Supporting Information

Deaminative *meta*-C–H Alkylation by Ruthenium(II) Catalysis

Wen Wei, Hao Yu, Agnese Zangarelli, and Lutz Ackermann^{*} Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute Georg-August-Universität Tammannstraße 2, 37077 Göttingen, Germany Fax: +49/ 551-39-6777

Email: Lutz.Ackermann@chemie.uni-goettingen.de

Table of Contents

General Remarks	S3
Optimization of the Reaction Conditions	S4
General Procedures	S 8
Characterization Data of Products	S9
Mechanistic Studies	S38
Racemization Studies	S44
References	S46
¹ H, ¹³ C and ¹⁹ F NMR Spectra	S47

General Remarks

Catalytic reactions were performed under a N₂ atmosphere using pre-dried glassware and standard Schlenk techniques. 1,4-Dioxane was dried over Na and freshly distilled under N₂. Katritzky pyridinium salts were synthesized according to previously described methods¹ Other chemicals were obtained from commercial sources and used without further purification. Yields refer to isolated compounds, estimated to be >95% pure as determined by ¹H NMR. Flash chromatography: Merck silica gel 60 (40–63 µm). NMR: Spectra were recorded on Varian Mercury Vx 300, Varian VNMRS 300, Varian Inova 500, Varian Inova 600, Bruker Avance III 400, Bruker Avance III HD 400 and Bruker Avance III HD 500 instruments in the solvent indicated; chemical shifts (δ) are provided in ppm. IR spectra were recorded on Bruker FT-IR alpha-P device. El-MS was recorded on Joel AccuTof at 70 eV. ESI-MS was recorded on Bruker Daltonic micrOTOF. High resolution mass spectrometry (HR-MS) was recorded on micrOTOF, Bruker Daltonic. Melting points (m.p.) were measured on Stuart® melting point apparatus SMP3, Barloworld Scientific, values are uncorrected.

Optimization of the Reaction Conditions

Table S1. Optimization of the amount of catalyst, ligand and base.^a

N H 1a	Ph \downarrow Ph \downarrow Ph \downarrow Ph \downarrow Ph BF_4 BF_4 Me CO_2Me 2a	[Ru(O ₂ CMes) ₂ P(4-CF ₃ C Na ₂ C 1,4-dioxan	(<i>p</i> -cymene)] (X mol %) C ₆ H ₄) ₃ (Y mol %) CO ₃ (Z equiv.) e, 100 °C, 24 h, N ₂	Me CO ₂ Me
Entry	X (mol %)	Y (mol %)	Z (equiv.)	Yield (%)
1	15	45	1	38 ^b
2	15		1	trace
3	15	30	1	54 ^{<i>b</i>}
4	15	45	2	55 ^b
5	15	45	3	51
6	15	45	2	63 ^c
7	15	60	2	61

^a Reaction conditions: **1a** (31.0 mg, 0.2 mmol), **2a** (289 mg, 0.6 mmol), [Ru(O₂CMes)₂(*p*-cymene)] (X mol %), P(4-CF₃C₆H₄)₃ (Y mol %) and Na₂CO₃ (Z equiv.), 1,4-dioxane (2.0 mL) at 100 °C, 24 h, under N₂, yield of isolated product. ^b 1,4-dioxane (1.0 mL). ^c **2a** (192.5 mg, 0.4 mmol).

^a Reaction conditions: **1a** (31.0 mg, 0.2 mmol), **2a** (193 mg, 0.4 mmol), [Ru(O₂CMes)₂(*p*-cymene)] (16.9 mg, 15 mol%), addictive (45 mol %) and Na₂CO₃ (42.4 mg, 0.4 mmol), 1,4-dioxane (2.0 mL) at 100 °C, 24 h, under N₂, yield of isolated product. ^{*b*} [Ni] (10 mol %).

Ph [Ru] (15 mol %) Ligand (45 mol %) 4 BF_4 Ph Ph Ν Base (2.0 equiv.) Me 1,4-dioxane, 100 °C, 24 h, N_2 Me CO₂Me ĊO₂Me 2a 1a 3a

Table S3. Optimization of catalyst, ligand and base.^a

Entry	[Ru]	Ligand	Base	Yield (%)
1	[RuCl ₂ (<i>p</i> -cymene)] ₂	$P(4-CF_{3}C_{6}H_{4})_{3}$	Na ₂ CO ₃	79
2	[Ru(OAc)₂(<i>p</i> -cymene)]	P(4-CF ₃ C ₆ H ₄) ₃	Na ₂ CO ₃	27
3	[RuCl ₂ (<i>p</i> -cymene)] ₂	P(4-CF ₃ C ₆ H ₄) ₃	KOAc	41
4		P(4-CF ₃ C ₆ H ₄) ₃	Na ₂ CO ₃	trace
5	[RuCl ₂ (<i>p</i> -cymene)] ₂	P(4-CF ₃ C ₆ H ₄) ₃		trace
6	[RuCl ₂ (<i>p</i> -cymene)] ₂	MesCO ₂ H	Na ₂ CO ₃	trace
7	[RuCl ₂ (<i>p</i> -cymene)] ₂	Piv-lle-OH	Na ₂ CO ₃	15
8	[RuCl ₂ (<i>p</i> -cymene)] ₂	Boc-Ala-OH	Na ₂ CO ₃	17

^a Reaction conditions: **1a** (31.0 mg, 0.2 mmol), **2a** (193 mg, 0.4 mmol), [Ru] (15 mol %), ligand (45 mol %), base (2.0 equiv.), 1,4-dioxane (2.0 mL) at 100 °C, 24 h, under N₂, yield of isolated product.

N +	Ph \downarrow Ph \downarrow Ph BF_4	[RuCl ₂ (<i>p</i> -cymene)] ₂ (X mol %) P(4-CF ₃ C ₆ H ₄) ₃ (Y mol %) Na ₂ CO ₃ (2.0 equiv.)	N
H 1a	Me ^z `CO ₂ Me 2a	1,4-dioxane, 100 °C, 24 h, N ₂	CO ₂ Me 3a
Entry	X (mol %)	Y (mol %)	Yield (%)
1	10	30	75
2	10	20	75
3	7.5	30	84
4	7.5	15	81
5	5	20	76
6	2.5	10	77
7	1	4	49

Table S4. Minor adjustment of the amount of catalyst and ligand.^a

^a Reaction conditions: **1a** (31.0 mg, 0.2 mmol), **2a** (193 mg, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (X mol %), P(4-CF₃C₆H₄)₃ (Y mol %), Na₂CO₃ (42.4 mg, 0.4 mmol),1,4-dioxane (2.0 mL) at 100 °C, 24 h, under N₂, yield of isolated product.

General Procedures

General Procedure A: Ruthenium-catalyzed *meta*-C–H secondary alkylation.

Heteroarene **1** (0.2 mmol), Katritzky salt **2** (0.4 mmol), $[RuCl_2(p-cymene)]_2$ (3.1 mg, 2.5 mol %), P(4-CF₃C₆H₄)₃ (9.3 mg, 10 mol %) and Na₂CO₃ (42.4 mg, 0.4 mmol) were placed in an oven-dried Schlenk tube. The mixture was evacuated and purged with N₂ three times. Then,1,4-dioxane (2.0 mL) was added. The tube was sealed and stirred at 100 °C for 24 h. After cooling to ambient temperature, the resulting reaction mixture was diluted with CH₂Cl₂ and concentrated *in vacuo*. Purification of the residue by column chromatography on silica gel yielded the product **3** and **4**.

General procedure B: Ruthenium-catalyzed *meta*-C-H benzylation.

2-Phenylpyridine **1a** (31.0 mg, 0.2 mmol), Katritzky salts **5** (0.4 mmol), $[RuCl_2(p-cymene)]_2$ (6.2 mg, 5 mol %), P(4-CF₃C₆H₄)₃ (18.7 mg, 20 mol %) and Na₂CO₃ (42.4 mg, 0.4 mmol) were placed in an oven-dried Schlenk tube. The mixture was evacuated and purged with N₂ three times. Then 1,4-dioxane (2.0 mL) was added. The tube was sealed and heated at 100 °C for 24 h. After cooling to ambient temperature, the resulting reaction mixture was diluted with CH₂Cl₂ and concentrated *in vacuo*. Purification of the residue by column chromatography on silica gel yielded the product **6**.

Characterization Data of Products

Methyl 2-[3-(pyridin-2-yl)phenyl]propanoate (3a)

The general procedure A was followed using 2-phenylpyridine (1a) (31 mg, 0.2 mmol) and Katritzky salt 2a (192 mg, 0.4 mmol). Purification by column chromatography (n-hexane/EtOAc = 5:1) yielded **3a** (37 mg, 77%), as a colorless liquid.

¹**H NMR** (300 MHz, CDCl₃): δ = 8.69 (d, J = 4.8 Hz, 1H), 7.94 (s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.79–7.69 (m, 2H), 7.44 (t, J = 7.6 Hz, 1H), 7.36 (dt, J = 7.6, 1.5 Hz, 1H), 7.26–7.20 (m, 1H), 3.83 (q, J = 7.2 Hz, 1H), 3.67 (s, 3H), 1.56 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ = 175.0 (C_α), 157.2 (C_α), 149.7 (CH), 141.1 (C_α), 139.8 (C_α), 136.7 (CH), 129.1 (CH), 128.0 (CH), 126.3 (CH), 125.8 (CH), 122.2 (CH), 120.7 (CH), 52.1 (CH₃), 45.5 (CH), 18.7 (CH₃).

IR (ATR): \tilde{v} = 2978, 2957, 1733, 1584, 1461, 1434, 1202, 1163, 769, 700 cm⁻¹.

MS (ESI) m/z (relative intensity): 242 (100) [M+H]⁺, 264 (20) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₁₅H₁₆NO₂⁺ [M+H]⁺: 242.1181, found: 242.1180.

The spectral data were in accordance with those reported in the literature².

CO₂Me

ÓMe Me

Methyl 2-[2-methoxy-5-(pyridin-2-yl)phenyl]propanoate (3b)

The general procedure **A** was followed using 2-(4-methoxyphenyl)pyridine (**1b**) (37 mg, 0.2 mmol) and Katritzky salt 2a (192 mg, 0.4 mmol). Purification by column chromatography (nhexane/EtOAc =5:1) yielded 3b (40 mg, 73%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.75–8.72 (m, 1H), 7.84 (dd, J = 7.9, 1.1 Hz, 1H), 7.75 (td, J = 7.6, 1.8 Hz, 1H), 7.61 (dd, J = 7.7, 1.7 Hz, 1H), 7.35 (dd, J = 7.7, 1.7 Hz, 1H), 7.29–7.24 (m, 1H), 7.22 (t, *J* = 7.7 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 1H), 3.69 (s, 3H), 3.45 (s, 3H), 1.54 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 175.2 (C_q), 156.5 (C_q), 155.5 (C_q), 149.6 (CH), 136.1 (CH), 134.6 (C_q), 133.5 (C_q), 130.3 (CH), 128.5 (CH), 124.5 (CH), 124.4 (CH), 122.0 (CH), 61.5 (CH₃), 52.0 (CH₃), 38.6 (CH), 18.4 (CH₃).

