727
Н	19.598246	-2.023339	7.001934
Н	22.576260	1.556477	12.785286
н	25.569291	-3.452273	8.553162
 Н	18.684689	6.488436	11.499989
H	27 742099	-4 793045	13 723521
**		1. / 20040	

Н	23.480562	-1.701657	0.548680
Н	19.920640	-5.751469	4.508481
Н	24.214423	-0.100294	16.706118
Н	26.642228	-5.155204	4.656733
Н	16.833354	6.927488	13.253030
Н	27.936631	-7.242298	14.488199
Н	21.946354	-2.428474	-1.409222
Η	20.009503	-8.324396	4.339770
Н	25.854319	-0.175746	18.695236
Н	28.221214	-5.572046	2.693966
Н	14.529198	6.481832	14.068419
Н	26.988757	-9.159282	15.751757
Н	20.481668	-4.152640	-2.436181
Н	21.282897	-10.369249	3.730709
Н	27.446207	-1.472112	20.093821
Н	28.522581	-6.062894	0.278252
Н	13.008946	5.004351	12.768703
Н	24.864363	-8.891623	17.016393
Н	20.118490	-6.327549	-1.286428
Н	23.527924	-10.174418	2.677349
Н	27.855444	-3.877782	19.615009
Н	26.549427	-6.143711	-1.233749
Н	13.800623	3.990047	10.647389
Н	23.703994	-6.699200	17.015837
Н	21.233485	-6.769148	0.885068
Н	24.478693	-7.922728	2.221350
Н	26.658955	-4.976439	17.738200
Н	24.283349	-5.715163	-0.316340
Н	20.750390	-0.450741	8.639365
Η	21.478598	0.794527	7.868077
Н	23.203199	1.096670	5.239313
Н	22.879554	2.432905	6.121781
Н	22.438237	-1.061277	6.648189
Н	23.613739	-1.602908	7.629386

	Furfural			Furfuralium				
	exoh	edral	endol	nedral	exoh	edral	endok	hedral
	НОМО	LUMO	НОМО	LUMO	НОМО	LUMO	НОМО	LUMO
01	0.002	0.060	0.000	0.062	0.000	0.048	0.002	0.009
C2	0.051	0.024	0.044	0.031	0.297	0.001	0.275	0.141
C3	0.008	0.128	0.005	0.119	0.023	0.171	0.046	0.006
C4	0.002	0.000	0.001	0.000	0.162	0.002	0.097	0.015
C5	0.001	0.158	0.000	0.154	0.288	0.183	0.253	0.014
C6	0.025	0.254	0.016	0.230	0.079	0.382	0.078	0.485
O2	0.700	0.188	0.715	0.196	0.112	0.151	0.099	0.134

Table S4. Composition of the HOMO and LUMO of Furfural and Furfuralium

Figure S2. Isosurface plot of the HOMO (left) and LUMO (right) for furfural

Figure S3. Isosurface plot of the HOMO (left) and LUMO (right) for the furfuralium cation

Figure S4. Isosurface plot of the HOMO of furfural@Fe₄

Figure S5. Isosurface plot of the LUMO of furfural@Fe₄

Figure S6. Isosurface plot of the HOMO of furfuralium@Fe₄

Figure S7. Isosurface plot of the LUMO of furfuralium@Fe₄

Table S5. Geometry Optimized Coordinates for Furfural

С	25.766242003	-12.689030002	6.584066001
С	26.069608003	-14.027515002	6.606795001
С	26.515861003	-14.336449002	5.335320001
0	26.509615003	-13.253025002	4.504834001
С	26.041848003	-12.248642001	5.302623001
С	26.950462003	-15.675627002	4.913261001
0	27.344172003	-15.871966002	3.731572000
Н	25.384695003	-12.093142001	7.410392001
Н	25.976360003	-14.703527002	7.454643001
Н	25.905369003	-11.224833001	4.960937001
Н	26.934364003	-16.503999002	5.619074001

Table S6. Geometry Optimized Coordinates for Furfuralium

$5 \cap 1$
JUT
733
597
753
541
226
388
588
368
326
399

Calculations on *p-tert*-butylbenzaldehyde

Figure S8: Energy-minimized structure for the *p*-tert-butylbenzaldehyde substrate (spacefilled) encapsulated within the Fe₄L₆ cage, orientated with aldehyde functionality enclosed within the cage. This, and similar (partially) encapsulated *p*-tert-butylbenzaldehyde@Fe₄L₆ species are around 21 kcal mol⁻¹ less stable than "free" *p*-tert-butylbenzaldehyde outside the cage. The length of the substrate exceeds the interior dimensions of the cage such that (in this example) the bulky t-butyl functionality protrudes through one of the triangular faces of the cage.

