Chemical Science

Electronic supplementary material for:

Thermal expansion properties of organic crystals: a CSD study

Arie van der Lee & Dan G. Dumitrescu

Fig. S1: Fraction of observations that originates from the same study per number of temperatures used to determine the thermal expansion properties of a crystal structure. (lower) Global number of observations per number of temperatures used to determine the thermal expansion properties of a crystal structure **Fig. S2a-b**: Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in in the CSD (version 5.41). Complete dataset

Fig. S3: Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in the CSD (version 5.41). Only observations with $R^2 > 0.75$ were used.

Fig. S4: Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in the CSD (version 5.41). Only observations with $R^2 > 0.80$ were used.

Fig. S5: Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in the CSD (version 5.41). Only observations with $R^2 > 0.85$ were used.

Fig. S6: Best overlay of the structures with *refcodes* VERMAG and VERMAG01

Table S1: Mean, median, and standard deviations of distributions of volumetric (α_V), uniaxial thermal expansion (α_I), and indicatrix anisotropy (IAC) coefficients as a function of R^2 .

Table S2: Possible organic compounds with negative volumetric thermal expansion

Fig. S1: (upper) Fraction of observations that originates from the same study per number of temperatures used to determine the thermal expansion properties of a crystal structure. (lower) Global number of observations per number of temperatures used to determine the thermal expansion properties of a crystal structure An 'observation' is a set of thermal expansion coefficients for a particular compound.

Figure S2a Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in in the CSD (version 5.41). The complete data set was used to calculate these histograms.

Figure S2b Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in in the CSD (version 5.41). This figure is the same as Fig S2a but with different (zoomed) x-axes.

Figure S3 Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in in the CSD (version 5.41). Only observations with $R^2 > 0.75$ were used and for each data point at least 3 temperature points

Figure S4 Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in in the CSD (version 5.41). Only observations with $R^2 > 0.80$ were used and for each data point at least 3 temperature points

Figure S5 Histograms of the volume and axis expansions and the indicatrix anisotropy coefficient of organic compounds in in the CSD (version 5.41). Only observations with $R^2 > 0.85$ were used and for each data point at least 3 temperature points

Figure S6 Best overlay of the structures with refcodes VERMAG (red) and VERMAG01 (green). The unit cell of the VERMAG01 structure has been transformed to its conventional setting in $P2_1/c$. The rms deviation between the two structures is 0.108 Å. The calculations and visualization have been performed with MERCURY. The two structure packings are strictly the same. The room temperature structure (refcode VERMAG) was determined from Weissenberg camera data¹, whereas the data for the 235 K structure were collected on a Syntex P2₁ diffractometer² (refcode VERMAG01). Interestingly, the densities of both structures were also determined using a standard flotation technique (1.31 and 1.17 gcm⁻³ both measured at room temperature for the 235 and 295 K structures, respectively) and found to be in close correspondence with the density calculated from the X-ray crystal structures (1.326 and 1.16 gcm⁻³ for the 235 K and 295 K structures, respectively). The difference in measured room temperature densities may seem suspicious or a sign of polymorphism. The latter can be ruled out by superposing the experimental structures, leaving the possibility that the room temperature density in the Selladurai study¹ was incorrectly assessed. Only a new temperature dependent X-ray study on the same crystal using the same diffractometer can validate or invalidate this result.

- 1. S. Selladarai, M. S. Kumar and K. Subramanian, Proc. Indian Acad. Sci. (Chem. Sci.), 1990, **102**, 39-43
- 2. H. W. Thompson, P. A. Vanderhoff and R. A. Lalancette, *Acta Crystallographica Section C Crystal Structure Communications*, 1991, **47**, 1443-1445.

	Global dataset	<i>R</i> ² > 0.75	<i>R</i> ² > 0.80	<i>R</i> ² > 0.85	<i>R</i> ² > 0.90
$n(\alpha_V)/n(\alpha_I)$	4719/14157	846/1403	828/1329	794/1248	745/1129
$\mu(\alpha_V)$	155.98	166.62	167.41	167.98	168.60
$\eta(\alpha_V)$	159.01	166.58	166.93	167.50	168.30
$\sigma(\alpha_V)$	90.85	73.87	73.05	72.55	72.51
$\mu(\alpha_{\rm I})$	51.64	66.20	67.80	69.34	71.43
$\eta(\alpha_{\rm I})$	42.57	56.98	58.23	59.74	62.57
$\sigma(\alpha_{\rm I})$	64.95	68.64	69.29	69.60	69.90
μ(IAC)	-0.06	-0.05	-0.05	-0.05	-0.05
η(IAC)	-0.07	-0.06	-0.06	-0.05	-0.05
<i>σ</i> (IAC)	0.40	0.40*	0.40*	0.40*	0.41*

Table S1 Mean, median, and standard deviations of distributions of volumetric (α_V), uniaxial thermal expansion (α_l), and indicatrix anisotropy (IAC) coefficients as a function of R^2 .