IR (ATR): \tilde{v} = 2951, 1733, 1453, 1431, 1220, 1199, 1161, 1002, 776 cm⁻¹.

MS (ESI) m/z (relative intensity): 272 (100) [M+H]⁺, 294 (33) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₆H₁₈NO₃⁺ [M+H]⁺: 272.1287, found: 272.1284.

Methyl 2-[2-fluoro-5-(pyridin-2-yl)phenyl]propanoate (3c)

The general procedure **A** was followed using 2-(4-fluorophenyl)pyridine (**1c**) (35 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3c** (37 mg, 72%), as a colorless liquid.

¹**H NMR** (300 MHz, CDCl₃): δ = 8.68 (ddd, *J* = 5.0, 1.8, 0.9 Hz, 1H), 7.95 (dd, *J* = 7.2, 2.3 Hz, 1H), 7.88 (ddd, *J* = 8.4, 5.0, 2.3 Hz, 1H), 7.80–7.73 (m, 1H), 7.69 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.28–7.22 (m, 1H), 7.15 (dd, *J* = 9.7, 8.6 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 1H), 3.69 (d, *J* = 0.6 Hz, 3H), 1.58 (d, *J* = 7.2 Hz, 3H).

¹³**C** NMR (101 MHz, CDCl₃): δ = 174.1 (C_q), 161.2 (d, ¹*J*_{C-F} = 249.2 Hz, C_q), 156.0 (C_q), 149.2 (CH), 137.2 (CH), 135.3 (C_q), 128.2 (d, ²*J*_{C-F} = 15.3 Hz, C_q), 127.7 (d, ³*J*_{C-F} = 4.6 Hz, CH), 127.4 (d, ³*J*_{C-F} = 8.8 Hz, CH), 122.2 (CH), 120.5 (CH), 115.9 (d, ²*J*_{C-F} = 22.9 Hz, CH), 52.2 (CH₃), 38.7 (d, ³*J*_{C-F} = 2.3 Hz, CH), 17.4 (CH₃).

¹⁹**F NMR** (377 MHz, CDCl₃): δ = -117.6 (s).

IR (ATR): \tilde{v} = 2952, 1737, 1588, 1502, 1466, 1433, 1202, 1176, 781, 744 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 260 (100) [M+H]⁺, 282 (33) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₅H₁₄FNaNO₂⁺ [M+Na]⁺: 282.0901, found: 282.0901.

Methyl 2-[3-(4-methylpyridin-2-yl)phenyl]propanoate (3d)

The general procedure **A** was followed using 4-methyl-2-phenylpyridine (**1d**) (34 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3d** (33 mg, 65%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.54 (d, *J* = 5.0 Hz, 1H), 7.91 (t, *J* = 1.8 Hz, 1H), 7.88–7.84 (m, 1H), 7.54 (s, 1H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.35 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.06 (d, *J* = 5.0 Hz, 1H), 3.83 (q, *J* = 7.2 Hz, 1H), 3.73–3.58 (m, 3H), 2.42 (s, 3H), 1.56 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 175.0 (C_q), 157.1 (C_q), 149.4 (CH), 147.7 (C_q), 142.0 (C_q), 139.9 (C_q), 129.0 (CH), 127.8 (CH), 126.3 (CH), 125.8 (CH), 123.2 (CH), 121.6 (CH), 52.0 (CH₃)., 45.5 (CH), 21.2 (CH₃), 18.7 (CH₃).

IR (ATR): \tilde{v} = 2951, 1732, 1600, 1453, 1432, 1194, 1161, 1062, 799, 699 cm⁻¹.

MS (ESI) m/z (relative intensity): 256 (100) [M+H]⁺, 378 (30) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₆H₁₈NO₂⁺ [M+H]⁺: 256.1338, found: 256.1336.

Methyl 2-[3-(4-methoxypyridin-2-yl)phenyl]propanoate (3e)

The general procedure **A** was followed using 4-methoxy-2-phenylpyridine (**1e**) (37 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3e** (43 mg, 80%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.53 (d, *J* = 4.6 Hz, 1H), 7.90 (s, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.22 (s, 1H), 6.80 (d, *J* = 4.6 Hz, 1H), 3.92 (s, 3H), 3.82 (q, *J* = 7.2 Hz, 1H), 3.66 (s, 3H), 1.55 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 174.9 (C_q), 166.7 (C_q), 158.7 (C_q), 150.5 (CH), 141.1 (C_q), 139.2 (C_q), 129.0 (CH), 128.2 (CH), 126.5 (CH), 125.9 (CH), 108.3 (CH), 107.2 (CH), 55.4 (CH₃), 52.1 (CH₃), 45.5 (CH), 18.6 (CH₃). **IR** (ATR): \tilde{v} = 3054, 1733, 1593, 1564, 1322, 1264, 1200, 1173, 731, 700 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 272 (100) [M+H]⁺, 294 (10) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₆H₁₈NO₃⁺ [M+H]⁺: 272.1287, found: 272.1284.

Methyl 2-[3-(4-acetylpyridin-2-yl)phenyl]propanoate (3f)

The general procedure **A** was followed using 1-(2-phenylpyridin-4-yl)ethan-1-one (**1f**) (39 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3f** (39 mg, 70%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 9.28–9.18 (m, 1H), 8.31–8.26 (m, 1H), 8.02 (s, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.50–7.40 (m, 2H), 3.84 (q, *J* = 7.2 Hz, 1H), 3.68 (s, 3H), 2.67 (s, 3H), 1.57 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 196.4 (C_q), 174.8 (C_q), 160.7 (C_q), 150.1 (CH), 141.3 (C_q), 138.5 (C_q), 136.4 (CH), 130.6 (C_q), 129.3 (CH), 129.1 (CH), 126.7 (CH), 126.2 (CH), 120.3 (CH), 52.1 (CH₃), 45.5 (CH), 26.7 (CH₃), 18.7 (CH₃).

IR (ATR): $\tilde{v} = 2952, 1731, 1684, 1588, 1373, 1277, 1202, 1164, 959, 699 cm⁻¹.$

MS (ESI) m/z (relative intensity): 284 (30) [M+H]⁺, 306 (100) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₇H₁₈NO₃⁺ [M+H]⁺: 284.1287, found: 284.1281.

Methyl 2-[3-(1H-pyrazol-1-yl)phenyl]propanoate (3g)

The general procedure A was followed using1-phenyl-1H-pyrazole (1g) (29 mg, 0.2 mmol) and

Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3g** (33 mg, 71%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.93 (d, *J* = 2.5 Hz, 1H), 7.72 (d, *J* = 1.7 Hz, 1H), 7.67 (t, *J* = 2.0 Hz, 1H), 7.59–7.55 (m, 1H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 7.7 Hz, 1H), 6.46 (t, *J* = 2.5 Hz, 1H), 3.80 (q, *J* = 7.2 Hz, 1H), 3.67 (s, 3H), 1.55 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 174.5 (C_q) , 142.0 (C_q), 141.1 (CH), 140.4 (C_q), 129.6 (CH), 126.8 (CH), 125.5 (CH), 118.6 (CH), 117.9 (CH), 107.6 (CH), 52.1 (CH₃), 45.3 (CH), 18.5 (CH₃).

IR (ATR): \tilde{v} = 3002, 1711, 1438, 1419, 1357, 1219, 1091, 899, 735, 528 cm⁻¹.

MS (ESI) m/z (relative intensity): 231 (20) [M+H]⁺, 253 (100) [M+Na]⁺.

HR-MS (ESI): m/z calcd for $C_{13}H_{14}N_2O_2Na^+$ [M+Na]⁺: 253.0953, found: 253.0950.

Methyl 2-[2-methyl-5-(1H-pyrazol-1-yl)phenyl]propanoate (3h)

The general procedure **A** was followed using 1-(p-tolyl)-1H-pyrazole (**1h**) (32 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3h** (36 mg, 73%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.89 (d, *J* = 1.9 Hz, 1H), 7.70 (d, *J* = 1.9 Hz, 1H), 7.59 (d, *J* = 2.2 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 6.44 (t, *J* = 1.9 Hz, 1H), 3.99 (q, *J* = 7.2 Hz, 1H), 3.67 (s, 3H), 2.38 (s, 3H), 1.54 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 174.8 (C_q), 140.8 (CH), 140.3 (C_q), 138.8 (C_q), 134.1 (C_q), 131.4 (CH), 126.8 (CH), 117.9 (CH), 117.7 (CH), 107.3 (CH), 52.1 (CH₃), 41.5 (CH), 19.2 (CH₃), 17.9 (CH₃).

IR (ATR): \tilde{v} = 2952, 1737, 1520, 1393, 1322, 1199, 1167, 1131, 1061, 749 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 245 (100) [M+H]⁺, 267 (70) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₄H₁₇N₂O₂⁺ [M+H]⁺: 245.1290, found: 245.1285.

Methyl 2-[2-methoxy-5-(1H-pyrazol-1-yl)phenyl]propanoate (3i)

The general procedure **A** was followed using 1-(4-methoxyphenyl)-1*H*-pyrazole (**1i**) (35 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3i** (40 mg, 76%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.83 (d, *J* = 1.6 Hz, 1H), 7.69 (d, *J* = 1.6 Hz, 1H), 7.57–7.48 (m, 2H), 6.93 (d, *J* = 8.6 Hz, 1H), 6.44 – 6.42 (m, 1H), 4.08 (q, *J* = 7.2 Hz, 1H), 3.86 (s, 3H), 3.67 (s, 3H), 1.51 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 175.0 (C_q), 155.4 (C_q), 140.6 (CH), 134.0 (C_q), 130.5 (C_q), 126.9 (CH), 120.0 (CH), 119.3 (CH), 111.2 (CH), 107.1 (CH), 55.9 (CH₃), 52.0 (CH₃), 39.3 (CH), 17.2 (CH₃).

IR (ATR): $\tilde{v} = 2951$, 1728, 1518, 1499, 1239, 1163, 1044, 947, 811, 747 cm⁻¹.

MS (ESI) m/z (relative intensity): 261 (100) [M+H]⁺, 283 (70) [M+Na]⁺.

HR-MS (ESI): m/z calcd for $C_{14}H_{17}N_2O_3^+$ [M+H]⁺: 261.1239, found: 261.1237.

Methyl 2-(1-methoxy-1-oxopropan-2-yl)-4-(1H-pyrazol-1-yl)benzoate (3j)

The general procedure **A** was followed using methyl 4-(1*H*-pyrazol-1-yl)benzoate (**1j**) (40 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3j** (30 mg, 52%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.05 (d, J = 8.6 Hz, 1H), 7.99 (d, J = 2.5 Hz, 1H), 7.75 (dd, J = 3.2, 2.1 Hz, 2H), 7.65 (dd, J = 8.6, 2.3 Hz, 1H), 6.50 (dd, J = 2.5, 1.8 Hz, 1H), 4.74 (q, J = 7.2 Hz, 1H), 3.90 (s, 3H), 3.67 (s, 3H), 1.60 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 174.6 (C_q), 167.0 (C_q), 144.2 (C_q), 142.7 (C_q), 141.9 (CH), 132.6 (CH), 126.9 (CH), 126.6 (C_q), 118.7 (CH), 116.7 (CH), 108.4 (CH), 52.1 (CH₃), 52.1 (CH₃), 42.2 (CH), 18.2 (CH₃).