Figure S9: LCMS (negative mode) analysis of the aqueous (cage-containing) phase after reaction shows (in addition to intact cage) a number of minor components with the masses indicated above. The peaks at 432.0, 523.1 and 525.1 corresponding to cage ligands in various states of reduction whilst the peaks at 503.1, 513.0 and 514.1 correspond to the reduced products of scrambling reactions between furfural and the cage ligands. Hence there is a small amount of decomposition of the cage with each addition of hydride and/or aldehyde. These insights not only account for the discrepancy between furfural conversion and yield of furfuryl alcohol, but also suggest why reaction yields decrease in subsequent catalytic cycles.

Figure S10: Stacked ¹H NMR spectra (500 MHz) in D₂O at 298 K showing free furfuryl alcohol (blue spectrum, bottom), free $Fe^{II}_{4}L_6$ cage on its own (red spectrum, second bottom) and then mixtures of cage and furfuryl alcohol (after equilibration at 50 °C for 6 h) in the following ratios (cage : furfuryl alcohol); 1:6 (dark green), 1:13 (purple), 1:25 (yellow), 1:50 (orange) and 1:100 (light green, uppermost spectrum). There are no obvious peak shifts or new peaks for encapsulated furfuryl alcohol, even at 100-fold excess of the guest (light green spectrum at the top). Meanwhile, peaks for free furfuryl alcohol (bottom spectrum) are not obviously shifted by addition of cage. Moreover, the overlap of these peaks with cage peaks makes observing any slight shifts that there may be impossible. All this suggests a very minimal association constant. The poor encapsulation of furfuryl alcohol relative to furan could be as a result of furfuryl alcohol's greater electron-richness (disfavouring association with the anionic cage), and is also probably a function of their relative water solubilities: furfural has a solubility of 83 g/L in water at room temperature, but furfuryl alcohol is fully miscible in water at this temperature.

Figure S11: Yields of furfuryl alcohol vs. time in the presence of 9 mol% cage or in the absence of cage. Yields in the presence of cage (black line and squares for the first addition of furfural and NaCNBH₃, and blue line and triangles for the second addition) are isolated yields. Yields in the absence of cage (red line and circles) were determined by ¹H NMR and are likely to be slight over-estimates of the amount of furfuryl alcohol produced. The blue trace in the figure above shows the effects of adding a further equivalent of both furfural and NaCNBH₃ to an ongoing catalytic reaction at t = 6 h. Typically, conversion of a further 20% of this furfural was then achieved over the following 6 h, corresponding to a further two turnovers of the cage. Alternatively, after a single catalytic run, the Fe_4L_6 cage could be recovered from the aqueous phase (after extraction of the organics) by precipitation with acetone. After centrifugation and recrystallization from water/acetone, the recovered cage could then be re-used in catalytic experiments (albeit delivering conversion rates of only half that of fresh cage). Taken together, these data suggest that the cage can (at least to some extent, and notwithstanding the degradation pathways mentioned above) be recycled and re-used for more than one catalytic reaction, preforming multiple turnovers in each experiment.

Entry 1: 100 mg (0.027 mmol) of [Fe₄L₆] cage, 29 mg (0.3 mmol) of furfural and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Isolated yield: 65% (19 mg, 0.19 mmol). ¹H NMR (500 MHz, CDCl₃) δ =

7.39 (s, J = 1.1 Hz, 1H), 6.34 (d, J = 3.1 Hz, 1H), 6.28 (d, J = 3.2 Hz, 1H), 4.59 (s, 2H), 2.06 (br s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ = 154.15, 142.71, 110.50, 107.89, 57.56. Mass spectroscopy (ESI): mass calculated for C₅H₆NaO₂ ([M+Na]⁺): 121.0266; Mass found: 121.0239.

Figure S12: ¹H NMR of extracted furfuryl alcohol [CDCl₃, 500 MHz]

Entry 2: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 33 mg (0.3 mmol) of 5methylfurfural and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Isolated yield: 51% (17 mg, 0.15 mmol). ¹H NMR (500 MHz,

CDCl₃) δ = 6.17 (d, J = 3.0 Hz, 1H), 5.91 (m, 1H), 4.55 (d, J = 6.0 Hz, 2H), 2.29 (s, 3H), 1.66 (t, J = 6.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ = 152.62, 152.38, 108.94, 106.39, 57.75, 13.72. Mass spectroscopy (ESI): mass calculated for C₆H₈NaO₂ ([M+Na]⁺): 135.0422; Mass found: 135.0403.