Notes: $n(\alpha_V)/n(\alpha)$ are the numbers of observations for the volumetric (α_V) and axial (α) thermal expansion coefficients, respectively. μ is the mean value of the distribution, η the median value, and σ the standard deviation. The units of α_V and α_I are expressed in MK⁻¹. The data sets noted by an asterisk are normally distributed. The 'global dataset' includes all temperature data sets, even those measured only at 2 temperatures; the columns $R^2 > 0.75$, 0.80, 0.85,0.90 include only data sets measured at at least 3 temperatures, and with goodness of fit values R^2 for a linear dependency of thermal expansion on temperature.

refcode	∝ _V (MK ⁻¹)	ΔТ (К)	Nm	χα	Ano	SS	Comments
EGIDUT	-623.12	230-296	2	-4.98			possibly x-ray-induced; polymerization reactions
							taking place; structure has the right metrics for
							photochemical SC-to-SC reactions, according to
							Schmid's rules; no heavy atoms
NEJQEY	-590.25	123-175	3	-3.07			data collection temperature at 175 K is not clear;
							hydrocarbon; $\pi \cdots \pi$ contacts but mostly H-H
							interactions and H-ring interactions
LATDAN	-460.18	120-173	2	-2.44			both are monohydrate, although one is reported as
							dehydrate, can be ok; H-bond backbone, π - π
							contacts but mostly H-H interactions and H-ring
							interactions

Table S2 Possible organic compounds with negative volumetric thermal expansion.

