Contonto

Catalytic asymmetric addition of thiols to silyl glyoxylates for synthesis of multi-hetero-atom substituted carbon stereocenter

Mingming Guan, Shiyu Wang, Yao Luo, Weidi Cao,* Xiaohua Liu and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

E-mail: wdcao@scu.edu.cn; xmfeng@scu.edu.cn

Contents	
1. General information	2
2. General procedures for the preparation of silylglyoxylate	3
3. General procedures for the preparation of racemic products	6
4. General procedures for the catalytic asymmetric reaction	7
5. Optimization of the reaction conditions	8
6. The relationship of the ee values of product 3a and L ₅ -PrPr ₂	13
7. Control experiments	14
8. Scale-up version of the asymmetric reaction	16
8. Characterization of the products	
9. The X-ray data for 3w and N,N'-Dioxide/Y(OTf) ₃ complexes	
10. Copy of ¹ H, ¹³ C{ ¹ H} and ¹⁹ F{ ¹ H} NMR Spectra	56
11. Copy of CD spectra in n-Hexane	
12. References	

1. General information

Unless otherwise reported, the reaction was performed under nitrogen atmosphere and all reagents were obtained from commercial sources and used without further purification. Purification of the reaction products was carried out by flash filtration with a thin silica gel or flash chromatography using silica gel at -60°C. ¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃, CD₃COCD₃ or CD₂Cl₂ on a bruker ASCENDTM (400MHz or 600MHz). Chemical shifts were given in parts per million (ppm). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets), coupling constants (Hz), integration and assignment. HRMS was recorded on a Thermo Q-Exactive Focus (FTMS+c ESI). Enantiomeric excesses (ee) were determined by HPLC and UPC² analysis using the corresponding commercial chiral column as stated in the experimental procedures at 23 °C with UV detector. Optical rotations were reported as follows: [α]_{λ}^T = (c = g/100 mL, in CH₂Cl₂, unless otherwise noted, $\lambda = 436$ nm). IR was detected by Bruker Tensor II spectrometer with Plantium ATR accessory. Solvents were dried and distilled prior to use according to the standard methods. The silylglyoxylates were prepared according to previously published synthetic strategies^[11]. Silyl triflates were prepared according to Uhlig's method^[21]. The chiral *N*,*N*^r-dioxide ligands were synthesized by the same procedure in the literature^[3].

2. General procedures for the preparation of silylglyoxylate

Silylglyoxylate **1a**, **1b**, **1g** and **1h** were known compounds and synthesized according to the reported procedures.¹ Silylglyoxylate **1c-f** were synthesized according to the following procedure:

General Procedure.

$$Me_2SiAr_2$$
 + HOTf \rightarrow Me_2SiArOTf \rightarrow Me_2SiArOTf

Under a nitrogen atmosphere, 10 ml of DCM was added to a 50 ml round bottom flask containing Me₂SiAr₂^{4,5,6} (13 mmol, 1.3 equivalents). The solution was cooled to -20°C. The HOTf (12 mmol, 1.2 equivalent) was carefully added dropwise via a glass syringe within 3 minutes. The resulting solution was stirred for 24 hours at room temperature and used without purification.

Under a nitrogen atmosphere, to a solution of *tert*-butyl diazoacetate⁷ (10 mmol, 1.0 equiv) and ${}^{1}\text{Pr}_{2}\text{NEt}$ (14 mmol, 1.4 equiv) was added 15 ml Et₂O under N₂. This solution was cooled to -78 °C and R₃SiOTf (13 mmol, 1.3 equiv) in 10 ml DCM mixture solution was added slowly via syringe over the course of 20 min. The resultant solution was stirred at -60 °C for 36 h and the ammonium salts were removed by filtration. The filtrate was concentrated in vacuo to afford the crude silyl diazoacetate.

Oxone® (92 g, 150 mmol, 15.0 equiv) was added in portions to a stirred solution of NaHCO₃ (50.4 g, 600 mmol, 60.0 equiv) in H₂O/acetone (300 ml, v/v, 1.5:1) at 0 °C. After 20 min, a solution of the crude silyl diazoacetate in 40 ml of CH₂Cl₂ was added slowly over 30 min via syringe. Once addition was complete, the reaction was warmed to room temperature and stirring was continued for an additional 15 min (bright yellow solution). The organic phase was decanted into a separatory funnel and was washed with H₂O, brine, and dried (Na₂SO₄). Concentration of the organic phase by rotary evaporation afforded the crude silylglyoxylate which was purified by flash chromatography using the specified solvent system(PE/Et₂O = 40 : 1).

Tert-butyl (diphenyl(vinyl)silyl)-glyoxylate (1c)

Bright orange liquid. 44% yield, ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 4H), 7.49 – 7.43 (m, 2H), 7.40 (dd, J = 7.9, 6.5 Hz, 4H), 6.63 (dd, J = 20.3, 14.7 Hz, 1H), 6.39 (dd, J = 14.7, 3.2 Hz, 1H), 5.89 (dd, J = 20.3, 3.2 Hz, 1H), 1.35 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 228.1, 162.0, 139.5, 136.0, 130.6, 130.3, 130.0, 128.3, 84.2, 27.9.

HRMS (ESI+) m/z calcd for C₂₀H₂₂O₃Si [M+Na]⁺: 361.1230, found: 361.1229.

IR (neat) 3743, 3053, 2980, 2362, 1737, 1715, 1665, 1481, 1429, 1399, 1370, 1255, 1156, 1115, 991, 842, 703, 664, 552, 507.

