Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2021

Supporting information for Attention-based generative models for de novo molecular
design

Orion Dollar!, Nisarg Joshi!, David A.C. Beck"?, Jim Pfaendtner!
'"Department of Chemical Engineering, University of Washington, Seattle 98185, WA, USA;
%eScience Institute, University of Washington, Seattle 98185, WA, USA.

Additional Details on Model Construction

All models are constructed using the PyTorch python package and trained on NVIDIA GeForce RTX 2080 Ti
GPUs. A batch size of 500 was used for all model types besides Moses. SMILES strings are tokenized during
training and embeddings the same size as the model dimension are used as inputs. The maximum length of SMILES
token for all model types is 127 including <start>, <stop> and padding tokens. All recurrent layers are unidirectional
and masking for the transformer is done sequentially such that for a sequence of leng th t, the model attempts to
predict the token at position t+1. The same model architectures are used for both the ZINC and PubChem datasets.
For the recurrent models, teacher forcing is partially used during training by concatenating the input embeddings

with the unbottlenecked model memory prior to being sent to the decoder GRU layers.

1e6 Model Size Comparison

#
Parameters

Figure S1. Size comparison of all model types

Model Runtime Comparison

2000

1750

1500

Runtime / Epoch 120
(s)

1000

750

500

250

o
&

Figure S2. Runtime of all model types on ZINC training set. The increased efficiency of the Moses model is due to the number of padding tokens.
This is variable for the Moses construction based on the input data but fixed for the other models based on the longest SMILES string within the
PubChem dataset. Fixing the maximum sequence length simplified the construction of the convolutional bottleneck for different model

dimensions.

Token Weights and KL Annealing

SMILES strings have an unbalanced token distribution so it is necessary to weigh loss by the frequency with which
the token appears so that the model does not just learn to repeat the most frequent token. Characters are weighed by
their proportional log frequency and then scaled to values between 0.5 and 1.0 (so the most frequent characters can
represent no less than 50% of their calculated loss). The padding character is manually set to a weight of 0.1. A KL
Annealer is used to linearly increase 8 to avoid posterior collapse. For all trials except the MosesVAE, f is

increased from 0 to 0.083 over 100 epochs. For MosesVAE, f is linearly increased from 0 to 0.05 over 100 epochs.

Convolutional Bottleneck Layers

A convolutional bottleneck was used for the two attention-based architectures based on the size of the contextual
embedding exiting the encoder and entering the decoder. Conceptually, the embedding matrix of these models is
closer in shape to the learned image representation in a CNN than the contextual embedding vector of the RNN so
our intuition was to try bottlenecking with convolutional layers. Empirically, we found our intuition to be correct as

the reconstruction performance of the models is much better when using the convolutional bottleneck (Fig. S3).

107 5 rnnattn128 (linear bottleneck)
rnnattn256 (linear bottleneck)

Reconstruction ~— trans4x-128 (linear bottleneck)
Loss —— trans4x-256 (linear bottleneck)
1077 § rnnattn128 (conv bottleneck)

~ rnnattn256 (conv bottleneck)
= trans4x-128 (conv bottleneck)
= trans4x-256 (conv bottleneck)

10773 4

T T T T

10 20 30 40 50

Epoch
Figure S3. Comparison of reconstruction loss for the attention-based architectures with a linear bottleneck and convolutional bottleneck. With
the exception of the RNNAttn-128 model, the convolutional bottleneck outperforms the linear bottleneck.

o

576x1
256x125

VYVYmr—— 160x59 128x1
BV E 12x26
————— =B
=—————————— %

{ —|

_ e =
—————|———— —
.
BYVY———

S=——

Contextual Latent
Embedding Convl Conv2 Conv3 Flatten Memo
(attention models) ry

Figure S4. The shape of the contextual embedding within the model as it travels through the convolutional bottleneck. A similar set of
deconvolutional layers are used to upsample back to the original shape from the latent memory before being sent into the decoder.

We illustrate the compression of data through the convolutional bottleneck in Fig. S4. The architecture consists of
three 1D convolutional layers that compress the contextual embedding to a size 576 vector for model dimensions of
128, 256 or 512. The final 576 size vector is then compressed with a linear layer to the mean and logvar vectors
before reparameterization. Each 1D conv layer is attached with a 1D MaxPool layer of size 2. After compression,
three 1D deconvolutional layers are used to upsample the bottleneck back to the original size of the contextual
embedding. The parameters for the convolutional layers depend on the size of the model and are listed in full in
Table S1.