IR (ATR): $\tilde{v} = 2963$, 2160, 1977, 1698, 1558, 1542, 1507, 1264, 744, 701 cm⁻¹. **MS** (ESI) *m*/*z* (relative intensity): 289 (100) [M+H]⁺, 311 (30) [M+Na]⁺. **HR-MS** (ESI): *m*/*z* calcd for C₁₅H₁₇N₂O₄⁺ [M+H]⁺: 289.1188, found: 289.1183.

Methyl 2-[2-fluoro-5-(1*H*-pyrazol-1-yl)phenyl]propanoate (3k)

The general procedure **A** was followed using 1-(4-fluorophenyl)-1*H*-pyrazole (**1k**) (32 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3k** (40 mg, 80%), as a colorless liquid.

¹**H NMR** (300 MHz, CDCl₃): δ = 7.86 (d, *J* = 2.5 Hz, 1H), 7.71 (d, *J* = 2.0 Hz, 1H), 7.64 (dd, *J* = 6.3, 2.8 Hz, 1H), 7.54 (ddd, *J* = 8.8, 4.4, 2.8 Hz, 1H), 7.13 (t, *J* = 9.0 Hz, 1H), 6.46 (t, *J* = 2.5, 2.0 Hz, 1H), 4.06 (q, *J* = 7.3 Hz, 1H), 3.70 (s, 3H), 1.56 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.8 (C_q), 158.7 (d, ¹*J*_{C-F} = 246.2 Hz, C_q), 141.1 (CH), 136.7 (d, ⁴*J*_{C-F} = 3.0 Hz, C_q), 128.9 (d, ²*J*_{C-F} = 16.6 Hz, C_q), 126.9 (CH), 120.0 (d, ³*J*_{C-F} = 4.3 Hz, CH), 119.6 (d, ³*J*_{C-F} = 8.6 Hz, CH), 116.3 (d, ²*J*_{C-F} = 24.3 Hz, CH), 107.7 (CH), 52.3 (CH₃), 38.5 (d, ³*J*_{C-F} = 2.5 Hz, CH), 17.4 (CH₃).

¹⁹**F NMR** (377 MHz, CDCl₃): $\delta = -120.8$ (s).

IR (ATR): \tilde{v} = 2989, 2955, 1736, 1521, 1500, 1394, 1226, 1198, 823, 754 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 249 (100) [M+H]⁺, 271 (25) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₃H₁₄FN₂O₂⁺ [M+H]⁺: 249.1039, found: 249.1037.

Methyl 2-[2-bromo-5-(1H-pyrazol-1-yl)phenyl]propanoate (3l)

The general procedure **A** was followed using 1-(4-bromophenyl)-1*H*-pyrazole (**1**) (44 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3I** (43 mg, 69%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 1.9 Hz, 1H), 7.72 (d, *J* = 1.3 Hz, 1H), 7.68 (d, *J* = 2.5 Hz, 1H), 7.65–7.61 (m, 1H), 7.52–7.43 (m, 1H), 6.50–6.44 (m, 1H), 4.25 (q, *J* = 7.2 Hz, 1H), 3.70 (s, 3H), 1.56 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.9 (C_q), 141.4 (CH), 141.3 (C_q), 139.8 (C_q), 133.7 (CH), 126.7 (CH), 121.4 (C_q), 119.1 (CH), 119.1 (CH), 108.0 (CH), 52.3 (CH₃), 44.7 (CH), 17.8 (CH₃).

IR (ATR): \tilde{v} = 2950, 2925, 1736, 1520, 1478, 1394, 1200, 1169, 944, 747 cm⁻¹.

MS (ESI) m/z (relative intensity): 309 (100) [M+H]⁺, 331 (33) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₃H₁₄BrN₂O₂⁺ [M+H]⁺: 309.0233, found: 309.0233.

Methyl 2-[3-(pyrimidin-2-yl)phenyl]propanoate (3m)

The general procedure **A** was followed using 2-phenylpyrimidine (**1m**) (31 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3m** (34 mg, 70%), as a colorless liquid.

¹H NMR (300 MHz, CDCl₃): δ = 8.80 (d, *J* = 4.8 Hz, 2H), 8.39 (s, 1H), 8.36–8.32 (m, 1H), 7.45 (m, 2H), 7.19 (t, *J* = 4.8 Hz, 1H), 3.85 (q, *J* = 7.2 Hz, 1H), 3.67 (s, 3H), 1.57 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 174.9 (C_q), 164.5 (C_q), 157.2 (CH), 141.0 (C_q), 137.9 (C_q), 129.8 (CH), 129.0 (CH), 127.5 (CH), 127.0 (CH), 119.1 (CH), 52.1 (CH₃), 45.5 (CH), 18.6 (CH₃). IR (ATR): \tilde{v} = 2951, 1733, 1568, 1555, 1411, 1322, 1203, 1172, 1061, 771 cm⁻¹. MS (ESI) m/z (relative intensity): 243 (100) [M+H]⁺, 265 (20) [M+Na]⁺. HR-MS (ESI): m/z calcd for C₁₄H₁₅N₂O₂⁺ [M+H]⁺: 243.1134, found: 243.1129.

Methyl 2-(3-(4,5-dihydrooxazol-2-yl)phenyl)propanoate (3n)

The general procedure A was followed using 2-phenylpyrimidine (1n) (29 mg, 0.2 mmol) and

Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3n** (35 mg, 76%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): *δ* = 7.88 (s, 1H), 7.84–7.69 (m, 1H), 7.44–7.32 (m, 2H), 4.42 (t, *J* = 9.5 Hz, 2H), 4.04 (t, *J* = 9.5 Hz, 2H), 3.75 (q, *J* = 7.2 Hz, 1H), 3.64 (s, 3H), 1.51 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 174.5 (C_q), 164.4 (C_q), 140.7 (C_q), 130.3 (CH), 128.6 (CH), 128.0 (C_q), 127.4 (CH), 127.0 (CH), 67.6 (CH₂), 54.9 (CH₂), 52.0 (CH₃), 45.2 (CH), 18.4 (CH₃).

IR (ATR): $\tilde{v} = 2934$, 1733, 1649, 1555, 1359, 1264, 1063, 979, 806, 710 cm⁻¹.

MS (ESI) m/z (relative intensity): 234 (100) [M+H]⁺.

HR-MS (ESI): m/z calcd for $C_{13}H_{16}NO_3^+$ [M+H]⁺: 234.1130, found: 234.1125.

Methyl 2-(2-chloro-5-(4,5-dihydrooxazol-2-yl)phenyl)propanoate (30)

The general procedure **A** was followed using 2-phenylpyrimidine (**1o**) (36 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3o** (44 mg, 82%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.90 (s, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 4.42 (t, *J* = 9.5 Hz, 2H), 4.20 (q, *J* = 7.2 Hz, 1H), 4.05 (t, *J* = 9.5 Hz, 2H), 3.67 (s, 3H), 1.53 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 173.9 (C_q), 163.7 (C_q), 138.5 (C_q), 136.9 (C_q), 129.7 (CH), 128.3 (CH), 128.0 (CH), 126.8 (C_q), 67.8 (CH₂), 55.0 (CH₂), 52.2 (CH₃), 42.1 (CH), 17.3 (CH₃).

IR (ATR): $\tilde{v} = 2951, 1737, 1651, 1360, 1198, 1168, 1074, 1039, 979, 947 cm⁻¹.$

MS (ESI) m/z (relative intensity): 268 (100) [M+H]+.

HR-MS (ESI): m/z calcd for $C_{13}H_{15}CINO_3^+$ [M+H]⁺: 268.0740, found: 268.0735.

Methyl 2-(benzo[h]quinolin-7-yl)propanoate (3p)

The general procedure **A** was followed using benzoquinoline (**1p**) (36 mg, 0.2 mmol) and Katritzky salt **2a** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3p** (48 mg, 90%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 9.33 (d, *J* = 7.9, 1.0 Hz, 1H), 9.01 (dd, *J* = 4.4, 1.7 Hz, 1H), 8.19 (dd, *J* = 8.0, 1.8 Hz, 1H), 8.10 (d, *J* = 9.3 Hz, 1H), 7.79–7.66 (m, 3H), 7.54 (dd, *J* = 8.0, 4.4 Hz, 1H), 4.58 (q, *J* = 7.1 Hz, 1H), 3.67 (s, 3H), 1.71 (d, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 175.3 (C_q), 149.0 (CH), 146.8 (C_q), 136.9 (C_q), 135.7 (CH), 132.1 (C_q), 131.3 (2C_q), 126.9 (CH), 126.9 (CH), 125.7 (CH), 123.9 (CH), 122.7 (CH), 121.9 (CH), 52.2 (CH₃), 41.6 (CH), 18.4 (CH₃).

IR (ATR): $\tilde{v} = 2983$, 2950, 1736, 1592, 1453, 1430, 1200, 1078, 831, 769 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 266 (100) [M+H]⁺, 288 (10) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₇H₁₆NO₂⁺ [M+H]⁺: 266.1181, found: 266.1179.

Ethyl 2-[3-(18yridine-2-yl)phenyl]acetate (4a)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2b** (192 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4a** (23 mg, 47%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (dt, *J* = 4.8, 1.4 Hz, 1H), 7.98–7.91 (m, 1H), 7.88 (dt, *J* = 7.6, 1.5 Hz, 1H), 7.81–7.68 (m, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.36 (dt, *J* = 7.6, 1.4 Hz, 1H), 7.23 (td, *J* = 5.8, 4.8, 2.7 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.71 (s, 2H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 171.5 (C_q), 157.2 (C_q), 149.6 (CH), 139.7 (C_q), 136.7 (CH), 134.7 (C_q), 129.9 (CH), 128.9 (CH), 127.9 (CH), 125.6 (CH), 122.2 (CH), 120.7 (CH), 60.9 (CH₂), 41.4 (CH₂), 14.2 (CH₃).

IR (ATR): $\tilde{v} = 2984$, 1730, 1585, 1462, 1264, 1153, 1030, 734, 700 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 242 (100) [M+H]⁺, 264 (30) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₅H₁₆NO₂⁺ [M+H]⁺: 242.1181, found: 242.1177.

The spectral data were in accordance with those reported in the literature².

Py CO₂Me Me Me

Methyl 3-methyl-2-[3-(19yridine-2-yl)phenyl]butanoate (4b)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2c** (203 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4b** (33 mg, 62%), as a colorless liquid.