Tert-butyl (dimethyl(p-tolyl)silyl)-glyoxylate (1d)

Bright orange liquid. 32% yield, ¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 2H), 7.21 (d, J = 7.6 Hz, 2H), 2.36 (s, 3H), 1.44 (s, 9H), 0.56 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 230.0, 160.6, 139.2, 133.3, 128.3, 127.9, 127.5, 127.2, 82.5, 26.8, -0.0, -5.5. HRMS (ESI+) m/z calcd for C₁₅H₂₂O₃Si [M+Na]⁺: 317.0970, found: 317.0987. IR (neat) 2978, 2362, 0739, 1711, 1664, 1602, 1456, 1395, 1370, 1290, 1253, 1158, 1108, 1037, 994, 839, 793, 701, 674, 601, 493.

Tert-butyl ((4-fluorophenyl)dimethylsilyl)-glyoxylate (1e)

Bright orange liquid. 15% yield, 0.45 g. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.09 (t, J = 8.9 Hz, 2H), 1.44 (s, 9H), 0.58 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) 230.5, 164.6 (J_{C-F} = 250.0 Hz), 161.7, 136.7 (J_{C-F} = 7.7 Hz), 128.8 (J_{C-F} = 12 Hz), 115.7 (J_{C-F} = 20.0 Hz), 83.9, 28.0, -4.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.9. HRMS (ESI+) m/z calcd for C₁₄H₁₉FO₃Si [M+Na]⁺: 305.0980, found: 305.0980.

IR (neat) 2978, 2362, 1738, 1711, 1661, 1588, 1501, 1458, 1392, 1370, 1253, 1160, 1107, 995, 834, 794, 674, 601, 615, 421.

Tert-butyl ((4-chlorophenyl)dimethylsilyl)-glyoxylate (1f)

Bright orange liquid. 10% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, H), 7.39 – 7.35 (m, 2H), 1.44 (s, 9H), 0.57 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 230.2, 161.6, 136.8, 135.8, 135.1, 131.6, 128.5, 128.3, 84.0, 28.0, -4.4.

HRMS (ESI+) *m/z* calcd for C₁₄H₁₉ClO₃Si [M+Na]⁺: 353.0405 and 355.0375, found: 353.0405 and 355.0374.

IR (neat) 2977, 2362, 1738, 1712, 1665, 1577, 1501, 1482, 1374, 1370, 1253, 1156, 1085, 1014, 834,

797, 742, 663, 494.

3. General procedures for the preparation of racemic products

Representative experimental procedure for the reaction of silvlglyoxylate 1 and mercaptan 2^8 .

Procedure A: Silylglyoxylate **1** (0.1 mmol) were stirred in water (1.0 mL) at RT. Then mercaptan **2** (0.10 mmol) was added. The mixture was stirred until **1** disappeared (bright orange faded). Then the crude product was subjected to column chromatography on silica gel to afford product **3**.

Procedure B: Silylglyoxylate **1** (0.1 mmol) and Y(OTf)₃ (10 mol%) were stirred in DCM (1.0 mL) at 10°C. Then mercaptan **2** (0.10 mmol) was added. The mixture was stirred until **1** disappeared (bright orange faded). Then the crude product was subjected to column chromatography on silica gel to afford product **3**.

The racemic products 3l and 3r were prepared with procedure B.

4. General procedures for the catalytic asymmetric reaction

Representative experimental procedure for the reaction of silylglyoxylate 1a and benzyl mercaptan 2a.

Procedure A: Under an atmosphere of nitrogen, the $Y(OTf)_3$ (0.01 mmol), L_5 -**PrPr**₂ (0.01 mmol) and Silylglyoxylate **1a** (0.1 mmol, 26.4 mg) were stirred in DCM (1 mL) at 35 °C for 30 min. Then benzyl mercaptan **2a** (0.1 mmol) was added at -60 °C.

The mixture was stirred until **1a** disappeared (bright orange faded, or TLC monitor). Purification of the reaction products was carried out by flash chromatography on silica gel at -60°C and eluted with petroleum ether and ethyl ether (v/v, 20:1) to afford **3a** as a colorless liquid, or flash filtration with a thin silica gel ^[9] and washed with 8 mL Et₂O (DCM or EA can also be used) to afford the desired product. **Procedure B:** Under an atmosphere of nitrogen, the Y(OTf)₃ (0.01 mmol), **L**₅-**PrPr**₂ (0.01 mmol) were stirred in DCM (1 mL) at 35 °C for 30 min, and then concentrated in vacuo. Mercaptan **2** (0.1 mmol) were added at RT under an air atmosphere. The mixture was dissolved in 1.0 mL of DCM. Silylglyoxylate **1** was added at -60 °C.

The mixture was stirred until **1** disappeared (bright orange faded, or TLC monitor). Purification of the reaction products was carried out by flash chromatography on silica gel at -60°C, or flash filtration with a thin silica gel and washed with 8 mL Et_2O (DCM or EA can also be used) to afford the desired product.

When the mercaptan is solid, procedure B is used for the reaction(3l, 3r and 3ae).

By the way, the product suffered somewhat racemization and decomposition after the chromatography on silica gel at room temperature. To avoid racemization and decomposition, **3a-3d**, **3h-3y**, **3aa-3ah** were purification by flash filtration with a thin silica gel, **3e**, **3f** and **3g** were purification by flash chromatography on silica gel at -60°C.

The products can be stored stably for a long time (at least half a year) at low temperature (-20 °C), they will not decompose and the ee values can maintain. However, they will decompose very slowly at room temperature. It is worth mentioning that the product will decompose and racemize rapidly when dissolved in strong protonic solvent (such as methanol). However, they (configuration) will not be affected during the HPLC analysis. Moreover, the products can exist stably in non-protonic solvents, and the enantioselectivity value of the products will not decrease.

5. Optimization of the reaction conditions

Table S1. Screening of chiral N,N'-dioxide ligands

^{*a*} Unless otherwise noted, all reactions were performed with Er(OTf)₃/ligand (1:1, 10 mol%), **1a** (0.10 mmol), **2a** (0.10 mmol) in DCM (1.0 mL). ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

Table S2. The screening of solvents.