Table S1. Convolutional Bottleneck Parameters

Cony 1 Cony 2 Cony 3
Model Dim Channel Size Kernel Size Channel Size Kernel Size Channel Size Kernel Size
128 96 9 80 9 64 8
256 160 9 112 9 64 8
512 288 9 176 9 64 8
Decony 1 Decony 2 Deconv 3
Channel Kernel Channel Kernel Channel Kernel
Model Dim Stride Stride Stride
Size Size Size Size Size Size
128 80 11 4 92 11 3 128 11 1
256 112 11 4 148 11 3 256 11 1
512 176 11 4 260 11 3 512 11 1

Predicting SMILES Length During Transformer Inference

There are two inputs to the transformer decoder, the model memory and the input mask which consists of Os for all

padding tokens and 1s for every other token. The mask explicitly tells the model the length of the SMILE string so

during inference it must also have this information or else it will decode molecules from memory that are much

longer than they should be. To account for this, we attached two linear layers of size dmoder*2 to the latent memory

and instructed the model to predict the correct length of the molecule during training and included this in our

transformer loss function. Then during inference, we first predict the length of the SMILE string using our randomly

sampled latent vector as an input and use this to create the correct length mask to send to the decoder (so we do not

need to know the length of the SMILE string before we decode it).

Model Complexity

The definition of complexity we use throughout this work stems from the definition introduced by Tishby et al.! in

which the bottleneck of a model can be analyzed in two ways — predictive ability and compressibility. There is a

“generalization gap” which bounds the amount of salient information the model could have captured but didn’t and a

“complexity gap” which bounds the amount of “unnecessary complexity” that exists within the bottleneck. The

concept of complexity in this case is tied to the compressibility of the bottleneck (i.e. it is not an algorithmic

complexity but merely a synonym for low information content noise). The use of the phrase “unnecessary

complexity” implies a corresponding “necessary complexity” and so we have drawn a link between the total

information content contained within the bottleneck and the “complexity” of the model. Thus mentions of model

complexity are referring to the models ability to efficiently compress all of the salient information needed for
reconstruction within the bottleneck. Others have made similar observations about the relationship between the loss
function of the B-VAE and the compression of the latent memory,? although explicit use of the term complexity to

describe this phenomenon has been limited to Tishby et al. and the descriptions herein as far as we are aware.

Supplementary Figures

Correlation b/w SMILES
Length and Molecular Weight

120 8

100

SMILES Length gp
(# tokens)

60

40 4

20

200 400 600 800 1000 1200
Molecular Weight (Da)

Figure S5. The relationship between SMILES length and MW (PubChem dataset)

Reconstruction Performance by Token Sequence Position

ZINC Dataset

10 ===+ MosesVAE
RNN-128
0.8 RNN-256
~ RNNAttn-128
0.6 1 == RNNAttn-256
Accuracy
== Translx-128
0.4 1 = Trans4x-128
== Trans1x-256
0.2 1 = Trans4x-256
0.0 , - - y T

0 10 20 30 40 50
Token Position

Figure S6. The reduced reconstruction performance of the Moses model may be the result of a number of architectural and hyperparameter
decisions. In addition to the differences mentioned in the procedure, we also used a more concise tokenization scheme (for instance "Br" was
treated as a single token rather than tokenizing as "B’ and 'r" separately), we updated model weights more aggressively for tokens that appeared
less frequently and we used larger token embeddings. The exact degree to which these factors played a role in the model’s performance is still
unknown. Because we were able to replicate all of the reported metrics from the original Moses paper (Fig. S7) we believe this is an accurate
portrayal of the Moses model and include it to highlight an example of ‘smeared’ latent memory formation.

Table S2. Reconstruction performance of all model types on ZINC dataset (MosesVAE was not saved at epoch 100 so accuracy at epoch 90 is

shown instead).

Model Type Token Accuracy SMILES Accuracy
MosesVAE (Epoch 90) 0.1416 0.000
RNN-128 0.9988 0.9955
RNN-256 0.9986 0.9957
RNNAttn-128 0.9990 0.9963
RNNALttn-256 0.9986 0.9948
Trans1x-128 0.9996 0.9978
Trans4x-128 0.9996 0.9979
Trans1x-256 0.9997 0.9983
Trans4x-256 0.9996 0.9980

valid unique@1000 ing Metrics - £ unique@10000 FCD/Test

o © © © ©o &
S N R & @ o
o © © ©°© o r
2 8 B & & o
°© o © ©o ©o &
s 8 5 & & o
o e r B N

s h & h o

10 20 30 4 50 60 70 % 90 Paper 10 20 30 4 50 6 70 % 9 Paper 10 20 30 40 50 6 70 90 90 Paper 0 20 30 40 S0 6 70 90 90 Paper
SNN/Test Frag/Test Scaf/Test FCD/TestSF

o © © o © o o
= VI TS
o o © ©°o ©o &
s 8 8 & & o
o © o o ©

s N B & o

o e ko B N N
s 5 o h o &

10 20 30 4 50 6 70 % 90 Paper 10 20 30 4 50 6 70 % 9 Paper 10 20 30 40 50 6 70 9 9 Paper 10 20 30 40 S0 6 70 9 90 Paper
SNN/TestSF Frag/TestSF ScaffTestSF IntDiv

o © © © © ©
=
© o © © ©o &
s 8 R & & o
o o ° °
s o = s
g8 & s 5
s © © o o
s N R & @