DOFSUM	-370.75	173-295		-4.52	S		void space present? Can be correct
RALQAW	-318.10	90-173	2	-2.64			can be ok; some H-bonds, $\pi \cdots \pi$ contacts but mostly
							H-H interactions and H-ring interactions
MIPQAG	-306.41	100-273	2	-5.30		0	porous structure, CO_2 loss at RT?; no CO2 in
							structure, no H-bond backbone, H-ring interactions
							(first 3p element)
MEBVOH	-244.94	150-298	2	-3.63		0	can be ok; two 'isoforms' but why was one reported
							at 150 and the other at 298 K, structures seem to be
							the same; weak H-bonds, H-H dihydrogen contacts, 2
							H-π interaction
MOTPUG	-215.59	160-295	2	-2.91			colorless at RT,orange at LT, weak H-bonds, H-H
							dihydrogen contacts, $H\cdots\pi$ interactions, some $\pi\cdots\pi$
							contacts
ALAZAO	-211.50	173-291	2	-2.50			can be ok; flattest molecule so far, H-bond backbone
						-	no dihydrogen contacts, π stacking and H-π contacts
UKOYUO	-194.64	168-273	2	-2.04	S		can be ok; weak H-bonds (N-H, S-H), H- π contacts
			-				and π stacking
WUVYIV	-173.06	150-294	2	-2.49			can be ok; heavy atom (Br), no amide H-bond, but
							others, such as CO···HC(benzene); π stacking results
							in this being the first relatively flat molecule in the
							series
VEPKEJ	-169.07	220-296	2	-1.28	S		color of LT crystal is colourless; that of RT crystal dar
							yellow; strange $CH\cdots\pi$ interactions all over the
	100.05		-			-	aliphatic chain; no π stacking
XEXQOH	-166.35	100-173	2	-1.21			can be correct; π -stacking, Haromatic-Haliphatic
	105.55		-			-	interactions, weak H-bonds, CH···π interactions
KIZQAO	-165.55	173-293	2	-1.99			can be correct; Sr salt, if you are really picky you
							could argue that it is organometallic; polymeric
							structure with strong H-bonds, some H-H
			-				interactions and H- π interactions
GEJVIB	-164.03	213-293	2	-1.31			can be correct; LT structure is really poor quality; no
CALEIT	450.07	245 200	2	4.27			π stacking, many H-H contacts
SAJFIT	-156.67	215-296	2	-1.27			RT crystal colourless, LT structure bright yellow; H-
							bond backbone, π -stacking, many H··· π and some H-
	4 4 4 75	220.205	2	1.00			H contacts
JUMXAQ	-144.75	220-295	2	-1.09			can be correct; H-bonds provide the structure, some
							π -stacking; several CH··· π contacts (@ angle with
MOXVIF	142.27	05 172	2	1.25			respect to c axis)
NOXVIF	-142.37	85-173	2	-1.25		0	can be correct; H-bonds and π -stacking form the
<u></u>	405.50	222.206	2	0.00		1	backbone, some CH··· π and H···H contacts present
CIWCIV	-135.56	223-296	2	-0.99	S		can be correct; very small difference between the R
							of the two structures (6.04% LT vs 6.07%) HT; H-
							bonds and π -stacking form the backbone, some
VIVIEI	125 12	125 204	n	2 20			CH··· π and H-H contacts present
KIKJEU	-135.13	125-294	2	-2.28			can be correct; some H-bonds, no π -stacking, many
							CH- π interactions in the bc plane (might be the
	124.00	102 272	2	2.20			mechanism)
VUTXUE	-134.68	103-273	2	-2.29			can be correct; however, should be rather classified
							as organometallic: Te covalent bond with C; S-S
							dipolar contacts, I-H H-bonds, some dihydrogen
	407 70	150.000	2	4.00	-		contacts
HOTNIO	-127.73	150-296	2	-1.86	S		can be correct; weak H-bonds, π-stacking
ATTDAZ	-121.54	199-295	2	-1.17			can be correct; H-bonds, π -stacking, π ··· π
	400.55	400 /	_				interactions
LIYLAJ	-120.09	100-173	2	-0.88		0	photo-induced switching, Both temperatures 100,
							173 should be probably 'room temperature'; CH $\cdot\cdot\pi$
							backbone in the ab plane (probably the cause of
							NTE), H-bond spiral between the diols along c,
							isolated from the rest of the interactions
NIZXEA	-106.37	150-293	2	-1.52			can be correct; Cl··· π interaction, some H-bonds,
					ļ		some dihydrogen contacts
MIYBAX	-102.58	123-293	2	-1.74	S	1	can be correct, H-bonds and dipole stacking in the b