^t BuO 1a	,SiMe ₂ Ph ₊ BnSH _ 	Er(OTf) ₃ /L ₅ -PrPr ₂ (1:1, 10 mol%) Solvent, -45 °C 3a	,SBn [`] SiMe₂Ph
entry ^a	Solvent	yield of 3a (%) ^b	ee ^c (%)
1	DCM	87	87
2	Toluene	no react	tion
3	CH ₃ CN	86	0
4	TCM	87	83
5	n-Hexane	57	-8
6	THF	85	10

7	Et ₂ O	no reaction
^a Unless otherwise noted, all r	eactions were performed with Er(OTf)	₃ /L ₅ -PrPr ₂ (1:1, 10 mol%), 1a (0.10 mmol), 2a (0.10

mmol) in Solvent (1.0 mL). ^b Yield of isolated product. ^c Determined by HPLC analysis on a chiral stationary phase.

^t BuO Sit	^{Me₂Ph ₊ BnSH _ }	Er(OTf) ₃ /L ₅ -PrPr ₂ (1:1, 10 mol%) DCM, -45 °C 3a	SBn SiMe ₂ Ph
entry ^a	Х	yield of 3a (%) ^b	ee (%) ^c
1	0.5	88	86
2	1.0	87	87

1.5

 Table S3. The screening of concentration.

^{*a*} Unless otherwise noted, all reactions were performed with Er(OTf)₃/L₅-PrPr₂ (1:1, 10 mol%), **1a** (0.10 mmol), **2a** (0.10 mmol) in DCM (x mL). ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

87

86

^t BuO Sil 1a	^{Me₂Ph + BnSH _ 2a}	Er(OTf) ₃ /L ₅ -PrPr ₂ (1:1, 10 mol%) DCM, x °C 3a	,SBn ∕SiMe₂Ph
entry ^a	Х	yield of $3a (\%)^b$	ee ^c (%)
1	-78	NR	-
2	-70	95	83
3	-65	99	83
4	-60	95	89
5	-55	91	86
6	-50	95	86
7	-45	87	87
8^d	-20	99	68
9^d	0	99	66

Table S4. Temperature effect.

3

^{*a*} Unless otherwise noted, all reactions were performed with Er(OTf)₃/L₅-PrPr₂ (1:1, 10 mol%), **1a** (0.10 mmol), **2a** (0.10 mmol) in DCM (1.0 mL). ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} Y(OTf)₃ was used instead of Er(OTf)₃.

^t BuO 1a 0.1 mn	E _SiMe ₂ Ph + BnSH 2a nol x equiv	r(OTf) ₃ /L ₅ -PrPr ₂ <u>1:1, 10 mol%)</u> DCM , -60 °C HO 3a	∫SBn ∕́SiMe₂Ph
entry ^a	X	yield of 3a (%) ^b	ee (%) ^c
1	1.2	90	85
2	1.1	88	86

Table S5. Optimization of condition for substrate ratio.

3	1	95	89	
4	0.91	83	87	
^{<i>a</i>} Unless otherwise noted, all reactions were performed with Er(OTf) ₃ /ligand (1:1, 10 mol%), 1a (0.10 mmol), 2a (x ⁻¹ mmol)				
in DCM (1.0 mL). ^b Yield of isolated product. ^c Determined by HPLC analysis on a chiral stationary phase.				

Table S6. The screening of additives.

	O ⁷ BuO 1a O SiMe ₂ Ph + BnSH - 2a	Er(OTf) ₃ /L ₅ -PrPr ₂ (1:1, 10 mol%) → ^t BuO ⁷ DCM , -60 °C additive	O SBn HO ^{´´} SiMe ₂ Ph 3a
entry ^a	additive	yield of 3a (%) ^b	ee (%) ^c
1	-	95	89
2	3 Å M.S. (20 mg)	71	73
3	4 Å M.S. (20 mg)	69	69
4	5 Å M.S. (20 mg)	79	68
5	Et ₃ N (30 mol%)	70	1
6	H ₂ O (2 ul)	82	77
7	H ₂ O (5 ul)	82	64
8	$NaBArF_4(10 mg)$	91	88
9	PhCOOH (10 mol%)	80	12

^{*a*} Unless otherwise noted, all reactions were performed with $Er(OTf)_3/L_5$ -**PrPr**₂ (1:1, 10 mol%), additive, **1a** (0.10 mmol), **2a** (0.10 mmol) in CH₂Cl₂ (1.0 mL). ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

Table	S7.	Screening	of metal	salts.
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

0 ^t BuO 1a	SiMe ₂ Ph ₊ BnSH — II O 2a	metal salt/L₅-PrPr₂ (1:1, 10 mol%) DCM , -60 °C HO 3a	,SBn [∕] SiMe₂Ph
entry ^a	metal salt	yield of 3a (%) ^b	ee (%) ^c
1	-	87	5
2	Er(OTf) ₃	95	87
3	La(OTf) ₃	88	51
4	Zn(OTf) ₂	83	0
5	Ni(OTf) ₂	80	10
6	Al(OTf) ₃	no rea	ction
7	Pr(OTf) ₃	no rea	ction
8	Y(OTf) ₃	99	91
9	YCl ₃	95	1
10	Y(ⁱ PrO) ₃	93	33

^{*a*} Unless otherwise noted, all reactions were performed with Metal salt/ L_5 -**PrPr**₂ (1:1, 10 mol%), **1a** (0.10 mmol), **2a** (0.10 mmol) in CH₂Cl₂ (1.0 mL). ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

Table S8. Screening of the the amount of the L_5 -PrPr₂/Y(OTf)₃.