Figure S13: ¹H NMR of extracted 5-methylfurfuryl alcohol [CDCl₃, 500 MHz]

Entry 3: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 32 mg (0.3 mmol) of benzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Isolated yield: 62% (20 mg, 0.19 mmol). ¹H NMR (500 MHz, CDCl₃)

δ = 7.39-7.28 (m, 5H), 4.68 (s, 2H), 1.99 (br s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ = 141.00, 128.70, 127.79, 127.14, 65.47. Mass spectroscopy (ESI): mass calculated for C₇H₈NaO ([M+Na]⁺): 131.0473; Mass found: 131.1604.

Figure S14: ¹H NMR of extracted benzyl alcohol [CDCl₃, 500 MHz]

Entry 4: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 41 mg (0.3 mmol) of 4-methoxybenzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 51% (21 mg, 0.15 mmol). ¹H NMR (500 MHz, CDCl₃) δ = 7.28 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* =

8.6 Hz, 2H), 4.60 (s, 2H), 3.81 (s, 3H), 1.77 (br s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ = 159.36, 133.29, 128.80, 114.11, 65.17, 55.45. Mass spectroscopy (ESI): mass calculated for C₈H₁₀NaO₂ ([M+Na]⁺): 161.0579; Mass found: 161.0569.

Figure S15: ¹H NMR of extracted 4-methoxybenzyl alcohol (entry 4) [CDCl₃, 500 MHz]

Entry 5: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 45 mg (0.3 mmol) of 4-nitrobenzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 60% (27 mg, 0.18 mmol). ¹H

NMR (500 MHz, CDCl₃) δ = 8.20 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 4.83 (s, 2H), 2.12 (br s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ = 148.36, 147.44, 127.16, 123.89, 64.15. Mass spectroscopy (ESI): mass calculated for C₇H₇NNaO₃ ([M+Na]⁺): 176.0324; Mass found: 176.0571.

Figure S16: ¹H NMR of extracted 4-nitrobenzyl alcohol [CDCl₃, 500 MHz]

Entry 6: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 36 mg (0.3 mmol) of phenylacetaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 43% (15 mg, 0.12 mmol). ¹H

NMR (500 MHz, CDCl₃) δ = 7.35-7.24 (m, 5H), 3.89 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 6.6 Hz, 2H), 1.43 (br s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ = 138.64, 129.22, 128.78, 126.67, 63.88, 39.39. Mass spectroscopy (ESI): mass calculated for C₈H₁₀NaO ([M+Na]⁺): 145.0629; Mass found: 145.0607.

Figure S17: ¹H NMR of extracted 2-phenylethyl alcohol [CDCl₃, 500 MHz]

Entry 7: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 42 mg (0.3 mmol) of 4-chlorobenzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 52% (22 mg, 0.15 mmol).

¹H NMR (500 MHz, CDCl₃) δ = 7.33-7.28 (m, 4H), 4.66 (s, 2H), 1.85 (br s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ = 139.40, 133.50, 128.82, 128.41, 64.68. Mass spectroscopy (ESI): mass calculated for C₇H₇ClNaO ([M+Na]⁺): 165.0083; Mass found: 165.0068.

Figure S18: ¹H NMR of extracted 4-chlorobenzyl alcohol [CDCl₃, 500 MHz]

Entry 8: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 36 mg (0.3 mmol) of 4-methylbenzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 39% (14 mg, 0.12 mmol). ¹H NMR

(500 MHz, $CDCl_3$) δ = 7.27 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 4.64 (s, 2H), 2.36 (s, 3H), 1.69 (br s, 1H). ¹³C NMR (126 MHz, $CDCl_3$) δ = 138.09, 137.57, 129.41, 127.29, 65.44, 21.31. Mass spectroscopy (ESI): mass calculated for C₈H₁₀NaO ([M+Na]⁺): 145.0629; Mass found: 145.0609.

Figure S19: ¹H NMR of extracted 4-methylbenzyl alcohol [CDCl₃, 500 MHz]

Entry 9: 100 mg (0.027 mmol) of [Fe₄L₆] cage, 45 mg (0.3 mmol) of 4-acetylbenzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 60% (27 mg, 0.18 mmol). ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 2H), 4.79 (s, 2H), 2.61 (s, 3H), 1.56 (br s,

1H). ¹³C NMR (101 MHz, CDCl₃) δ = 197.8, 146.1, 136.5, 128.6, 126.6, 64.7, 26.6. Mass spectroscopy (ESI): mass calculated for C₉H₁₀NaO₂ ([M+Na]⁺): 173.0579; Mass found: 173.0571.

