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Additional Details on Model Construction 

 

All models are constructed using the PyTorch python package and trained on NVIDIA GeForce RTX 2080 Ti 

GPUs. A batch size of 500 was used for all model types besides Moses. SMILES strings are tokenized during 

training and embeddings the same size as the model dimension are used as inputs. The maximum length of SMILES 

token for all model types is 127 including <start>, <stop> and padding tokens. All recurrent layers are unidirectional 

and masking for the transformer is done sequentially such that for a sequence of leng th t, the model attempts to 

predict the token at position t+1. The same model architectures are used for both the ZINC and PubChem datasets. 

For the recurrent models, teacher forcing is partially used during training by concatenating the input embeddings 

with the unbottlenecked model memory prior to being sent to the decoder GRU layers.  

 

 

 
 Figure S1. Size comparison of all model types 
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Figure S2. Runtime of all model types on ZINC training set. The increased efficiency of the Moses model is due to the number of padding tokens. 

This is variable for the Moses construction based on the input data but fixed for the other models based on the longest SMILES string within the 

PubChem dataset. Fixing the maximum sequence length simplified the construction of the convolutional bottleneck for different model 

dimensions. 

 

Token Weights and KL Annealing 

 

SMILES strings have an unbalanced token distribution so it is necessary to weigh loss by the frequency with which 

the token appears so that the model does not just learn to repeat the most frequent token. Characters are weighed by 

their proportional log frequency and then scaled to values between 0.5 and 1.0 (so the most frequent characters can 

represent no less than 50% of their calculated loss). The padding character is manually set to a weight of 0.1. A KL 

Annealer is used to linearly increase 𝛽 to avoid posterior collapse. For all trials except the MosesVAE, 𝛽 is 

increased from 0 to 0.083 over 100 epochs. For MosesVAE, 𝛽 is linearly increased from 0 to 0.05 over 100 epochs. 

 

Convolutional Bottleneck Layers 

 

A convolutional bottleneck was used for the two attention-based architectures based on the size of the contextual 

embedding exiting the encoder and entering the decoder. Conceptually, the embedding matrix of these models is 

closer in shape to the learned image representation in a CNN than the contextual embedding vector of the RNN so 

our intuition was to try bottlenecking with convolutional layers. Empirically, we found our intuition to be correct as 

the reconstruction performance of the models is much better when using the convolutional bottleneck (Fig. S3).  

 



 
Figure S3. Comparison of reconstruction loss for the attention-based architectures with a linear bottleneck and convolutional bottleneck. With 
the exception of the RNNAttn-128 model, the convolutional bottleneck outperforms the linear bottleneck. 

 

 
Figure S4. The shape of the contextual embedding within the model as it travels through the convolutional bottleneck. A similar set of 
deconvolutional layers are used to upsample back to the original shape from the latent memory before being sent into the decoder. 

 

We illustrate the compression of data through the convolutional bottleneck in Fig. S4. The architecture consists of 

three 1D convolutional layers that compress the contextual embedding to a size 576 vector for model dimensions of 

128, 256 or 512. The final 576 size vector is then compressed with a linear layer to the mean and logvar vectors 

before reparameterization. Each 1D conv layer is attached with a 1D MaxPool layer of size 2. After compression, 

three 1D deconvolutional layers are used to upsample the bottleneck back to the original size of the contextual 

embedding. The parameters for the convolutional layers depend on the size of the model and are listed in full in 

Table S1. 



Table S1. Convolutional Bottleneck Parameters 

 Conv 1 Conv 2 Conv 3 

Model Dim Channel Size Kernel Size Channel Size Kernel Size Channel Size Kernel Size 

128 96 9 80 9 64 8 

256 160 9 112 9 64 8 

512 288 9 176 9 64 8 

 

 Deconv 1 Deconv 2 Deconv 3 

Model Dim 
Channel 

Size 

Kernel 

Size 
Stride 

Channel 

Size 

Kernel 

Size 
Stride 

Channel 

Size 

Kernel 

Size 
Stride 

128 80 11 4 92 11 3 128 11 1 

256 112 11 4 148 11 3 256 11 1 

512 176 11 4 260 11 3 512 11 1 

 

 

Predicting SMILES Length During Transformer Inference 

 

There are two inputs to the transformer decoder, the model memory and the input mask which consists of 0s for all 

padding tokens and 1s for every other token. The mask explicitly tells the model the length of the SMILE string so 

during inference it must also have this information or else it will decode molecules from memory that are much 

longer than they should be. To account for this, we attached two linear layers of size dmodel*2 to the latent memory 

and instructed the model to predict the correct length of the molecule during training and included this in our 

transformer loss function. Then during inference, we first predict the length of the SMILE string using our randomly 

sampled latent vector as an input and use this to create the correct length mask to send to the decoder (so we do not 

need to know the length of the SMILE string before we decode it). 