^t BuO 1a	SiMe ₂ Ph ₊ BnSH — 2a	Y(OTf) ₃ /L ₅ - PrPr ₂ (1:1, x mol%) DCM , -60 °C HO 3a	SBn ÍSiMe ₂ Ph
entry ^a	Х	yield of 3a (%) ^b	ee (%) ^c
1	1	no read	ction
2	2	96	90
3	5	>99	91
4	10	>99	91

^{*a*} Unless otherwise noted, all reactions were performed with Y(OTf)₃/L₅-PrPr₂ (1:1, x mol%), **1a** (0.10 mmol), **2a** (0.10 mmol) in CH₂Cl₂ (1.0 mL). ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

Table S9. Screening of chiral ligands

^{*a*} Unless otherwise noted, all reactions were performed with Y(OTf)₃/ligand (1:1, 10 mol%), **1a** (0.10 mmol), **2a** (0.10 mmol) in DCM (1.0 mL). ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} CPA was used instead of Y(OTf)₃/CPA.

Table S10. Screening of silyl groups

	$i_{BuO} \rightarrow i_{O} $ $s_{i} + BnSH \frac{(1:1)}{DC}$	f) ₃ / L ₅ - PrPr ₂ O , 10 mol%) M, -60 °C BnS Si OH	
	1 2a	3	
Entry ^a	Si	Yield $(\%)^b$	ee (%) ^c
1	PhMe ₂ Si	99	91
2^d	TBS	90	40
3 <i>d</i>	TES	91	20
4 ^e	TMS	93	25

^{*a*} Unless otherwise noted, all reactions were performed with Y(OTf)₃/L₅-PrPr₂ (1:1, 10 mol%), **1** (0.10 mmol), **2a** (0.10 mmol) in DCM (1.0 mL) at -60 °C. ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} Run at -45 °C. ^{*e*} Run at -20 °C.

Table S11. Screening of ester moiety

^{*a*} Unless otherwise noted, all reactions were performed with Y(OTf)₃/L₅-**PrPr**₂ (1:1, 10 mol%), **1** (0.10 mmol), **2a** (0.10 mmol) in DCM (1.0 mL) at -60 °C. ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} Determined by NMR.

6. The relationship of the ee values of product 3a and L₅-PrPr₂

To gain mechanistic insight into the reaction, the relationship between the ee values of the product **3a** and ligand L_5 -**PrPr**₂ was explored. A self-evident linear effect was observed, which indicates that the monomeric catalyst of L_5 -**PrPr**₂ and Y(OTf)₃ may be the main catalytically active species.

13

7. Control experiments

For the reaction between 1a and 2a

For the reaction between 1h and 2a

8. Scale-up version of the asymmetric reaction

A 100 mL of dry round-bottom flask was charged with N,N-dioxide ligand L_5 -PrPr₂ (10 mol %, 0.18 mmol) and Y(OTf)₃ (10 mol %, 0.18 mmol) under nitrogen atmosphere. The DCM (18 mL) was added and the mixture were stirred at 35 °C for 6 h. Then, 2l (1.8 mmol) and 1b (1.8 mmol) was added at -45 °C. The mixture was stirred at -45 °C for 48 h (detection by TLC). Purification of the reaction products was carried out by flash filtration with a thin silica gel and washed with 15 mL DCM to afford the desired product in 99% yield (1.10 g) with 94% ee as a colorless solid.

8. Characterization of the products

Tert-butyl (R)-2-(benzylthio)-2-(dimethyl(phenyl)silyl)-2-hydroxyacetate (3a)

Colorless oil. 38.8 mg, 99% yield, 91% ee. **Specific rotation** $[\alpha]^{25}_{D} = -21$ (c = 3.68, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ODH column, *i*-PrOH/*n*-hexane = 1/99, flow rate: 1.0 mL/min, 254 nm): tr (minor) = 7.63 min, tr (major) = 13.93 min.

¹**H NMR** (400 MHz, CDCl₃)δ 7.67 – 7.60 (m, 2H), 7.40 – 7.32 (m, 3H), 7.30 – 7.24 (m, 4H), 7.23 – 7.16 (m, 1H), 3.88 (s, 1H), 3.84 (d, *J* = 11.8 Hz, 1H), 3.59 (d, *J* = 11.8 Hz, 1H), 1.33 (s, 9H), 0.53 (d, *J* = 7.0 Hz, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.4, 137.3, 134.8, 134.7, 130.0, 129.4, 128.6, 127.8, 127.2, 83.4, 32.3, 27.9, -4.2.

HRMS (ESI+) *m/z* calcd for C₂₁H₂₈O₃SSi [M+Na]⁺: 411.1421, found: 411.1421.

IR (neat) 3442, 2975, 2926, 2361, 3696, 1492, 1455, 1427, 1394, 1368, 1250, 1154, 1114, 1050, 966, 916, 838, 780, 736, 699, 645, 565, 521, 469.

	Retention Time	Area	% Area
1	7.633	449468	4.75
2	13.933	9011224	95.25

Tert-butyl (R)-2-(benzylthio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (3b)

Colorless oil. 45.0 mg, 99% yield, 95% ee. **Specific rotation** $[\alpha]^{25}_{D} = +47$ (c = 0.95, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 5/95, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 7.78 min, tr (major) = 12.01 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (ddd, *J* = 7.7, 5.7, 1.6 Hz, 4H), 7.41 – 7.31 (m, 6H), 7.28 – 7.23 (m, 4H), 7.20 (m, 1H), 3.98 (s, 1H), 3.85 (d, *J* = 11.9 Hz, 1H), 3.62 (d, *J* = 12.0 Hz, 1H), 1.21 (s, 9H), 0.83 (s, 3H).

¹³C{¹H} NMR (400 MHz, CDCl₃) δ 174.0, 137.2, 135.7, 135.5, 133.8, 133.1, 130.1, 130.0, 129.5, 128.6, 127.9, 127.8, 127.2, 83.6, 77.4, 32.4, 27.7, -4.3.

HRMS (ESI+) *m/z* calcd for C₂₆H₃₀O₃SSi [M+Na]⁺: 473.1577, found: 473.1576.