¹**H NMR** (300 MHz, CDCl₃): δ = 8.69 (dt, *J* = 4.8, 1.4 Hz, 1H), 7.95 (q, *J* = 1.4 Hz, 1H), 7.89 (ddd, *J* = 5.5, 3.3, 1.8 Hz, 1H), 7.75–7.71 (m, 2H), 7.44–7.40 (m, 2H), 7.22 (td, *J* = 5.0, 3.4 Hz, 1H), 3.66 (s, 3H), 3.27 (d, *J* = 10.6 Hz, 1H), 2.41 (dp, *J* = 10.6, 6.6 Hz, 1H), 1.06 (d, *J* = 6.6 Hz, 3H), 0.75 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 174.4 (C_q), 157.2 (C_q), 149.6 (CH), 139.6 (C_q), 138.9 (C_q), 136.7 (CH), 128.9 (CH), 127.2 (CH), 125.8 (CH), 122.1 (CH), 120.7 (CH), 60.0 (CH), 51.7 (CH₃), 32.0 (CH), 21.5 (CH₃), 20.3 (CH₃).

IR (ATR): \tilde{v} = 2960, 1729, 1584, 1461, 1433, 1196, 1150, 770, 744, 698 cm⁻¹.

MS (ESI) m/z (relative intensity): 270 (100) [M+H]⁺, 292 (20) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₇H₂₀NO₂⁺ [M+H]⁺: 270.1494, found: 270.1489.

Methyl 4-methyl-2-[3-(19yridine-2-yl)phenyl]pentanoate (4c)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2d** (209 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4c** (37 mg, 65%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (dt, *J* = 4.9, 1.2 Hz, 1H), 7.94 (s, 1H), 7.87 (dt, *J* = 7.3, 1.7 Hz, 1H), 7.76–7.70 (m, 2H), 7.47–7.35 (m, 2H), 7.22 (td, *J* = 6.1, 4.9, 2.4 Hz, 1H), 3.77 (t, *J* = 7.8 Hz, 1H), 3.65 (s, 3H), 2.04 (dt, *J* = 13.8, 7.8, 7.1 Hz, 1H), 1.72 (dt, *J* = 13.8, 7.1 Hz, 1H), 1.51 (dp, *J* = 13.4, 6.6 Hz, 1H), 0.92 (dd, *J* = 6.6, 2.4 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 174.6 (C_q), 157.2 (C_q), 149.6 (CH), 139.9 (C_q), 139.7 (C_q), 136.7 (CH), 129.0 (CH), 128.4 (CH), 126.7 (CH), 125.8 (CH), 122.1 (CH), 120.7 (CH), 51.9 (CH₃), 49.6 (CH), 42.6 (CH₂), 25.9 (CH), 22.5 (CH₃), 22.3 (CH₃).

IR (ATR): $\tilde{v} = 2950, 1730, 1600, 1457, 1432, 1194, 1161, 799, 699 cm⁻¹.$

MS (ESI) m/z (relative intensity): 284 (100) [M+H]⁺, 306 (50) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₁₈H₂₂NO₂⁺ [M+H]⁺: 284.1651, found: 284.1649.

Methyl 3-phenyl-2-[3-(20yridine-2-yl)phenyl]propanoate (4d)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2e** (222 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4d** (37 mg, 58%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70 (d, *J* = 4.7 Hz, 1H), 7.96 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.75 (dd, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 7.3 Hz, 1H), 7.43 (dd, *J* = 7.6 Hz, 1H), 7.41–7.38 (m, 1H), 7.29–7.21 (m, 3H), 7.21–7.15 (m, 3H), 3.98 (dd, *J* = 9.1, 6.3 Hz, 1H), 3.61 (s, 3H), 3.49 (dd, *J* = 13.7, 9.1 Hz, 1H), 3.10 (dd, *J* = 13.7, 6.3 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.7 (C_q), 157.1 (C_q), 149.6 (CH), 139.8 (C_q), 139.2 (C_q), 139.0 (C_q), 136.7 (CH), 129.0 (CH), 128.9 (2CH), 128.4 (CH), 128.3 (2CH), 126.6 (CH), 126.4 (CH), 126.0 (CH), 122.2 (CH), 120.7 (CH), 53.6 (CH), 52.0 (CH₃), 39.8 (CH₂).

IR (ATR): $\tilde{v} = 2950$, 1734, 1584, 1461, 1434, 1210, 1162, 769, 743, 699 cm⁻¹.

MS (ESI) m/z (relative intensity): 318 (100) [M+H]⁺, 340 (20) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₂₁H₂₀NO₂⁺ [M+H]⁺: 318.1494, found: 318.1489.

Dimethyl 2-[3-(pyridin-2-yl)phenyl]succinate (4e)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2f** (215 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4e** (46 mg, 77%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.71–8.65 (m, 1H), 7.93–7.87 (m, 2H), 7.78–7.69 (m, 2H), 7.43 (ddd, *J* = 7.8, 1.8 Hz, 1H), 7.33 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.24 (ddd, *J* = 7.3, 4.9, 1.5 Hz, 1H), 4.19 (ddd, *J* = 10.2, 5.2, 1.7 Hz, 1H), 3.68 (d, *J* = 3.1 Hz, 6H), 3.28 (ddd, *J* = 16.9, 10.2, 1.7 Hz, 1H), 2.73 (ddd, *J* = 17.0, 5.2, 1.7 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.4 (C_q), 172.0 (C_q), 156.9 (C_q), 149.6 (CH), 140.0 (C_q), 138.2 (C_q), 136.9 (CH), 129.3 (CH), 128.3 (CH), 126.5 (CH), 126.3 (CH), 122.4 (CH), 120.7 (CH), 52.4 (CH₃), 51.9 (CH₃), 47.2 (CH), 37.6 (CH₂).

IR (ATR): \tilde{v} = 2951, 1734, 1584, 1462, 1435, 1226, 1199, 1161, 1007, 772 cm⁻¹.

MS (ESI) m/z (relative intensity): 300 (100) [M+H]⁺, 322 (50) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₇H₁₈NO₄⁺ [M+H]⁺: 300.1236, found: 300.1233.

Dimethyl 2-[3-(21yridine-2-yl)phenyl]pentanedioate (4f)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2g** (221 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4f** (43 mg, 69%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.71–8.67 (m, 1H), 7.92–7.87 (m, 2H), 7.80–7.70 (m, 2H), 7.44 (dd, *J* = 7.6 Hz, 1H), 7.35 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.24 (ddd, *J* = 8.1, 4.1, 1.7 Hz, 1H), 3.73 (t, *J* = 7.7 Hz, 1H), 3.67 (s, 3H), 3.64 (s, 3H), 2.49–2.37 (m, 1H), 2.31 (dt, *J* = 6.8, 5.8, 1.2 Hz, 2H), 2.25–2.14 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.8 (C_q), 173.3 (C_q), 157.0(C_q), 149.6 (CH), 139.8 (C_q), 138.8 (C_q), 136.9 (CH), 129.2 (CH), 128.4 (CH), 126.8 (CH), 126.2 (CH), 122.3 (CH), 120.8 (CH), 52.2 (CH₃), 51.6 (CH₃), 50.5 (CH), 31.7 (CH₂), 28.4 (CH₂).

IR (ATR): $\tilde{v} = 2951$, 1729, 1584, 1462, 1435, 1195, 1152, 769, 745, 699 cm⁻¹.

MS (ESI) m/z (relative intensity): 314 (100) [M+H]+, 336 (60) [M+Na]+.

HR-MS (ESI): *m*/*z* calcd for C₁₈H₂₀NO₄⁺ [M+H]⁺: 314.1392, found: 314.1387.

Ρv CO₂Me OH

Methyl 3-(4-hydroxyphenyl)-2-[3-(21yridine-2-yl)phenyl]propanoate (4g)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2h** (229 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4g** (47 mg, 71%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.8 Hz, 1H), 7.92 (d, *J* = 1.7 Hz, 1H), 7.86–7.81 (m, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.44–7.33 (m, 2H), 7.31–7.27 (m, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.64 (d, *J* = 8.0 Hz, 2H), 3.88 (dd, *J* = 8.9, 6.6 Hz, 1H), 3.59 (s, 3H), 3.34 (dd, *J* = 13.8, 8.9 Hz, 1H), 2.97 (dd, *J* = 13.8, 6.6 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 174.0 (C_q), 157.2 (C_q), 154.8 (C_q), 149.2 (CH), 139.3 (C_q), 139.2 (C_q), 137.3 (CH), 130.4 (C_q), 130.0 (CH), 129.1 (CH), 128.7 (CH), 126.9 (CH), 126.2 (CH), 122.4 (CH), 121.3 (CH), 115.3 (CH), 53.9 (CH), 52.1 (CH₃), 38.9 (CH₂).

IR (ATR): $\tilde{v} = 2951$, 1734, 1613, 1593, 1515, 1435, 1241, 1154, 764, 699 cm⁻¹.

MS (ESI) m/z (relative intensity): 334 (100) [M+H]⁺, 356 (5) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₂₁H₂₀NO₃⁺ [M+H]⁺: 334.1443, found: 334.1440.

Methyl 2-[3-(22yridine-2-yl)phenyl]-3-[4-(tosyloxy)phenyl]propanoate (4h)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2i** (290 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4h** (81 mg, 83%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (ddd, *J* = 4.8, 1.5, 1.0 Hz, 1H), 7.92–7.85 (m, 2H), 7.75 (ddd, *J* = 8.1, 7.5, 1.8 Hz, 1H), 7.71–7.67 (m, 1H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.41 (ddd, *J* = 7.5, 0.6 Hz, 1H), 7.32 (ddd, *J* = 7.5, 1.5 Hz, 1H), 7.26–7.21 (m, 3H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.88 (dd, *J* = 8.7, 6.8 Hz, 1H), 3.59 (s, 3H), 3.42 (dd, *J* = 13.8, 8.7 Hz, 1H), 3.04 (dd, *J* = 13.8, 6.8 Hz, 1H), 2.42 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.4 (C_q), 156.9 (C_q), 149.6 (CH), 148.1 (C_q), 145.2 (C_q), 139.8 (C_q), 138.7 (C_q), 138.0 (C_q), 136.8 (CH), 132.3 (C_q), 130.1 (CH), 129.6 (CH), 129.1 (CH), 128.4 (CH), 128.3 (CH), 126.6 (CH), 126.1 (CH), 122.3 (CH), 122.2 (CH), 120.6 (CH), 53.4 (CH), 52.0 (CH₃), 39.1 (CH₂), 21.7 (CH₃).

IR (ATR): $\tilde{v} = 2950, 1733, 1502, 1371, 1198, 1176, 1092, 866, 770, 553 cm⁻¹.$

MS (ESI) m/z (relative intensity): 488 (100) [M+H]+, 510 (60) [M+Na]+.

HR-MS (ESI): *m*/*z* calcd for C₂₈H₂₆NO₅S⁺ [M+H]⁺: 488.1532, found: 488.1529.

Methyl 3-(4-iodophenyl)-2-[3-(23yridine-2-yl)phenyl]propanoate (4i)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2j** (273 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4i** (46 mg, 52%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70 (d, *J* = 4.8 Hz, 1H), 7.95–7.86 (m, 2H), 7.81–7.73 (m, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.43 (dd, *J* = 7.6 Hz, 1H), 7.35 (ddd, *J* = 7.7, 1.5 Hz, 1H), 7.28–7.21 (m, 1H), 6.90 (d, *J* = 8.3 Hz, 2H), 3.91 (dd, *J* = 9.0, 6.5 Hz, 1H), 3.61 (s, 3H), 3.41 (dd, *J* = 13.8, 9.0 Hz, 1H), 3.03 (dd, *J* = 13.8, 6.5 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.5 (C_q), 157.0 (C_q), 149.6 (CH), 139.8 (C_q), 138.8 (C_q), 138.6 (C_q), 137.4 (CH), 136.9 (CH), 131.1 (CH), 129.2 (CH), 128.4 (CH), 126.6 (CH), 126.2 (CH), 122.3 (CH), 120.7 (CH), 91.8 (C_q), 53.4 (CH), 52.1 (CH₃), 39.3 (CH₂).