0 20 30 40 50 60 70 90 90 Paper 0 20 30 40 50 6 70 90 90 Paper 0 20 30 4 50 6 70 9 90 Paper 0 20 30 4 S0 6 70 9 90 Paper
IntDiv2 Filters logP

s o © o o
s 8 R & =

o o © © °o &
s 8 B & & o
o o o o

S S = S

8 & S &5

o © © o o

s 2 8 O =

10 20 30 4 50 6 70 % 90 Paper 10 20 30 4 50 6 70 % 9 Paper 10 20 30 40 50 6 70 9 9 Paper 10 20 30 40 S0 6 70 9 90 Paper

QED weight Novelty runtime
10 800

600

400

200

e o o
s o o
s 8 8

o m N W e u o

o o © o o

e N R & @

°

0.00 .

10 20 30 4 50 6 70 % 90 Paper 10 20 30 4 50 6 70 % 9 Paper 10 20 30 40 50 6 70 9 9 Paper 10 20 30 40 S0 6 70 9 90 Paper

Figure S7. Evaluating the MosesVAE on the suite of metrics presented in the MOSES paper. After 100 epochs, the model converges to all
reported values from the paper validating the use of our trained Moses model as an example of the state-of-the-art as presented by Polykovskiy et

al.

Attention Head 1

Attention Head 2
al carbons
non_aromatic_carbons.

heteroatoms

0175
0150
ons
0100
Loors RNNAttn Head
al ¢

0050 0030
002 fon_aromatic_carbons

’ 0025
0000 -

K - & & A o

Peteroatoms

tranches tranches

heteroatoms

0020

Attention Head 3

Attention Head & 0015

tranches

al_carbons
008
0010
ron_aromatic_carbons non_aromatic_carbons angs
aromatc - 006
tetercatoms nets
'-‘ 004
tonds
tranches 002
ngs
000

Figure S8. Analysis of attention weights between structural and atomic groups. The four attention heads of the transformer learn unique
molecular grammar rules, even for higher-level relationships such as the relationship between all heteroatoms and all explicitly enumerated
bonds present within the structure. The RNNAttn head has given the most weight to the relationship between non-aromatic carbons and all other

atomic/structural groups which is more useful for compressing long-range information efficiently than learning specific relationships that are

important to molecular structure.

Cl

al N/\(O cl 0 al o al N/\(/O
| N / W\ / N
N2 X7 N2 %

Figure S9. Visualization of attention weights within the Trans4x-256 model of S and N heteroatoms for a variety of molecular structures. The
learned patterns depend on the type of heteroatom. For instance, attention head 1 shows the relationship between N and aromatic carbons however
a similar relationship between S and aromatic carbons is stored within head 4. The patterns are usually consistent for the same atom type across
different molecular structures, however different patterns may also emerge depending on the molecular context around the atom (i.e. the aromatic S
atom vs. the sulfonyl group). These relationships are heavily influenced by the input representation and may potentially be tuned by altering the type
of information the model has access to.

MosesVAE

RNN-1238

RNN-256

RNNAttn-128

RNNAttn-256

Trans1x-128

Trans4x-128

Epoch 90

Trans1x-256

Trans4x-256

Epoch 30 Epoch 60

Figure S10. Memory structures for all model types at epochs 30, 60 and 90

1.0
0.8

% Valid 0-6
0.4

0.2

1.0
0.8

% Unique 06
0.4

0.2

1.0
0.8

% Novel 0.6
0.4
0.2

0.8

CrossDiv 0.6

0.4

All Dimensions

All High Entropy

5-Rand Entropy

10-Rand Entropy

15-Rand Entropy

{

)

1

%

%

\

[

—

20 40 60 80 100

Epochs

20 40 60 80 100

Epochs

20 40 60 80 100
Epochs

20 40 60 80 100

Epochs

20 40 60 80 100

Epochs

RNN-128
RNN-256
RNNAttn-128
RNNAttn-256
Trans1x-128
Trans4x-128
Trans1x-256
Trans4x-256

Figure S11. Five different sampling schemes are tested for their effect on generative performance metrics — sampling all 128 latent
dimensions, sampling only those dimensions with a high entropy (> 5 nats) and sampling k-random high entropy dimensions
(k=5,10,15). 30,000 molecules were generated for each scheme. There is essentially no difference between sampling all dimensions
and randomly sampling just the high entropy dimensions, however there is an improvement in validity when sampling from a small
number of randomly selected high entropy dimensions. Sampling 15 random high entropy dims significantly increases % validity for
all model types while maintaining high uniqueness, novelty and exploration.

References

1 N. Tishby and N. Zaslavsky, in 2015 [EEE Information Theory Workshop (ITW), Institute of Electrical and
Electronics Engineers Inc., 2015, pp. 1-5.

A. A. Alemi, 1. Fischer, J. v. Dillon and K. Murphy, 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track Proceedings.