IR (neat) 3439, 3067, 2977, 2928, 2361, 1698, 1595, 1491, 1455, 1428, 1394, 1369, 1257, 1155, 1113, 1051, 964, 843, 790, 732, 670, 522, 488.

		1	
	Retention Time	Area	% Area
1	7.778	88344	2.61
2	12.008	3301514	97.39

Tert-butyl (*R*)-2-(benzylthio)-2-(diphenyl(vinyl)silyl)-2-hydroxyacetate (**3c**)

Colorless oil. 44.9 mg, 97% yield, 96% ee. Specific rotation $[\alpha]^{25}_{D} = +57$ (c = 0.87, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 9.91 min, tr (major) = 16.06 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (ddd, J = 7.7, 5.7, 1.6 Hz, 4H), 7.41 – 7.31 (m, 6H), 7.28 – 7.23 (m, 4H), 7.20 (m, 1H), 3.98 (s, 1H), 3.85 (d, J = 11.9 Hz, 1H), 3.62 (d, J = 12.0 Hz, 1H), 1.21 (s, 9H), 0.83 (s, 3H).

¹³C{¹H} NMR (400 MHz, CDCl₃) δ 174.0, 137.2, 135.7, 135.5, 133.8, 133.1, 130.1, 130.0, 129.5, 128.6, 127.9, 127.8, 127.2, 83.6, 77.4, 32.4, 27.7, -4.3.

HRMS (ESI+) *m/z* calcd for C₂₇H₃₀O₃SSi [M+Na]⁺: 485.1577, found: 485.1576.

IR (neat) 3439, 3067, 2977, 2928, 2361, 1698, 1595, 1491, 1455, 1428, 1394, 1369, 1257, 1155, 1113, 1051, 964, 843, 790, 732, 670, 522, 488.

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 Minutes

	Retention Time	Area	% Area
1	9.914	307067	1.92
2	16.055	15684587	98.08

Tert-butyl (R)-2-(benzylthio)-2-(dimethyl(p-tolyl)silyl)-2-hydroxyacetate (3d)

Colorless oil. 35.4 mg, 88% yield, 85% ee. **Specific rotation** $[\alpha]^{25}_{D} = -13$ (c = 0.55, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 8.10 min, tr (major) = 10.22 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.60 – 7.53 (m, 2H), 7.34 – 7.25 (m, 4H), 7.20 (dd, *J* = 16.5, 7.2 Hz, 3H), 4.64 (s, 1H), 3.87 (d, *J* = 11.7 Hz, 1H), 3.64 (d, *J* = 11.8 Hz, 1H), 2.31 (s, 3H), 1.36 (s, 9H), 0.50 (s, 3H), 0.46 (s, 3H).

¹³C{¹H} NMR (Acetone-*d*₆) δ 174.4, 140.3, 138.6, 135.6, 135.6, 132.2, 130.1, 129.3, 129.1, 127.7, 83.1, 78.1, 32.5, 28.1, 21.5, -3.8, -3.9.

HRMS (ESI+) *m/z* calcd for C₂₂H₃₀O₃SSi [M+Na]⁺: 425.1567, found: 425.1557.

IR (neat) 3444, 2974, 2925, 1697, 1602, 1495, 1454, 1394, 1369, 1251, 1155, 1108, 1051, 967, 894, 785, 701, 602, 493.

2 9.706 2472311 49.43	1	7.885	2529828	50.57
	2	9.706	2472311	49.43

	Retention Time	Area	% Area
1	8.102	1116389	7.40
2	10.222	13968317	92.60

Tert-butyl (R)-2-(benzylthio)-2-((4-fluorophenyl)dimethylsilyl)-2-hydroxyacetate (3e)

Colorless oil. 31.0 mg, 76% yield, 80% ee. **Specific rotation** $[\alpha]^{25}_{D} = -9.5$ (c = 0.28, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 7.57 min, tr (major) = 8.76 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.77 – 7.69 (m, 2H), 7.33 – 7.25 (m, 4H), 7.25 – 7.18 (m, 1H), 7.17 - 7.10 (m, 2H), 4.75 (s, 1H), 3.88 (d, *J* = 11.8 Hz, 1H), 3.66 (d, *J* = 11.7 Hz, 1H), 1.36 (s, 9H), 0.53 (s, 3H), 0.48 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone- d_6) δ 174.3, 165.17 ($J_{C-F} = 247.2 \text{ Hz}$), 138.7, 138.1 ($J_{C-F} = 7.6 \text{ Hz}$), 132.1 ($J_{C-F} = 3.8 \text{ Hz}$), 130.3, 129.5, 128.0, 115.51 ($J_{C-F} = 19.8 \text{ Hz}$), 83.4, 78.1, 32.7, 28.2, -3.7. ¹⁹F NMR (376 MHz, Acetone- d_6) δ -112.7.

HRMS (ESI+) *m/z* calcd for C₂₁H₂₇O₃FSSi [M+Na]⁺: 429.1326, found: 429.1326.

IR (neat) 2977, 2362, 1712, 1665, 1577, 1483, 1374, 1253, 1156, 1085, 1014, 834, 797, 742, 663, 494.4

	Retention Time	Area	% Area
1	7.833	5593732	49.80
2	9.173	5638667	50.20

The mixture was purified by flash chromatography on silica gel at -60°C:

Tert-butyl (R)-2-(benzylthio)-2-((4-chlorophenyl)dimethylsilyl)-2-hydroxyacetate (3f)

Colorless oil. 35.5 mg, 84% yield, 91% ee. **Specific rotation** $[\alpha]^{25}_{D} = -20$ (c = 0.33, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 254 nm): tr (minor) = 8.34 min, tr (major) = 9.43 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.72 – 7.67 (m, 2H), 7.43 – 7.39 (m, 2H), 7.33 – 7.26 (m, 4H), 7.22 (m, 1H), 4.78 (s, 1H), 3.89 (d, *J* = 11.8 Hz, 1H), 3.66 (d, *J* = 11.8 Hz, 1H), 1.37 (s, 9H), 0.53 (s, 3H), 0.49 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.1, 138.4, 137.3, 136.4, 136.3, 134.9, 130.1, 129.3, 128.7, 128.5, 127.8, 83.3, 77.86, 32.6, 28.0, -4.0, -4.1.