Figure S20: ¹H NMR of extracted 1-[4-(hydroxymethyl)phenyl]ethanone [CDCl₃, 400 MHz]

Entry 10: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 49 mg (0.3 mmol) of methyl 4-formylbenzoate and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 63% (31 mg, 0.19 mmol). ¹H NMR (400 MHz, CDCl₃) δ = 8.05 (d, *J* = 8.4

Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 4.78 (s, 2H), 3.92 (s, 3H), 1.55 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 166.9$, 145.9, 129.9, 129.4, 126.5, 64.8, 52.1. Mass spectroscopy (ESI): mass calculated for C₉H₁₀NaO₃ ([M+Na]⁺): 189.0528; Mass found: 189.0518.

Figure S21: ¹H NMR of extracted methyl 4-(hydroxymethyl)benzoate [CDCl₃, 400 MHz]

Entry 11: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 37 mg (0.3 mmol) of 4-hydroxybenzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 67% (25 mg, 0.20 mmol). ¹H

NMR (500 MHz, DMSO-d₆) $\delta = \delta$ 9.22 (s, 1H), 7.09 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 4.93 (t, J = 5.7 Hz, 1H), 4.35 (d, J = 5.7 Hz, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ = 156.1, 132.7, 128.0, 114.7, 62.7. Mass spectroscopy (ESI): mass calculated for C₇H₈NaO₂ ([M+Na]⁺): 147.0422; Mass found: 147.0409.

Figure S22: ¹H NMR of extracted 4-hydroxybenzyl alcohol [DMSO-d₆, 500 MHz].

Entry 12: 100 mg (0.027 mmol) of $[Fe_4L_6]$ cage, 49 mg (0.3 mmol) of 4-tertbutylbenzaldehyde and 19 mg (0.3 mmol) of NaCNBH₃ were taken in 5 mL distilled water under a nitrogen atmosphere and stirred for 6 hours at 50 °C. Yield: 27% (13.3 mg, 0.08 mmol).

¹H NMR (400 MHz, CDCl₃) δ = 7.41 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 4.68 (d, J = 5.7 Hz, 2H), 1.61 (t, J = 5.7 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 150.8, 137.9, 126.9, 125.5, 65.2, 34.6, 31.3. Mass spectroscopy (ESI): mass calculated for C₁₁H₁₆NaO₃ ([M+Na]⁺): 187.1099; Mass found: 187.1098.

Figure S23: ¹H NMR of extracted methyl 4-tertbutylbenzyl alcohol [CDCl₃, 400 MHz]

Figure S24: Stacked ¹H NMR spectra (500 MHz) in D₂O at 323 K of *p*-tert-butylbenzaldehyde on its own (bottom), Fe^{II}₄L₆ cage on its own (middle) and a 1:10 mixture of cage and *p*-tert-butylbenzaldehyde (top). Upon addition of the *p*-tert-butylbenzaldehyde to the cage, both sets of peaks broaden considerably, consistent with an intermediate rate of exchange on the NMR timescale.

Figure S25: Overlaid ¹H NMR spectra (500 MHz) in D₂O at 323 K of *p*-tolualdehyde on its own (blue), $Fe^{II}_{4}L_{6}$ cage on its own (green) and a 1:10 mixture of cage and *p*-tolualdehyde (red). Upon addition of the *p*-tolualdehyde to the cage, both sets of peaks broaden considerably, consistent with an intermediate rate of exchange on the NMR timescale.

References

- P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, *Angew. Chem. Int. Ed.* 2008, 47, 8297.
- S2. F. Neese, WIREs Comput. Molec. Sci. 2012, 2, 73.
- S3. M. Thompson, 2005 ArgusLab 4.01. PlanariaSoftware LLC, Seattle, WA, USA. See http://www.ArgusLab.com.
- S4. a) A. D. Becke, *Phys. Rev. A* 1988, *38*, 3098; b) J. P. Perdew, *Phys. Rev. B* 1986, *33*, 8822.
- S5. A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799.
- S6. a) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571; b) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829; c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- S7. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- S8. a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b)
 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- S9. a) E. van Lenthe, J. G. Snijders, E. J. Baerends, *J. Chem. Phys.* 1996, *105*, 6505; b) E. van Lenthe, A. van der Avoird, P. E. S. Wormer, *J. Chem. Phys.* 1998, *108*, 4783; c) J. H. van Lenthe, S. Faas, J. G. Snijders, *Chem. Phys. Lett.* 2000, *328*, 107.
- S10. C. J. van Wüllen, J. Chem. Phys. 1998, 109, 392.
- S11. F. Neese, J. Comput. Chem. 2003, 24, 1740.
- S12. a) P. Pulay, Chem. Phys. Lett. 1980, 73, 393; b) P. Pulay, J. Comput. Chem. 1982, 3, 556.
- S13. Molekel, Advanced Interactive 3D-Graphics for Molecular Sciences, Swiss National Supercomputing Center. https://ugovaretto.github.io/molekel/