001/100	01.22	222.202	2	0.04			plane
QOYJOD	-91.33	223-293	2	-0.64			α polymorph, probably correct, H-bonds and π stacking
YEDPAZ	-89.84	100-153	2	-0.48	6		5
TEDPAL	-09.04	100-155	2	-0.40	S		can be correct, H-bond, π and dipole stacking, weak CH- π interaction
BEWKUM	-89.21	173-290	2	-1.04			can be correct, H-bond, π stacking, CH- π contact
TIFQOO	-89.21	225-293	2	-0.61			can be correct, π-stacking and H-bonds
TUKWOL	-86.87	125-177	2	-0.45			can be correct, H-bonds, dihydrogen contacts
FAGSUB	-86.83	173-293	2	-1.04			can be correct, weak H-bond, CH- π contacts
MUBJOJ	-86.72	130-296	3	-1.44		0	isosymmetric phase transition; no agreement
							between room temperature structure reported in
							Acta Cryst E and that in CrystEngComm, CH- π
							contacts, weak H-bond,
MATZEO	-86.12	173-293	2	-1.03	S		can be correct, weak CH····O bond, Type II Cl-Cl
							halogen bond, weak CH…Cl contacts
TYRAMH	-85.64	200-295	2	-0.81			can be correct, possible reorientation of the H-bon
							network
ROHBOF	-82.14	100-173	2	-0.60			can be correct, weak CH…N H-bond, CH- π contacts
DADMED	-82.13	150-296	2	-1.20	S		can be correct, some H-bonds, $\boldsymbol{\pi}$ stacking
YUHHUE	-80.13	203-295	2	-0.74		0	can be correct, H-bond (OH···OH), CH···π contacts,
							stacking
TIJDAR	-79.47	150-295	2	-1.15			can be correct
CEYYAG	-79.42	173-295	2	-0.97			can be correct, H-bond (OH…OH), CH… π contacts,
							stacking
LUZXOU	-71.53	173-296	2	-0.88	S		LT crystal colourless, RT crystal yellow, H-bonds, π
							stacking, π···π contacts
ZUZBUT	-69.38	173-293	2	-0.83	s		can be correct, weak CH…O bonds, dihydrogen
							contacts, CH···· π contacts
CAZKUK	-68.92	150-205	2	-0.38			can be correct, H-bonds, π stacking, CH···O contact
ADEREH	-66.98	173-292	2	-0.80			can be correct, π stacking, CH…O contacts, CH… π
							contacts
ELEPOB	-59.65	100-200	3	-0.60			can be correct, H-bonds, π stacking, $\pi \cdots \pi$ contacts
NOJJUU	-54.78	173-296	2	-0.67			can be correct, CH…O contacts, CH… π contacts, π
							stacking, π…π contacts
FIGKOY	-53.84	155-293	2	-0.74	S	0	can be correct, Cl atom half occupancy
KERNOM	-53.32	200-295	2	-0.51			can be correct, H-bonds, CH···O contacts, π ··· π
							contacts
BEWYAE	-50.39	173-293	2	-0.60			can be correct, H-bonds, $\pi \cdots \pi$ contacts (unoccupied
							B orbitals)
AXUBUR	-49.30	90-293	2	-1.00			can be correct π stacking, CH··· π contacts, CH···F
							bonds
FELCEH	-48.62	100-293	2	-0.94		0	can be correct, CH···· π contacts, π stacking (double
			-				bond – ring)
PESKII	-47.25	100-193	2	-0.44			can be correct, π stacking, CH···O contacts,
0.010	46.00	4 6 2 2 - 6		0 - 1			dihydrogen contacts
SOVBAG	-46.82	163-273	2	-0.51			can be correct, poorly solved, probably dihydrogen
50N 47115	40.10	450.000	2	0.00			contacts
FOMZUD	-43.48	150-293	2	-0.62			can be correct, CH···O contacts, π stacking
ASONOM	-43.06	133-296	2	-0.70			can be correct, dihydrogen contacts, CH··· π contac
DOCKUE	-42.27	200-293	2	-0.39			can be correct, π stacking, dihydrogen contacts,
QEDHUE	-41.96	153-293	2	-0.59			LT crystal yellow, RT colourless, H-bonds, π stacking
CAPLAC	-40.34	123-295	2	-0.69			can be correct, H-bonds, dihydrogen contacts (alon
TION	20.00	450.000	2	0.50			a axis)
TIGYUE	-39.32	150-293	2	-0.56			can be correct, H-bonds, CH··· π contacts
FOKZUB	-38.98	213-293	2	-0.31	S		can be correct, H-bonds, dihydrogen contacts
WONVEA	-38.47	100-295	2	-0.75			can be correct
KUQSAS	-37.53	173-293	2	-0.45			color RT ligh-green, color LT colorless, CH \cdots π
					<u> </u>		contacts, π stacking, $\pi \cdots \pi$ contacts
DAPSUO	-37.17	295-373	7	-0.29			Isosymmetric phase transition, H-bonds,
						 	CH···O/CH···N weak H-bonds, CH···π contacts
WEDMOI	-36.09	20-100	2	-0.29	1	1	can be correct, fluorine contacts, odd one out