HRMS (ESI+) m/z calcd for C₂₁H₂₇O₃ClSSi [M+Na]⁺: 445.1031 and 447.1001, found: 445.1031 and 447.1000.

IR (neat) 2979, 2363, 1738, 1711, 1665, 1589, 1502, 1458, 1370, 1253, 1160, 1107, 995, 834, 794, 674, 601, 515, 421.

The mixture was purified by flash chromatography on silica gel at -60°C:

	Retention Time	Area	% Area
1	8.341	186913	4.31
2	9.427	4153436	95.69

Tert-butyl (R)-2-(benzylthio)-2-(tert-butyldimethylsilyl)-2-hydroxyacetate (3g)

Colorless oil. 32.1 mg, 87% yield, 80% ee. **Specific rotation** $[\alpha]^{25}_{D} = +16$ (c = 0.44, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 4.65 min, tr (major) = 5.35 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.13 (m, 5H), 3.91 (s, 1H), 3.80 (d, J = 11.6 Hz, 1H), 3.51 (d, J = 11.6 Hz, 1H), 1.51 (s, 9H), 0.96 (s, 9H), 0.23 (s, 3H), 0.13 (s, 3H).

¹³C{¹H} NMR (400 MHz, CDCl₃) δ 175.4, 137.3, 129.4, 128.6, 127.2, 83.6, 78.7, 32.0, 28.2, 27.7, 18.8, -5.9, -6.2.

HRMS (ESI+) *m/z* calcd for C₁₉H₃₂O₃SSi [M+Na]⁺: 391.1734, found: 391.1730.

IR (neat) 3448, 2932, 2858, 2361, 1694, 1464, 1393, 1368, 1253, 1157, 1051, 964, 840, 798, 772, 702, 573, 454.

	Retention Time	Area	% Area
1	4.724	1120405	50.05
2	5.490	1118363	49.95

The mixture was purified by flash chromatography on silica gel at -60°C:

	Retention Time	Area	% Area
1	4.646	1323163	10.07
2	5.346	11819788	89.93

Tert-butyl (*R*)-2-(dimethyl(phenyl)silyl)-2-hydroxy-2-((4-methoxybenzyl)thio)acetate (**3h**)

Colorless oil. 48.0 mg, 99% yield, 94% ee. **Specific rotation** $[\alpha]^{25}_{D} = +20$ (c = 0.04, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane =10/90, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 7.82 min, tr (major) = 11.81 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.82 – 7.74 (m, 4H), 7.45 – 7.31 (m, 6H), 7.24 – 7.18 (m, 2H), 6.87 – 6.80 (m, 2H), 4.88 (s, 1H), 3.85 (d, J = 11.7 Hz, 1H), 3.75 (s, 3H), 3.63 (d, J = 11.6 Hz, 1H), 1.26 (s, 9H), 0.83 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.0, 159.9, 136.6, 136.3, 135.4, 134.7, 131.3, 130.7, 130.5, 130.0, 128.6, 128.4, 114.8, 83.5, 78.4, 55.6, 32.3, 28.0, -3.8.

HRMS (ESI+) *m/z* calcd for C₂₇H₃₂O₄SSi [M+Na]⁺: 503.1683, found: 503.1683.

2

11.861

IR (neat) 3438, 2975, 2099, 1697, 1610, 1511, 1461, 1430, 1369, 1249, 1155, 1112, 1035, 964, 838, 788, 733, 699, 490.

735417

49.83

	Retention Time	Area	% Area
1	7.817	12028	2.87
2	11.814	407561	97.13

Tert-butyl (R)-2-(dimethyl(phenyl)silyl)-2-((4-fluorobenzyl)thio)-2-hydroxyacetate (3i)

Colorless oil. 46.7 mg, 99% yield, 93% ee. Specific rotation $[\alpha]^{25}_{D} = +18$ (c = 0.90, CH₂Cl₂). Dissolved in n-hexane for HPLC; HPLC (Chiral IF column, i-PrOH/n-hexane =3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 9.78 min, tr (major) = 17.11 min.

¹H NMR (400 MHz, Acetone-*d*₆) δ 7.80 – 7.69 (m, 4H), 7.41 – 7.26 (m, 8H), 7.03 – 6.96 (m, 2H), 4.92 (s, 1H), 3.83 (d, J = 12.1 Hz, 1H), 3.66 (d, J = 12.1 Hz, 1H), 1.20 (s, 9H), 0.80 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, Acetone- d_6) δ 174.0, 162.7 (J_{C-F} = 243.6 Hz), 136.6, 136.3, 135.2, 134.7 (J_{C-F} $_{\rm F}$ = 3.1 Hz), 134.6, 132.1 ($J_{\rm C-F}$ = 8.2 Hz), 130.8, 130.5, 128.6, 128.4, 116.0 ($J_{\rm C-F}$ = 21.6 Hz), 83.5, 78.2, 32.0, 27.9, -3.9.

¹⁹**F NMR** (376 MHz, Acetone-*d*₆) δ -117.37.

HRMS (ESI+) *m/z* calcd for C₂₆H₂₉FO₃SSi [M+Na]⁺: 491.1488, found: 491.1489.

IR (neat) 3436, 3048, 2978, 1697, 1600, 1508, 1458, 1394, 1369, 1255, 1225, 1155, 1111, 1052, 964, 841, 788, 732, 699.