 

 

Model Complexity 
 

The definition of complexity we use throughout this work stems from the definition introduced by Tishby et al.1 in 

which the bottleneck of a model can be analyzed in two ways – predictive ability and compressibility. There is a 

“generalization gap” which bounds the amount of salient information the model could have captured but didn’t and a 

“complexity gap” which bounds the amount of “unnecessary complexity” that exists within the bottleneck. The 

concept of complexity in this case is tied to the compressibility of the bottleneck (i.e. it is not an algorithmic 

complexity but merely a synonym for low information content noise). The use of the phrase “unnecessary 

complexity” implies a corresponding “necessary complexity” and so we have drawn a link between the total 

information content contained within the bottleneck and the “complexity” of the model. Thus mentions of model 



complexity are referring to the models ability to efficiently compress all of the salient information needed for 

reconstruction within the bottleneck. Others have made similar observations about the relationship between the loss 

function of the b-VAE and the compression of the latent memory,2 although explicit use of the term complexity to 

describe this phenomenon has been limited to Tishby et al. and the descriptions herein as far as we are aware.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Supplementary Figures 

 

 
 

 
 

 

 

 

Figure S6. The reduced reconstruction performance of the Moses model may be the result of a number of architectural and hyperparameter 
decisions. In addition to the differences mentioned in the procedure, we also used a more concise tokenization scheme (for instance `Br` was 
treated as a single token rather than tokenizing as `B` and `r` separately), we updated model weights more aggressively for tokens that appeared 
less frequently and we used larger token embeddings. The exact degree to which these factors played a role in the model’s performance is still 
unknown. Because we were able to replicate all of the reported metrics from the original Moses paper (Fig. S7) we believe this is an accurate 
portrayal of the Moses model and include it to highlight an example of ‘smeared’ latent memory formation. 

 

Figure S5. The relationship between SMILES length and MW (PubChem dataset) 

 



Table S2. Reconstruction performance of all model types on ZINC dataset (MosesVAE was not saved at epoch 100 so accuracy at epoch 90 is 

shown instead). 

Model Type Token Accuracy SMILES Accuracy 

MosesVAE (Epoch 90) 0.1416 0.000 

RNN-128 0.9988 0.9955 

RNN-256 0.9986 0.9957 

RNNAttn-128 0.9990 0.9963 

RNNAttn-256 0.9986 0.9948 

Trans1x-128 0.9996 0.9978 

Trans4x-128 0.9996 0.9979 

Trans1x-256 0.9997 0.9983 

Trans4x-256 0.9996 0.9980 

 

 

 
Figure S7. Evaluating the MosesVAE on the suite of metrics presented in the MOSES paper. After 100 epochs, the model converges to all 

reported values from the paper validating the use of our trained Moses model as an example of the state-of-the-art as presented by Polykovskiy et 

al.  

 



 
 
 
 
 
 
 
 
 
 

 
Figure S8. Analysis of attention weights between structural and atomic groups. The four attention heads of the transformer learn unique 

molecular grammar rules, even for higher-level relationships such as the relationship between all heteroatoms and all explicitly enumerated 

bonds present within the structure. The RNNAttn head has given the most weight to the relationship between non-aromatic carbons and all other 

atomic/structural groups which is more useful for compressing long-range information efficiently than learning specific relationships that are 

important to molecular structure.  



 

 
Figure S9. Visualization of attention weights within the Trans4x-256 model of S and N heteroatoms for a variety of molecular structures. The 
learned patterns depend on the type of heteroatom. For instance, attention head 1 shows the relationship between N and aromatic carbons however 
a similar relationship between S and aromatic carbons is stored within head 4. The patterns are usually consistent for the same atom type across 
different molecular structures, however different patterns may also emerge depending on the molecular context around the atom (i.e. the aromatic S 
atom vs. the sulfonyl group). These relationships are heavily influenced by the input representation and may potentially be tuned by altering the type 
of information the model has access to.  



 
Figure S10. Memory structures for all model types at epochs 30, 60 and 90 



 

 

  

Figure S11. Five different sampling schemes are tested for their effect on generative performance metrics – sampling all 128 latent 
dimensions, sampling only those dimensions with a high entropy (> 5 nats) and sampling k-random high entropy dimensions 
(k=5,10,15). 30,000 molecules were generated for each scheme. There is essentially no difference between sampling all dimensions 
and randomly sampling just the high entropy dimensions, however there is an improvement in validity when sampling from a small 
number of randomly selected high entropy dimensions. Sampling 15 random high entropy dims significantly increases % validity for 
all model types while maintaining high uniqueness, novelty and exploration. 
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