IR (ATR): $\tilde{v} = 2949$, 1730, 1584, 1433, 1209, 1152, 1006, 767, 741, 698 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 444 (100) [M+H]⁺, 466 (10) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₂₁H₁₉INO₂⁺ [M+H]⁺: 444.0460, found: 444.0457.

Methyl 6-{[(benzyloxy)carbonyl]amino}-2-[3-(23yridine-2-yl)phenyl]hexanoate (4j)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2k** (269 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4j** (48 mg, 56%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.71 (d, *J* = 4.7 Hz, 1H), 7.94 (s, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.80–7.71 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.40–7.31 (m, 6H), 7.27–7.22 (m, 1H), 5.09 (s, 2H), 4.87–4.80 (m, 1H), 3.68 (s, 3H), 3.66–3.62 (m, 1H), 3.18 (q, *J* = 6.8 Hz, 2H), 2.22–2.04 (m, 1H), 1.93–1.76 (m, 1H), 1.59–1.47 (m, 2H), 1.40–1.23 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 174.3 (C_q), 157.1 (C_q), 156.3 (C_q), 149.6 (CH), 139.8 (C_q), 139.5 (C_q), 136.7 (CH), 136.6 (C_q), 129.1 (CH), 128.5 (CH), 128.3 (CH), 128.0 (CH), 128.0 (CH), 126.7 (CH), 125.9 (CH), 122.2 (CH), 120.7 (CH), 66.5 (CH₂), 52.0 (CH), 51.5 (CH₃), 40.7 (CH₂), 33.1 (CH₂), 29.6 (CH₂), 24.7 (CH₂).

IR (ATR): $\tilde{v} = 2949$, 1719, 1584, 1511, 1462, 1264, 1162, 771, 734, 698 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 433 (100) [M+H]⁺, 455 (60) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₂₆H₂₉N₂O₄⁺ [M+H]⁺: 433.2127, found: 433.2124.

Methyl 3-(1*H*-indol-3-yl)-2-[3-(24yridine-2-yl)phenyl]propanoate (4k)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2I** (238 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4k** (37 mg, 52%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70 (d, *J* = 4.4 Hz, 1H), 7.98 (s, 1H), 7.90 (ddd, *J* = 4.5, 1.7 Hz, 1H), 7.80–7.72 (m, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 4.5 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.26–7.18 (m, 2H), 7.15 (dd, *J* = 3.6, 1.3 Hz, 1H), 7.14–7.04 (m, 1H), 6.89 (d, *J* = 2.2 Hz, 1H), 4.10 (dd, *J* = 8.9, 6.4 Hz, 1H), 3.68 (dd, *J* = 8.9, 6.4 Hz, 1H), 3.61 (s, 3H), 3.25 (dd, *J* = 14.6, 6.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 174.2 (C_q), 157.1 (C_q), 149.5 (CH), 139.7 (CH), 139.6 (C_q), 136.9 (C_q), 136.1 (C_q), 129.1 (CH), 128.5 (CH), 127.3 (CH), 126.7 (C_q), 126.0 (CH), 122.4 (CH), 122.2 (CH), 121.9 (CH), 120.8 (CH), 119.4 (CH), 118.7 (CH), 113.3 (CH), 111.1 (C_q), 52.5 (CH), 52.0 (CH₃), 29.5 (CH₂).

IR (ATR): \tilde{v} = 3422, 2950, 1732, 1585, 1459, 1434, 1211, 1162, 908, 741 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 357 (100) [M+H]⁺, 379 (10) [M+Na]⁺.

HR-MS (ESI): m/z calcd for $C_{23}H_{21}N_2O_2^+$ [M+H]⁺: 357.1603, found: 357.1598.

Methyl {3-phenyl-2-[3-(25yridine-2-yl)phenyl]propanoyl}-L-alaninate (4l)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2m** (251 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4I** (40 mg, 51%, d.r. = 1:1), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.68 (d, *J* = 4.6 Hz, 2H), 8.02–7.84 (m, 4H), 7.79–7.64 (m, 4H), 7.48–7.40 (m, 4H), 7.25–7.20 (m, 6H), 7.19–7.08 (m, 6H), 5.99 (d, *J* = 6.2 Hz, 2H), 4.51 (q, *J* = 7.1 Hz, 2H), 3.75–3.69 (m, 2H), 3.67 (s, 3H), 3.62 (s, 3H), 3.55 (dd, *J* = 13.2, 9.5 Hz, 2H), 3.05 (dd, *J* = 13.2, 5.7 Hz, 2H), 1.25 (d, *J* = 7.1 Hz, 3H), 1.21 (d, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.2 (C_q), 173.2 (C_q), 172.0 (C_q), 171.9 (C_q), 157.2 (C_q), 157.1 (C_q), 149.6, 149.6, 140.0 (C_q), 139.8 (C_q), 139.7 (C_q), 139.7 (C_q), 139.4 (C_q), 139.3 (C_q), 136.8 (CH), 129.2 (CH), 129.1 (CH), 129.0 (CH), 129.0 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 126.8 (CH), 126.7 (CH), 126.3 (CH), 126.2 (CH), 126.0 (CH), 125.9 (CH), 122.2 (CH), 122.2 (CH), 120.7 (CH), 120.7 (CH), 55.5 (CH), 55.2 (CH), 52.4 (CH) (CH₃), 52.3 (CH₃), 48.1 (CH), 48.1 (CH), 40.1 (CH₂), 39.8 (CH₂), 18.3 (CH₃), 18.1 (CH₃).

IR (ATR): \tilde{v} = 2920, 1745, 1655, 1585, 1534, 1452, 1206, 1171, 772, 699 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 389 (100) [M+H]⁺, 411 (30) [M+Na]⁺.

HR-MS (ESI): m/z calcd for $C_{24}H_{25}N_2O_3^+$ [M+H]⁺: 389.1865, found: 389.1860.

4-{3-Methoxy-3-oxo-2-[3-(25 yridine-2-yl)phenyl]propyl}phenyl (1s,3s)-adamantane-1carboxylate (4m)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2n** (294 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc =

5:1) yielded **4m** (83 mg, 84%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70 (ddd, *J* = 4.8, 1.8, 1.0 Hz, 1H), 7.95–7.85 (m, 2H), 7.77–7.68 (m, 2H), 7.45–7.36 (m, 2H), 7.23 (ddd, *J* = 7.2, 4.8, 1.3 Hz, 1H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 3.94 (dd, *J* = 9.1, 6.3 Hz, 1H), 3.60 (s, 3H), 3.47 (dd, *J* = 13.8, 9.1 Hz, 1H), 3.07 (dd, *J* = 13.8, 6.3 Hz, 1H), 2.09–2.05 (m, 3H), 2.03 (d, *J* = 2.9 Hz, 6H), 1.76 (d, *J* = 3.2 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 176.1 (Cq), 173.6 (Cq), 157.0 (Cq), 149.6 (CH), 149.6 (Cq), 139.8 (Cq), 139.0 (Cq), 136.7 (CH), 136.2 (Cq), 129.8 (CH), 129.0 (CH), 128.3 (CH), 126.6 (CH), 126.0 (CH), 122.2 (CH), 121.3 (CH), 120.7 (CH), 53.6 (CH), 52.0 (CH₃), 40.9 (Cq), 39.2 (CH₂), 38.7 (CH₂), 36.4 (CH₂), 27.8 (CH).

IR (ATR): $\tilde{v} = 2906$, 2852, 1737, 1584, 1508, 1452, 1195, 1165, 1054, 768 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 496 (100) [M+H]⁺, 518 (60) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₃₂H₃₄NO₄⁺ [M+H]⁺: 496.2488, found: 496.2483.

4-{3-Methoxy-3-oxo-2-[3-(26yridine-2-yl)phenyl]propyl}phenyl cyclobutanecarboxylate (4n) The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2o** (262 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4n** (59 mg, 71%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70 (d, *J* = 4.6 Hz, 1H), 7.96–7.83 (m, 2H), 7.78 (dd, *J* = 7.9, 5.6 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.51–7.33 (m, 2H), 7.28–7.23 (m, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 3.94 (dd, *J* = 9.0, 6.4 Hz, 1H), 3.61 (s, 3H), 3.47 (dd, *J* = 13.8, 9.0 Hz, 1H), 3.35 (pd, *J* = 8.5, 1.0 Hz, 1H), 3.07 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.47–2.36 (m, 2H), 2.35–2.25 (m, 2H), 2.09–1.91 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.9 (C_q), 173.6 (C_q), 156.8 (C_q), 149.3 (C_q), 149.3 (CH), 139.4 (C_q), 139.1 (C_q), 137.2 (CH), 136.3 (C_q), 129.9 (CH), 129.1 (CH), 128.5 (CH), 126.7 (CH), 126.1 (CH), 122.3 (CH), 121.3 (CH), 120.9 (CH), 53.6 (CH), 52.0 (CH₃), 39.2 (CH₂), 38.1 (CH), 25.3 (CH₂), 18.4 (CH₂).

IR (ATR): \tilde{v} = 2950, 1733, 1584, 1507, 1434, 1322, 1198, 1167, 1017, 764 cm⁻¹.

MS (ESI) m/z (relative intensity): 416 (100) [M+H]⁺, 438 (10) [M+Na]⁺. **HR-MS** (ESI): m/z calcd for C₂₆H₂₆NO₄⁺ [M+H]⁺: 416.1862, found: 416.1856.

4-{3-Methoxy-3-oxo-2-[3-(27 yridine-2-yl)phenyl]propyl}phenyl benzo[*d*][1,3]dioxole-5carboxylate (40)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2p** (288 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4o** (87 mg, 90%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.71 (d, *J* = 3.9 Hz, 1H), 7.95 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.80 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.76 (dd, *J* = 7.4, 1.7 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 1.8 Hz, 1H), 7.45 (dd, *J* = 7.6 Hz, 1H), 7.39 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.25–7.15 (m, 3H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.06 (s, 2H), 3.96 (t, *J* = 9.0, 6.3 Hz, 1H), 3.62 (s, 3H), 3.50 (dd, *J* = 13.8, 9.0 Hz, 1H), 3.10 (dd, *J* = 13.8, 6.3 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.6 (C_q), 164.5 (C_q), 157.0 (C_q), 152.1 (C_q), 149.5 (CH), 147.8 (C_q), 139.7 (C_q), 139.1 (2C_q), 136.9 (CH), 136.5 (C_q), 130.0 (CH), 129.1 (CH), 128.4 (CH), 126.7 (CH), 126.1 (2CH), 123.4 (C_q), 122.3 (CH), 121.5 (CH), 120.8 (CH), 109.9 (CH), 108.1 (CH), 101.9 (CH₂), 53.6 (CH), 52.1 (CH₃), 39.2 (CH₂).