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 Minutes

	Retention Time	Area	% Area
1	9.615	1999525	51.04
2	16.869	1917804	48.96

	Retention Time	Area	% Area
1	9.782	290451	3.40
2	17.112	8257782	96.60

Tert-butyl (R)-2-((4-chlorobenzyl)thio)-2-(dimethyl(phenyl)silyl)-2-hydroxyacetate (3j)

Colorless oil. 48.0 mg, 99% yield, 93% ee. **Specific rotation** $[\alpha]^{25}_{D} = +22$ (c = 0.98, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane =3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 9.49 min, tr (major) = 15.94 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.82 – 7.73 (m, 4H), 7.44 – 7.33 (m, 6H), 7.30 (d, J = 0.8 Hz, 4H), 4.97 (s, 1H), 3.86 (d, J = 12.2 Hz, 1H), 3.69 (d, J = 12.2 Hz, 1H), 1.23 (s, 9H), 0.83 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.0, 137.8, 136.6, 136.6, 135.2, 134.6, 133.2, 132.0, 130.8, 130.6, 129.4, 128.6, 128.5, 83.6, 78.2, 32.1, 27.9, -3.9.

HRMS (ESI+) m/z calcd for C₂₆H₂₉ClO₃SSi [M+Na]⁺: 507.1187 and 509.1157, found: 507.1187 and 509.1157.

IR (neat) 3438, 3049, 2977, 2930, 1697, 1592, 1489, 1428, 1398, 1369, 1255, 1155, 1111, 1053, 964, 841, 789, 732, 699, 490.

	Retention Time	Area	% Area
1	9.861	280462	3.53
2	16.663	7664487	96.47

Tert-butyl (*R*)-2-((2-chlorobenzyl)thio)-2-(dimethyl(phenyl)silyl)-2-hydroxyacetate (**3**k)

Colorless oil. 48.1 mg, 99% yield, 92% ee. **Specific rotation** $[\alpha]^{25}_{D} = +26$ (c = 0.71, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane =3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 9.95 min, tr (major) = 14.74 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.76 (ddd, *J* = 13.1, 7.9, 1.7 Hz, 4H), 7.44 – 7.29 (m, 8H), 7.26 – 7.17 (m, 2H), 4.97 (s, 1H), 3.95 (d, *J* = 11.9 Hz, 1H), 3.86 (d, *J* = 11.8 Hz, 1H), 1.21 (s, 9H), 0.82 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.0, 136.6, 136.3, 136.3, 135.3, 134.8, 134.6, 132.7, 130.8, 130.5, 130.4, 129.7, 128.6, 128.5, 128.2, 83.7, 78.1, 30.5, 27.9, -3.9.

HRMS (ESI+) m/z calcd for C₂₆H₂₉ClO₃SSi [M+Na]⁺: 507.1187 and 509.1157, found: 507.1187 and 509.1157.

IR (neat) 3435, 3051, 2977, 2929, 2362, 1696, 1590, 1472, 1429, 1394, 1369, 1255, 1155, 1111, 11046, 963, 842, 790, 733, 699, 523, 490, 450.

	Retention Time	Area	% Area
1	9.782	6522564	50.61
2	14.434	6364976	49.39

	Retention Time	Area	% Area
1	9.949	1452658	4.08
2	14.742	34170351	95.92

Tert-butyl (R)-2-((4-bromobenzyl)thio)-2-(dimethyl(phenyl)silyl)-2-hydroxyacetate (31)

Colorless oil. 49.8 mg, 93% yield, 93% ee. Specific rotation $[\alpha]^{20}_{D} = +26$ (c = 1.00, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane =3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 10.12 min, tr (major) = 17.65 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.77 (ddt, J = 15.2, 6.7, 1.5 Hz, 4H), 7.47 – 7.32 (m, 8H), 7.29 – 7.22 (m, 2H), 4.97 (s, 1H), 3.84 (d, J = 12.2 Hz, 1H), 3.68 (d, J = 12.2 Hz, 1H), 1.22 (s, 9H), 0.83 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.0, 138.3, 136.6, 136.3, 135.2, 134.6, 132.4, 132.3, 130.8, 130.6, 128.6, 128.5, 121.2, 83.6, 78.2, 32.1, 27.9, -3.9.

HRMS (ESI+) m/z calcd for C₂₆H₂₉BrO₃SSi [M+Na]⁺: 551.0682 and 553.0662, found: 551.0684 and 553.0662.

IR (neat) 3432, 2977, 1698, 1487, 1428, 1394, 1369, 1253, 1154, 1113, 1070, 1011, 964, 843, 798, 729, 699, 489.

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 Minutes

	Retention Time	Area	% Area
1	10.195	844758	50.59
2	17.782	825068	49.41

	Retention Time	Area	% Area
1	10.123	387094	3.68
2	17.645	10136719	96.32

Tert-butyl (*R*)-2-((3,4-dichlorobenzyl)thio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (**3m**)

3m

Colorless oil. 51.1 mg, 98% yield, 93% ee. **Specific rotation** $[\alpha]^{20}_{D} = +11$ (c = 0.33, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 9.99 min, tr (major) = 17.15 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.74 (ddt, *J* = 16.6, 6.6, 1.6 Hz, 4H), 7.48 (d, *J* = 2.1 Hz, 1H), 7.46 – 7.29 (m, 7H), 7.25 (dd, *J* = 8.3, 2.1 Hz, 1H), 5.05 (s, 1H), 3.76 (q, *J* = 18.4 Hz, 2H), 1.16 (s, 9H), 0.81 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 173.9, 140.5, 136.6, 136.3, 135.1, 134.4, 132.5, 132.2, 131.4, 131.1, 130.8, 130.6, 130.3, 128.6, 128.5, 83.6, 77.9, 31.5, 27.8, -4.0.

HRMS (ESI+) m/z calcd for C₂₆H₂₈Cl₂O₃SSi [M+Na]⁺: 541.0798 and 542.0831, found: 541.0798 and 542.0814.

IR (neat) 3430, 3051, 2978, 2930, 1697, 1590, 1471, 1428, 1393, 1370, 1255, 1155, 1112, 964, 842, 786, 732, 699, 490.