FORBAQ	-34.60	110-296	2	-0.64			can be correct, π stacking, $\pi \cdots \pi$ contacts, dipolar contacts
MAZMAE	-34.18	100-153	2	-0.18			can be correct, H-bonds, dihydrogen contacts
NOTLAL	-33.38	113-293	2	-0.60			RT crystal grey, LT crystal yellow, π stacking, $\pi \cdots \pi$
NOTE/12	55.56	110 200	1	0.00			contacts, CH···O bonds
WIMVIZ	-33.37	173-293	2	-0.40	S		can be correct, π stacking, $\pi\text{-}\pi$ contacts, CH…I bonds
SARCAC	-32.95	129-295	5	-0.55		о	can be correct, CH…O contacts, dihydrogen contacts
ACUFIO	-32.82	150-297	2	-0.48			can be correct, H-bonds, π stacking,
КАКСЕН	-32.23	150-295	2	-0.47		0	can be correct void space 20-30%, π stacking, CH… π
							contacts
HELHUD	-28.17	200-293	2	-0.26			can be correct, H-bonds, CH \cdots π contacts
REZSIZ	-28.08	100-293	2	-0.54			can be correct, H-bonds, π stacking, F contacts
RAKYOR	-28.06	293-546	2	-0.71	s		can be correct, H-bonds, CH··· π contacts
MEHBOR	-27.11	173-273	2	-0.27			can be correct, H-bonds, CH··· π contacts
BATLOZ	-26.58	173-296	2	-0.33	s		can be correct, π stacking, dihydrogen contacts, CH…F contacts
RETNEM	-26.41	93-180	2	-0.23			can be correct, H-bonds, CH··· π contacts, π stacking
VIZGIX	-25.46	113-295	2	-0.46		0	can be correct, π stacking, dihydrogen contacts,
	20110	110 100	-	0110			CH…O contacts
NUZQOO	-25.30	130-295	2	-0.42			can be correct, H-bonds
ANULEN	-25.29	100-295	3	-0.49			can be correct, CH···· π contacts, π stacking, possible
							phase transition due to changing occupancies
TEZZUU	-16.69	173-295	2	-0.20			can be correct, H-bonds, π stacking, weak CH···O
							contacts
RURQAX	-16.64	100-200	2	-0.17			can be correct, π stacking, weak CH···O contacts,
-							O…Br contacts, dihydrogen contacts
KIYFED	-15.35	123-295	2	-0.26			can be correct, H-bonds, dihydrogen contacts
FAHDOI	-14.60	150-295	2	-0.21			can be correct, first 3d polymer structure, π stacking,
							H-bonds, dihydrogen contacts
QOCXAJ	-14.30	150-296	2	-0.21	S		can be correct, CH···· π contacts, weak CH····O
							contacts, dihydrogen contacts
BOGCAC	-13.96	90-150	2	-0.08			can be correct, H-bonds, CH··· π contacts, π stacking
NOBFEP	-13.46	173-293	2	-0.16			can be correct, π stacking CH··· π contacts,
							dihydrogen contacts
HAPLAN	-13.44	100-293	2	-0.26	s		can be correct, CH··· π contacts, weak CH···O
							contacts
BOWMIK	-13.35	100-298	2	-0.26		0	False hit, synchrotron powder data, however no
							carbon present, but only boron; see text
AMASOY	-12.75	90-296	3	-0.26			Color red or orange, π stacking CH… π contacts,
							dihydrogen contacts, possible phase transition
							(disorder in HT)
ZETFIQ	-12.63	150-296	2	-0.18			can be correct, CH···· π contacts, weak CH···O
							contacts
SECHUG	-12.09	150-293	2	-0.17			can be correct, H-bonds, weak CH…O contacts, π
							stacking
MORPHM	-12.01	25-295	2	-0.32			can be correct, H-bonds, weak CH…O contacts, π
							stacking
TEJNAX	-10.71	85-150	2	-0.07			can be correct, H-bonds, π stacking (carboxylates)
TARDOF	-10.29	173-295	2	-0.13			can be correct, H-bonds, π stacking, dihydrogen
							contacts
OMERUT	-9.58	110-293	2	-0.18		0	CSD notes that there is doubt about the reported
OWIEROT							temperature of one of the structures, a methylene
OWEROT						1	
OWEROT							bridge between to N changes in a strange manner, I
	0.00	200.400		0.11		-	would not include it
PEVNUC	-8.86	280-400	4	-0.11		0	would not include it correct, same crystal same machine; longest single C
	-8.86	280-400	4	-0.11		0	would not include it correct, same crystal same machine; longest single C C bond ever reported (makes sense from a chemical
	-8.86	280-400	4	-0.11		0	would not include it correct, same crystal same machine; longest single C C bond ever reported (makes sense from a chemical point of view: high steric hinderance), π stacking
PEVNUC						0	would not include it correct, same crystal same machine; longest single C C bond ever reported (makes sense from a chemical point of view: high steric hinderance), π stacking CH… π contacts, dihydrogen contacts
	-8.86 -8.59	280-400	4	-0.11		0	would not include itcorrect, same crystal same machine; longest single CC bond ever reported (makes sense from a chemicalpoint of view: high steric hinderance), π stackingCH··· π contacts, dihydrogen contactscan be correct, π stacking, CH··· π contacts, weak
PEVNUC						0	would not include it correct, same crystal same machine; longest single C C bond ever reported (makes sense from a chemical point of view: high steric hinderance), π stacking CH… π contacts, dihydrogen contacts