IR (ATR): \tilde{v} = 1730, 1506, 1442, 1275, 1258, 1195, 1101, 1036, 916, 753 cm⁻¹.

MS (ESI) m/z (relative intensity): 482 (100) [M+H]+, 504 (30) [M+Na]+.

HR-MS (ESI): *m*/*z* calcd for C₂₉H₂₄NO₆⁺ [M+H]⁺: 482.1604, found: 482.1601.

4-{3-Methoxy-3-oxo-2-[3-(27 yridine-2-yl)phenyl]propyl}phenyl benzo[b]thiophene-2-

carboxylate (4p)

The general procedure **A** was followed using2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2q** (293 mg, 0.4 mmol) .Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4p** (54 mg, 55%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.71 (dd, *J* = 4.8, 1.5 Hz, 1H), 8.23 (s, 1H), 7.97–7.87 (m, 4H), 7.81–7.75 (m, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.45 (m, 4H), 7.28–7.21 (m, 3H), 7.14 (d, *J* = 8.5 Hz, 2H), 3.97 (dd, *J* = 9.0, 6.4 Hz, 1H), 3.63 (s, 3H), 3.51 (dd, *J* = 13.7, 9.0 Hz, 1H), 3.11 (dd, *J* = 13.7, 6.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.6 (C_q), 161.2 (C_q), 157.0 (C_q), 149.5 (CH), 149.1 (C_q), 142.6 (C_q), 139.6 (C_q), 139.0 (C_q), 138.6 (C_q), 137.0 (CH), 136.9 (C_q), 132.7 (C_q), 131.8 (CH), 130.1 (CH), 129.2 (CH), 128.5 (CH), 127.3 (CH), 126.7 (CH), 126.2 (CH), 125.7 (CH), 125.1 (CH), 122.8 (CH), 122.3 (CH), 121.4 (CH), 120.9 (CH), 53.6 (CH), 52.1 (CH₃), 39.3 (CH₂).

IR (ATR): \tilde{v} = 2950, 1729, 1505, 1269, 1229, 1175, 1155, 1020, 754, 721 cm⁻¹.

MS (ESI) m/z (relative intensity): 494 (100) [M+H]⁺, 516 (30) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₃₀H₂₄NO₄S⁺ [M+H]⁺: 494.1426, found: 494.1422.

4-{3-Methoxy-3-oxo-2-[3-(28yridine-2-yl)phenyl]propyl}phenyl furan-2-carboxylate (4q)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2r** (266 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4q** (59 mg, 69%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70 (d, *J* = 4.4 Hz, 1H), 7.95–7.88 (m, 2H), 7.82–7.74 (m, 1H), 7.73–7.64 (m, 2H), 7.44 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.39 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.35 (dd, *J* = 3.5, 0.8 Hz, 1H), 7.26–7.22 (m, 1H), 7.20 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.58 (dd, *J* = 3.6, 1.7 Hz, 1H), 3.96 (dd, *J* = 9.0, 6.3 Hz, 1H), 3.62 (s, 3H), 3.49 (dd, *J* = 13.8, 9.0 Hz, 1H), 3.10 (dd, *J* = 13.8, 6.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 173.6 (C_q), 157.0 (C_q), 156.9 (C_q), 149.5 (CH), 148.7 (C_q), 147.1 (CH), 144.0 (C_q), 139.7 (C_q), 139.1 (C_q), 137.0 (CH), 136.9 (C_q), 130.1 (CH), 129.2 (CH), 128.5

(CH), 126.7 (CH), 126.2 (CH), 122.3 (CH), 121.4 (CH), 120.9 (CH), 119.4 (CH), 112.2 (CH), 53.6 (CH), 52.1 (CH₃), 39.3 (CH₂).

IR (ATR): \tilde{v} = 2952, 1733, 1471, 1392, 1293, 1198, 1173, 1088, 1015, 762 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 428 (100) [M+H]⁺, 450 (10) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₂₆H₂₂NO₅⁺ [M+H]⁺: 428.1498, found: 428.1495.

Methyl 3-{4-{2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl]acetoxy}phenyl}-2-[3-(29yridine-2-yl)phenyl]propanoate (4r)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2s** (365 mg, 0.4 mmol). After 24 h, purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4r** (82 mg, 61%), as a white solid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.71–8.65 (m, 1H), 7.96–7.84 (m, 2H), 7.74 (ddd, *J* = 7.6, 1.9 Hz, 1H), 7.70–7.65 (m, 3H), 7.49–7.40 (m, 3H), 7.37 (d, *J* = 7.0 Hz, 1H), 7.25–7.20 (m, 1H), 7.15 (d, 2H), 7.05 (d, *J* = 2.5 Hz, 1H), 6.96–6.93 (m, 2H), 6.90 (d, *J* = 9.1 Hz, 1H), 6.69 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.92 (dd, *J* = 9.0, 6.3 Hz, 1H), 3.88 (s, 2H), 3.83 (s, 3H), 3.60 (s, 3H), 3.46 (dd, *J* = 13.8, 9.0 Hz, 1H), 3.06 (dd, *J* = 13.8, 6.3 Hz, 1H), 2.44 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 173.5 (C_q), 169.3 (C_q), 168.2 (C_q), 157.0 (C_q), 156.1 (C_q), 149.6 (CH), 149.2 (C_q), 139.8 (C_q), 139.3 (C_q), 138.9 (C_q), 136.8 (CH), 136.7 (C_q), 136.1 (C_q), 133.8 (C_q), 131.2 (CH), 130.8 (C_q), 130.5 (C_q), 129.9 (CH), 129.1 (2CH), 128.3 (CH), 126.6 (CH), 126.1 (CH), 122.2 (CH), 121.2 (CH), 120.7 (CH), 115.0 (CH), 112.0 (C_q), 111.8 (CH), 101.2 (CH), 55.7 (CH₃), 53.5 (CH), 52.0 (CH₃), 39.1 (CH₂), 30.5 (CH₂), 13.4 (CH₃).

IR (ATR): \tilde{v} = 2953, 1732, 1679, 1477, 1324, 1310, 1195, 1125, 906, 726 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 673 (100) [M+H]⁺.

HR-MS (ESI): m/z calcd for C₄₀H₃₄ClN₂O₆⁺ [M+H]⁺: 673.2105, found: 673.2106.

4-{3-Methoxy-3-oxo-2-[3-(30yridine-2-yl)phenyl]propyl}phenyl (4R)-4-[(8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*cyclopenta[*a*]30yridine30ene-17-yl]pentanoate (4s)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2t** (383 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4s** (105 mg, 73%), as a white solid.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.69$ (d, J = 4.5 Hz, 1H), 7.92 (dd, J = 1.7 Hz, 1H), 7.88 (ddd, J = 7.6, 1.5 Hz, 1H), 7.75 (ddd, J = 7.6, 1.8 Hz, 1H), 7.69 (ddd, J = 8.0, 1.2 Hz, 1H), 7.42 (dd, J = 7.6 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.23 (ddd, J = 7.3, 4.5, 1.3 Hz, 1H), 7.15 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 8.2 Hz, 2H), 3.93 (dd, J = 9.1, 6.3 Hz, 1H), 3.60 (s, 3H), 3.46 (dd, J = 13.8, 9.1 Hz, 1H), 3.06 (dd, J = 13.8, 6.3 Hz, 1H), 2.97–2.77 (m, 3H), 2.62 (ddd, J = 14.6, 9.0, 5.3 Hz, 1H), 2.49 (dt, J = 15.9, 8.0 Hz, 1H), 2.40–2.23 (m, 5H), 2.21–2.11 (m, 3H), 2.10–2.03 (m, 2H), 2.01–1.92 (m, 3H), 1.86 (td, J = 11.4, 7.1 Hz, 1H), 1.61 (td, J = 14.3, 5.0 Hz, 1H), 1.53–1.45 (m, 1H), 1.41–1.33 (m, 5H), 1.30–1.23 (m, 1H), 1.08 (s, 3H), 0.90 (d, J = 6.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 211.9 (C_q), 209.0 (C_q), 208.6 (C_q), 173.6 (C_q), 172.5 (C_q), 157.0 (C_q), 149.6 (CH), 149.2 (C_q), 139.8 (C_q), 139.0 (C_q), 136.8 (CH), 136.5 (C_q), 129.9 (CH), 129.1 (CH), 128.3 (CH), 126.6 (CH), 126.1 (CH), 122.2 (CH), 121.4 (CH), 120.7 (CH), 56.9 (C_q), 53.6 (CH), 52.0 (CH₃), 51.7 (CH), 48.9 (CH), 46.8 (CH), 45.6 (CH), 45.5 (CH), 44.9 (CH₂), 42.7 (CH₂), 39.2 (CH₂), 38.6 (CH₂), 36.4 (CH₂), 36.0 (C_q), 35.4 (CH), 35.2 (CH₂), 31.5 (CH₂), 30.4 (CH₂), 27.6 (CH₂), 25.1 (CH₂), 21.9 (CH₃), 18.6 (CH₃), 11.8 (CH₃).

IR (ATR): \tilde{v} = 2984, 1736, 1372, 1233, 1043, 938, 846, 785, 634,607 cm⁻¹.

MS (ESI) m/z (relative intensity): 718 (100) [M+H]⁺, 740 (50) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₄₅H₅₂NO₇⁺ [M+H]⁺: 718.3744, found: 718.3741.

4-{3-Methoxy-3-oxo-2-[3-(31yridine-2-yl)phenyl]propyl}phenyl I-octadec-9-enoate (4t)

The general procedure **A** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **2u** (335 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4t** (73 mg, 61%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70 (ddd, *J* = 4.8, 1.3 Hz, 1H), 7.93 (dd, *J* = 1.8 Hz, 1H), 7.89 (ddd, *J* = 7.6, 1.5 Hz, 1H), 7.75 (ddd, *J* = 7.6, 7.0, 1.8 Hz, 1H), 7.70 (ddd, *J* = 8.0, 1.2 Hz, 1H), 7.43 (dd, *J* = 7.6 Hz, 1H), 7.38 (dt, *J* = 7.7, 1.6 Hz, 1H), 7.23 (ddd, *J* = 7.0, 4.8, 1.3 Hz, 1H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 2H), 5.41–5.36 (m, 2H), 3.94 (dd, *J* = 9.1, 6.3 Hz, 1H), 3.61 (s, 3H), 3.47 (dd, *J* = 13.8, 9.1 Hz, 1H), 3.07 (dd, *J* = 13.8, 6.3 Hz, 1H), 2.52 (t, *J* = 7.5 Hz, 2H), 2.13–1.88 (m, 4H), 1.73 (p, *J* = 7.6, 7.1 Hz, 2H), 1.44–1.21 (m, 20H), 0.88 (t, *J* = 6.8 Hz, 3H). 1³**C NMR** (101 MHz, CDCl₃): δ = 173.5 (C_q), 172.3 (C_q), 157.1 (C_q), 149.6 (CH), 149.3 (C_q), 139.8 (C_q), 139.0 (C_q), 136.7 (CH), 136.4 (C_q), 130.5 (CH), 130.1 (CH), 129.9 (CH), 129.1 (CH), 128.3 (CH), 126.6 (CH), 126.1 (CH), 122.2 (CH), 121.4 (CH), 120.7 (CH), 53.6 (CH), 52.0 (CH₃), 39.2 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 24.9 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 24.9 (CH₂), 22.7 (CH₂), 14.1 (CH₃). **IR** (ATR): \tilde{v} = 2923, 2852, 1758, 1735, 1507, 1462, 1198, 1166, 740, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 598 (100) [M+H]⁺.

HR-MS (ESI): m/z calcd for $C_{39}H_{52}NO_4^+$ [M+H]⁺: 598.3896, found: 598.3891.

Рy

2-(3-Benzylphenyl)pyridine (6a)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5a** (194 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6a** (30 mg, 61%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.7 Hz, 1H), 7.88 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.77–7.66 (m, 2H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.30 (dd, *J* = 7.5 Hz, 2H), 7.27–7.17 (m, 5H), 4.09 (s, 2H).

¹³**C NMR** (101 MHz, CDCI₃) δ = 157.5 (C_q), 149.6 (CH), 141.6 (C_q), 141.0 (C_q), 139.6 (C_q), 136.7 (CH), 129.6 (CH), 128.9 (CH), 128.9 (CH), 128.5 (CH), 127.6 (CH), 126.1 (CH), 124.7 (CH), 122.0 (CH), 120.7 (CH), 42.0 (CH₂).

IR (ATR): \tilde{v} = 3025, 1583, 1564, 1511, 1461, 1434, 768, 723, 696 cm⁻¹.

MS (ESI) m/z (relative intensity): 246 (100) [M+H]⁺, 268 (20) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₁₈H₁₆N⁺ [M+H]⁺: 246.1283, found: 246.1279.

The spectral data were in accordance with those reported in the literature³.

2-[3-(4-Methylbenzyl)phenyl]pyridine (6b)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5b** (200 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6b** (35 mg, 67%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.7 Hz, 1H), 7.86 (s, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.77–7.67 (m, 2H), 7.39 (dd, *J* = 7.7 Hz, 1H), 7.28–7.20 (m, 2H), 7.11 (d, *J* = 2.6 Hz, 4H), 4.04 (s, 2H), 2.31 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 157.5 (C_q), 149.5 (CH), 142.0 (C_q), 139.5 (C_q), 138.0 (C_q), 136.8 (CH), 135.6 (C_q), 129.6 (CH), 129.2 (CH), 128.9 (CH), 128.8 (CH), 127.5 (CH), 124.7 (CH), 122.1 (CH), 120.7 (CH), 41.6 (CH₂), 21.0 (CH₃).

IR (ATR): \tilde{v} = 2919, 1584, 1565, 1513, 1461, 1434, 1151, 805, 774, 748 cm⁻¹.

MS (ESI) m/z (relative intensity): 260 (100) [M+H]⁺, 282 (30) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₁₉H₁₈N⁺ [M+H]⁺: 260.1439, found: 260.1435.

The spectral data were in accordance with those reported in the literature³.

Ρy CF_3

2-{3-[4-(Trifluoromethyl)benzyl]phenyl}pyridine (6c)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5c** (221 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6c** (48 mg, 76%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.8, 1H), 7.88 (dd, *J* = 1.9 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.78–7.67 (m, 2H), 7.54 (d, *J* = 7.9 Hz, 2H), 7.41 (dd, *J* = 8.6, 7.8 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.25–7.20 (m, 2H), 4.13 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 157.3 (C_q), 149.7 (CH), 145.1 (C_q), 145.1 (C_q), 140.5 (C_q), 139.8 (C_q), 136.8 (CH), 129.6 (CH), 129.2 (CH), 129.1 (CH), 127.6 (CH), 125.4 (q, *J*_{C-F} = 3.8 Hz, CH), 125.1 (CH), 122.2 (CH), 120.7 (CH), 41.8 (CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃): δ = -62.34.

IR (ATR): \tilde{v} = 3049, 1585, 1324, 1163, 1122, 1107, 1066, 908, 756, 732 cm⁻¹.

MS (ESI) m/z (relative intensity): 314 (100) [M+H]⁺, 336 (30) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₁₉H₁₅F₃N⁺ [M+H]⁺: 314.1157, found: 314.1151.

2-[3-(4-Chlorobenzyl)phenyl]pyridine 6d)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5d** (208 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6d** (34 mg, 61%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.70–8.65 (m, 1H), 7.89–7.77 (m, 2H), 7.76–7.66 (m, 2H), 7.40 (dd, *J* = 8.7, 6.6 Hz, 1H), 7.27–7.19 (m, 4H), 7.15 (ddd, *J* = 8.9, 2.6 Hz, 2H), 4.03 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 157.4 (C_q), 149.7 (CH), 141.1 (C_q), 139.7 (C_q), 139.5 (C_q), 136.7 (CH), 131.9 (C_q), 130.3 (CH), 129.5 (CH), 129.0 (CH), 128.6 (CH), 127.5 (CH), 124.9 (CH), 122.2 (CH), 120.7 (CH), 41.3 (CH₂).

IR (ATR): \tilde{v} = 2925, 1584, 1490, 1461, 1321, 1090, 1015, 798, 770, 743 cm⁻¹.

MS (ESI) m/z (relative intensity): 280 (100) [M+H]⁺, 302 (5) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₁₈H₁₅CIN⁺ [M+H]⁺: 280.0893, found: 280.0891.

The spectral data were in accordance with those reported in the literature³.

Рy CI E

2-[3-(4-Chloro-2-fluorobenzyl)phenyl]pyridine (6e)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5e** (215 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc =

5:1) yielded **6e** (32 mg, 54%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.73 (d, *J* = 3.6 Hz, 1H), 7.93 (d, *J* = 2.8 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.83–7.72 (m, 2H), 7.45 (dd, J = 7.7, 7.6 Hz, 1H), 7.33–7.27 (m, 3H), 7.12 (dd, *J* = 7.4, 6.6 Hz, 1H), 7.02 (dd, *J* = 7.8, 7.7 Hz, 1H), 4.14 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 157.6 (C_q), 157.3 (C_q), 155.1 (C_q), 149.7 (CH), 139.8 (d, ²*J*_{C-F} = 19.1 Hz, C_q), 136.7 (CH), 129.5 (CH), 129.3 (d, ⁴*J*_{C-F} = 4.1 Hz, CH), 129.0 (CH), 128.6 (CH), 127.5 (CH), 125.2 (CH), 124.4 (d, ³*J*_{C-F} = 4.8 Hz, CH), 122.2 (CH), 120.7 (CH), 35.1 (d, ³*J*_{C-F} = 2.5 Hz, CH₂).

¹⁹**F NMR** (377 MHz, CDCl₃): $\delta = -119.62$.

IR (ATR): \tilde{v} = 2923, 1585, 1565, 1460, 1435, 1415, 1228, 816, 768, 744 cm⁻¹.

MS (ESI) m/z (relative intensity): 298 (100) [M+H]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₈H₁₄CIFN⁺ [M+H]⁺: 298.0799, found: 298.0798.

2-[3-(4-lodobenzyl)phenyl]pyridine (6f)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **6f** (244 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6f** (39 mg, 52%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.75–8.62 (m, 1H), 7.87–7.78 (m, 2H), 7.76–7.66 (m, 2H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.39 (dd, *J* = 7.7, 7.6 Hz, 1H), 7.22 (dddd, *J* = 7.7, 6.1, 5.5, 1.5 Hz, 2H), 6.98 (d, *J* = 8.3 Hz, 2H), 4.01 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 156.9 (C_q), 149.3 (CH), 140.6 (C_q), 140.3 (C_q), 139.3 (C_q), 137.2 (CH), 136.5 (CH), 130.7 (CH), 129.2 (CH), 128.7 (CH), 127.2 (CH), 124.6 (CH), 121.8 (CH), 120.4 (CH), 91.0 (C_q), 41.1 (CH₂).

IR (ATR): \tilde{v} = 2922, 1584, 1483, 1461, 1434, 1006, 790, 768, 742, 476 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 372 (100) [M+H]⁺, 394 (10) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₈H₁₅IN⁺ [M+H]⁺: 372.0249, found: 372.0245.

2-{3-[4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl]phenyl}pyridine (6g)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5g** (244 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6g** (34 mg, 46%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): *δ* = 8.71 (d, *J* = 3.1, 1.7 Hz, 1H), 7.87 (dd, *J* = 2.4 Hz, 1H), 7.83 (m, 1H), 7.79–7.73 (m, 3H), 7.73–7.69 (m, 1H), 7.45–7.36 (m, 1H), 7.28–7.19 (m, 4H), 4.11 (s, 2H), 1.35 (s, 12H).

¹³C NMR (101 MHz, CDCl₃): δ = 157.4 (C_q), 149.5 (CH), 144.3 (C_q), 142.1 (C_q), 141.4 (C_q), 139.4 (C_q), 136.8 (CH), 135.0 (CH), 129.7 (CH), 128.9 (CH), 128.5 (CH), 127.6 (CH), 124.8 (CH), 122.1 (CH), 120.8 (CH), 83.7 (C_q), 42.2 (CH₂), 24.8 (CH₃).

IR (ATR): \tilde{v} = 2976, 1611, 1585, 1397, 1359, 1143, 1088, 858, 767, 660 cm⁻¹.

MS (ESI) m/z (relative intensity): 372 (100) [M+H]+, 394 (20) [M+Na]+.

HR-MS (ESI): *m*/*z* calcd for C₂₄H₂₇BNO₂⁺ [M+H]⁺: 372.2135, found: 372.2134.

4-[3-(Pyridin-2-yl)benzyl]benzoic acid (6h)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5h** (212 mg, 0.4 mmol). After 24 h, purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6h** (30 mg, 52%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.71 (d, *J* = 4.8 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.67 (ddd, *J* = 7.8, 7.5, 1.7 Hz, 1H), 7.41–7.32 (m, 3H), 7.25–7.20 (m, 3H), 7.02 (d, *J* = 8.0 Hz, 2H), 4.19 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 170.9 (C_q), 159.6 (C_q), 148.9 (CH), 147.5 (C_q), 140.4 (C_q), 137.9 (C_q), 136.5 (CH), 130.7 (CH), 130.0 (CH), 130.0 (CH), 128.8 (CH), 128.6 (CH), 127.0 (C_q), 126.7 (CH), 124.3 (CH), 122.0 (CH), 39.1 (CH₂).

IR (ATR): \tilde{v} = 2925, 1725, 1687, 1611, 1426, 1414, 1280, 1177, 753, 725 cm⁻¹.

MS (ESI) m/z (relative intensity): 290 (100) [M+H]⁺, 312 (30) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₉H₁₆NO₂⁺ [M+H]⁺: 290.1181, found: 290.1179.