QAVTUE	-8.39	193-296	2	-0.09			can be correct, H-bonds, π stacking, CH···· π contacts, weak CH····O contacts
WUXNIM	-7.58	92-180	2	-0.07			can be correct, F···· π contacts, π stacking
QUWYAJ	-6.59	123-293	2	-0.11			can be correct, H-bonds, π stacking
ETDAMS	-6.54	100-295	2	-0.13			can be correct, H-bonds, dihydrogen contacts
NEZGAD	-6.04	105-295	2	-0.11		0	can be correct, H-bonds, π stacking, weak CH···O/ CH···F contacts
SILTEP	-5.94	160-273	2	-0.07			can be correct, CH··· π contacts, dihydrogen contacts
HOQMIL	-5.76	173-293	3	-0.07			can be correct, porous structure with solvent inside (DMF)
JAGRIV	-5.75	150-298	2	-0.09	S		can be correct, H-bonds, π stacking, CH··· π contacts , weak CH···O contacts
ROYHAQ	-5.65	100-294	2	-0.11			can be correct, H-bonds, π stacking, CH··· π contacts , weak CH···O contacts, dihydrogen contacts
XUKKET	-3.83	170-593	3	-0.16		0	can be correct, second 3D polymeric structure, some π stacking (acetylenes)
KOZTOK	-3.35	90-293	2	-0.07			LT color yellow; RT light colorless, π stacking, CH··· π contacts , weak CH··· O contacts
BAXSIC	-3.19	80-295	2	-0.07			can be correct, H-bonds, weak CH····O contacts
ITIRAE	-2.71	140-296	2	-0.04	S		can be correct H-bonds, weak CH···O contacts, π ··· π contacts (B to Ph)
DOPLOL	-2.69	120-451	2	-0.09		0	can be correct, H-bonds, π stacking
CELLOB	-2.27	120-173	3	-0.01			can be correct, H-bonds, weak CH····O contacts
JOYQUJ	-2.06	173-295	2	-0.03			can be correct, H-bonds, π stacking, CH…Br contacts
ODAKOV	-2.04	173-293	2	-0.02	S		can be correct, H-bonds, dihydrogen contacts, possible rearrangement of the of the H-bond network inside the channel
IPABIL	-1.82	200-293	2	-0.02			can be correct, 3^{rd} 3D polymeric structure, π stacking
TOHJIJ	-1.64	153-293	3	-0.02			can be correct, H-bonds, π stacking, weak CHO contacts
CEMCAZ	-1.54	153-295	2	-0.02			can be correct, π stacking, weak CH…O contacts, dihydrogen contacts
GLUTAS	-1.29	100-295	3	-0.03			can be correct, H-bonds, weak CHO contacts
KIMSUU	-1.17	122-295	2	-0.02			can be correct, $CH\cdots\pi$ contacts, dihydrogen contacts
DAYGUH	-1.04	100-296	2	-0.02	S		can be correct, 4^{th} polymeric structure, H-bonds, π stacking
HEKMEP	-0.59	121-295	2	-0.01			can be correct, , H-bonds, weak CH…O contacts, dihydrogen contacts
WADQEY	-0.36	220-295	2	-0.00			can be correct, CH $\cdots\pi$ contacts, weak CH \cdots O contact
KOYRUN	-0.26	10-100	2	-0.00		0	can be correct, paper also gives powder data at 245 which proves uniaxial thermal expansion along c, H- bonds
EZUWAX	-0.21	120-293	2	-0.00			can be correct, H-bonds, dihydrogen contacts
WEJZUH	-0.21	175-293	2	-0.00			can be correct, H-bonds, weak CHO contacts, CH π contacts
CLAHMB	-0.00	123-423	2	-0.00			probably not correct – identical cell parameters at 123 and 423 K

Notes: The thermal expansion coefficient, temperature range, Nm and the NTE capacity parameter $\chi\alpha$ are provided for each individual CSD entry. The column Ano indicates whether there is a <Ueq>s anomaly, where higher temperatures correspond to lower values, and such entries are denoted with an 's'. Datasets collected in the same study are denoted with an 'o' in the SS column and other general remarks on the structure are included as well. The comments column describes some structural features and the possibility whether the negative volumetric expansion is correct or not.