Methyl {4-[3-(35yridine-2-yl)benzyl]benzoyl}-D-valinate (6i)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5i** (245 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6i** (51 mg, 63%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.68 (d, *J* = 4.8 Hz, 1H), 7.86 (s, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.77–7.66 (m, 4H), 7.40 (dd, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.25–7.18 (m, 2H), 6.59 (d, *J* = 8.7 Hz, 1H), 4.77 (dd, *J* = 8.7, 4.9 Hz, 1H), 4.11 (s, 2H), 3.76 (s, 3H), 2.26 (pd, *J* = 7.2, 4.9 Hz, 1H), 0.98 (t, *J* = 7.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 172.6 (C_q), 167.1 (C_q), 157.3 (C_q), 149.6 (CH), 145.1 (C_q), 140.8 (C_q), 139.7 (C_q), 136.7 (CH), 132.0 (C_q), 129.5 (CH), 129.2 (CH), 129.0 (CH), 127.5 (CH), 127.3 (CH), 125.0 (CH), 122.1 (CH), 120.7 (CH), 57.3 (CH), 52.2 (CH₃), 41.8 (CH₂), 31.6 (CH), 19.0 (CH₃), 17.9 (CH₃).

IR (ATR): \tilde{v} = 2963, 1744, 1660, 1639, 1537, 1502, 1462, 1208, 1155, 770 cm⁻¹.

MS (ESI) m/z (relative intensity): 403 (100) [M+H]⁺, 425 (30) [M+Na]⁺.

HR-MS (ESI): *m*/*z* calcd for C₂₅H₂₇N₂O₃⁺ [M+H]⁺: 403.2022, found: 403.2020.

Methyl {4-[3-(36yridine-2-yl)benzyl]benzoyl}-L-phenylalaninate (6j)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5j** (276 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6j** (60 mg, 67%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.2 Hz, 1H), 7.86 (s, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.70 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.40 (dd, *J* = 7.7 Hz, 1H), 7.32–7.25 (m, 4H), 7.23 (m, 3H), 7.16–7.08 (m, 2H), 6.54 (d, *J* = 7.5 Hz, 1H), 5.08 (dt, *J* = 7.5, 5.6 Hz, 1H), 4.10 (s, 2H), 3.75 (s, 3H), 3.24 (qd, *J* = 13.8, 5.6 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 172.0 (C_q), 166.6 (C_q), 157.1 (C_q), 149.4 (CH), 145.1 (C_q), 140.8 (C_q), 139.4 (C_q), 137.0 (CH), 135.8 (C_q), 131.8 (C_q), 129.7 (CH), 129.3 (CH), 129.2 (CH), 129.1 (CH), 128.6 (CH), 127.6 (CH), 127.3 (CH), 127.2 (CH), 125.0 (CH), 122.2 (CH), 120.8 (CH), 53.4 (CH), 52.4 (CH₃), 41.8 (CH₂), 37.9 (CH₂).

IR (ATR): \tilde{v} = 2925, 1737, 1664, 1546, 1264, 1215, 764, 736, 720, 658 cm⁻¹.

MS (ESI) m/z (relative intensity): 451 (100) [M+H]⁺, 473 (60) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₂₉H₂₇N₂O₃⁺ [M+H]⁺: 451.2022, found: 451.2019.

Methyl {4-[3-(37yridine-2-yl)benzyl]benzoyl}-L-tyrosinate (6k)

The general procedure **B** was followed using 2-phenylpyridine (**1a**) (31 mg, 0.2 mmol) and Katritzky salt **5k** (282 mg, 0.4 mmol). Purification by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **6k** (49 mg, 53%), as a colorless liquid.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.67 (d, *J* = 4.0 Hz, 1H), 7.82 (s, 1H), 7.80–7.73 (m, 2H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 2H), 7.38 (dd, *J* = 7.8, 7.7 Hz, 1H), 7.26–7.11 (m, 4H), 6.92 (d, *J* = 8.1 Hz, 2H), 6.69 (d, *J* = 8.1 Hz, 2H), 6.59 (d, *J* = 7.8 Hz, 1H), 5.01 (t, *J* = 7.5, 5.7 Hz, 1H), 4.05 (s, 2H), 3.73 (s, 3H), 3.13 (qd, *J* = 14.0, 5.7 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 172.2 (C_q), 166.9 (C_q), 157.2 (C_q), 155.5 (C_q), 149.2 (CH), 145.1 (C_q), 140.9 (C_q), 139.2 (C_q), 137.4 (CH), 131.5 (C_q), 130.4 (CH), 129.7 (CH), 129.2 (CH), 129.1 (CH), 127.7 (CH), 127.3 (CH), 127.1 (C_q), 125.1 (CH), 122.4 (CH), 121.2 (CH), 115.6 (CH), 53.6 (CH), 52.4 (CH₃), 41.8 (CH₂), 37.0 (CH₂).

IR (ATR): \tilde{v} = 2951, 1744, 1639, 1515, 1495, 1264, 904, 772, 727, 649 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 467 (100) [M+H]⁺, 489 (60) [M+Na]⁺.

HR-MS (ESI): m/z calcd for C₂₉H₂₇N₂O₄⁺ [M+H]⁺: 467.1971, found: 467.1976.

Mechanistic Investigations

H/D exchange experiment.

2-Phenylpyridine **1a** (31 mg, 0.2 mmol), Katritzky salt **2a** (192 mg, 0.4 mmol), $[RuCl_2(p-cymene)]_2$ (6.2 mg, 5 mol %), P(4-CF₃C₆H₄)₃ (18.7 mg, 20 mol %) and Na₂CO₃ (42.4 mg, 0.4 mmol) were placed in an oven-dried Schlenk tube. The mixture was evacuated and purged with N₂ three times. Then, CD₃OD (5.0 equiv.) and 1,4-dioxane (0.2 mL) were added. The tube was sealed and stirred at 100 °C for 12 h. After cooling to ambient temperature, the mixture was diluted with CH₂Cl₂ and concentrated *in vacuo*. The product was purified by column chromatography on silica gel (*n*-hexane/EtOAc 5:1), yielding [D]_n-**1a** (9.3 mg, 30% yield) as a colorless oil and [D]_n-**3a** (25 mg, 52% yield) as a colorless oil. The deuterium incorporation was determined by ¹H NMR spectroscopy.

Competition experiment

Arene **1b** (37.0 mg, 0.2 mmol), **1c** (35.0 mg, 0.2 mmol), Katritzky salts **2a** (96.0 mg, 0.2 mmol), $[RuCl_2(p\text{-cymene})]_2$ (6.1 mg, 5 mol %), P(4-CF₃C₆H₄)₃ (18.7 mg, 20 mol %) and Na₂CO₃ (42.4 mg, 0.4 mmol) were placed in an oven-dried Schlenk tube. The mixture was evacuated and purged with N₂ three times. Then,1,4-dioxane (0.2 mL) was added. The tube was sealed and stirred at 100 °C for 24 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂ and concentrated *in vacuo*. The product was purified by column chromatography on silica gel (*n*-hexane/EtOAc 5:1), yielding **3b** (12 mg, 22% yield) as a colorless oil and **3c** (17 mg, 30% yield) as a colorless oil.

Arene **1a** (31.0 mg, 0.2 mmol), Katritzky salts **5b** (199.0 mg, 0.4 mmol), Katritzky salt **5c** (221.0 mg, 0.4 mmol), $[RuCl_2(p-cymene)]_2$ (6.1 mg, 5 mol %), P(4-CF₃C₆H₄)₃ (18.7 mg, 20 mol %) and Na₂CO₃ (42.4 mg, 0.4 mmol) were placed in an oven-dried Schlenk tube. The mixture was evacuated and purged with N₂ three times. Then, 1,4-dioxane (0.2 mL) was added. The tube was sealed and stirred at 100 °C for 24 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂ and concentrated *in vacuo*. The product was purified by column chromatography on silica gel (*n*-hexane/EtOAc 5:1) yielding **6b** (22 mg, 42 % yield) as a colorless oil and **6c** (30 mg, 47 % yield) as a colorless oil.

Reaction with Radical Scavengers

2-phenylpyridine **1a** (31.0 mg, 0.2 mmol), Katritzky salt **2a** (192.0 mg, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (3.1 mg, 2.5 mol %), P(4-CF₃C₆H₄)₃ (9.3 mg, 10 mol %), Na₂CO₃ (42.4 mg, 0.4 mmol) and TEMPO (62 mg, 0.4 mmol) were placed in an oven-dried Schlenk tube. The mixture was evacuated and purged with N₂ three times. Then 1,4-dioxane (0.2 mL) was added. The tube was sealed and stirred at 100 °C for 24 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂ and concentrated *in vacuo*, only traces amount of **3a** can be obtained, and **9** can be detected by ESI-MS (*m*/*z* =244.1907). Product **12** can be isolated in 89% yield at the standard conditions.

detected 268.1332 (ESI-MS)

2-phenylpyridine **1a** (31.0 mg, 0.2 mmol), Katritzky salt **10** (203.0 mg, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (3.1 mg, 2.5 mol %), P(4-CF₃C₆H₄)₃ (9.3 mg, 10 mol %) and Na₂CO₃ (42.4 mg, 0.4 mmol) were placed in an oven-dried Schlenk tube. The mixture was evacuated and purged with N₂ three times. Then 1,4-dioxane (2.0 mL) was added. The tube was sealed and heated at 100 °C for 24 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂ and concentrated *in vacuo*, product **11** can be detected by ESI-MS (*m*/*z* =268.1322).

Racemization Studies

Substrates *s*-**6k** and *rac*-**6k** were subjected to the deaminative C–H alkylation under the optimized reaction conditions. HPLC analysis showed that no racemization occurred.

s**-6k**

Figure 1: HPLC-Chromatogram of substrate s-6k and rac-6k. IC n-hexane// PrOH 60/40 flow: 1 mL/min, 273 nm.

References

- (a) M. E. Hoerrner, K. M. Baker, C. H. Basch, E. M. Bampo and M. P. Watson, *Org. Lett.*, 2019, 21, 7356-7360; (b) Z.-F. Zhu, J.-L. Tu and F. Liu, *Chem. Commun.*, 2019, 55, 11478-11481.
- 2. I. Choi, V. Muller, Y. Wang, K. Xue, R. Kuniyil, L. B. Andreas, V. Karius, J. G. Alauzun and L. Ackermann, *Chem. Eur. J.*, 2020, **26**, 15290-15297.
- 3. G. Li, D. Li, J. Zhang, D.-Q. Shi and Y. Zhao, ACS Catal., 2017, 7, 4138-4143.

¹H, ¹³C and ¹⁹F NMR Spectra

CO₂Me Ńе F

3c (CDCl₃, 377 MHz)

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -15

3k (CDCl₃, 377 MHz)

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155

6a (CDCl₃, 400 MHz)

6c (CDCl₃, 400 MHz)

6c (CDCl₃, 101 MHz)

6c (CDCl₃, 377 MHz)

	/
-51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62	2 -03 -04 -05 -00 -07 -08 -09 -70 -71 -72

6d (CDCI₃, 400 MHz)

6e (CDCl₃, 400 MHz)

6e (CDCl₃, 377 MHz)

-95 -100 -105 -110 -115 -120 -125 -130 -135 -140

6f (CDCl₃, 400 MHz)

6f (CDCI₃, 101 MHz)

6h (CDCl₃, 400 MHz)