	Retention Time	Area	% Area
1	9.987	1523918	3.58
2	17.150	41102716	96.42

Tert-butyl (*R*)-2-(butylthio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (**3n**)

Colorless oil. 40.0 mg, 96% yield, 97% ee. **Specific rotation** $[\alpha]^{20}_{D} = +18$ (c = 0.80, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 6.84 min, tr (major) = 12.88 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.77 (td, J = 8.2, 1.6 Hz, 4H), 7.37 (m, 6H), 4.69 (s, 1H), 2.63 (m, 1H), 2.52 (m, 1H), 1.56 – 1.46 (m, 2H), 1.41 – 1.31 (m, 2H), 1.24 (s, 9H), 0.87 (t, J = 7.3 Hz, 3H), 0.82 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.5, 136.6, 136.3, 135.5, 134.9, 130.7, 130.4, 83.4, 77.6, 32.4, 28.0, 27.9, 23.0, 14.0, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₃H₃₂O₃SSi [M+Na]⁺: 439.1734, found: 439.1733.

IR (neat) 3445, 2961, 2930, 1689, 1450, 1429, 1369, 1255, 1157, 1111, 1047, 693, 845, 790, 731, 699, 490.

	Retention Time	Area	% Area
1	6.676	8076072	49.78
2	12.194	8148102	50.22

	Retention Time	Area	% Area
1	6.893	211908	1.67
2	12.877	12463411	98.33

Tert-butyl (R)-2-hydroxy-2-(methyldiphenylsilyl)-2-(pentylthio)acetate (30)

Colorless oil. 42.5 mg, 99% yield, 98% ee. **Specific rotation** $[\alpha]^{25}_{D} = +28$ (c = 0.44, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 1/99, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 10.34 min, tr (major) = 20.90 min.

¹**H NMR** (400 MHz, CD_2Cl_2) δ 7.67 (d, J = 7.9 Hz, 4H), 7.37 – 7.27 (m, 6H), 3.89 (s, 1H), 2.45 (m, 2H), 1.51 – 1.44 (m, 2H), 1.28 – 1.21 (m, 4H), 1.18 (s, 9H), 0.82 (t, J = 7.0 Hz, 3H), 0.76 (s, 3H). ¹³C{¹H} **NMR** (101 MHz, CD_2Cl_2) δ 174.7, 136.2, 135.9, 134.6, 133.9, 130.5, 130.3, 128.3, 128.1, 84.0, 77.3, 31.9, 29.6, 28.0, 28.0, 22.8, 14.3, -4.1.

HRMS (ESI+) *m/z* calcd for C₂₄H₃₄O₃SSi [M+Na]⁺: 453.1890, found: 453.1893.

IR (neat) 3442, 2958, 2927, 1697, 1460, 428, 1369, 1253, 1155, 1111, 1036, 962, 844, 786, 729, 698, 527, 487.

	Retention Time	Area	% Area
1	10.341	493760	1.24
2	20.904	39192279	98.76

Tert-butyl (*R*)-2-(hexylthio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (**3p**)

Colorless oil. 44 mg, 99% yield, 94% ee. **Specific rotation** $[\alpha]^{25}_{D} = +22$ (c = 0.86, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 6.42 min, tr (major) = 11.21 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.77 (td, *J* = 7.8, 1.6 Hz, 4H), 7.45 – 7.31 (m, 6H), 4.67 (s, 1H), 2.68 – 2.44 (m, 2H), 1.53 (m, 2H), 1.39 – 1.26 (m, 6H), 1.25 (s, 9H), 0.87 (t, *J* = 6.8 Hz, 3H), 0.82 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.6, 136.7, 136.4, 135.6, 135.0, 130.8, 130.5, 128.6, 128.5, 83.5, 77.7, 32.3, 30.4, 29.7, 28.3, 28.1, 23.4, 14.5, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₅H₃₆O₃SSi [M+Na]⁺: 467.2047, found: 467.2049.

IR (neat) 3444, 3050, 2958, 2927, 2856, 1698, 1461, 1429, 1369, 1254, 1157, 1111, 1050, 961, 845, 790, 731, 699, 490.

Tert-butyl (*R*)-2-(heptylthio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (3q)

Colorless oil. 45.8 mg, 99% yield, 91% ee. **Specific rotation** $[\alpha]^{25}_{D} = +22$ (c = 0.94, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 6.32 min, tr (major) = 11.03 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.77 (td, J = 7.8, 1.7 Hz, 4H), 7.44 – 7.31 (m, 6H), 4.67 (s, 1H), 2.56 (ddt, J = 46.6, 12.0, 7.4 Hz, 2H), 1.52 (h, J = 6.8 Hz, 2H), 1.39 – 1.25 (m, 7H), 1.25 (s, 9H), 0.87 (t, J = 6.7 Hz, 3H), 0.82 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.5, 136.7, 136.4, 135.6, 135.0, 130.7, 130.5, 128.6, 128.4, 83.4, 77.6, 32.2, 30.3, 29.7, 28.3, 28.0, 23.3, 14.5, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₆H₃₈O₃SSi [M+Na]⁺: 481.2203, found: 481.2206.

IR (neat) 3443, 2926, 2855, 1698, 1461, 1429, 1369, 1254, 1157, 1111, 1050, 962, 845, 791, 731, 699, 490.

Tert-butyl (*R*)-2-hydroxy-2-(methyldiphenylsilyl)-2-(octadecyl lthio)acetate (**3r**)

Colorless oil. 61.0 mg, 99% yield, 94% ee. **Specific rotation** $[\alpha]^{20}_{D} = +18$ (c = 1.22, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 254 nm): tr (minor) = 5.41 min, tr (major) = 9.18 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.76 (ddt, J = 8.2, 6.6, 1.6 Hz, 4H), 7.45 – 7.29 (m, 6H), 4.69 (s, 1H), 2.61 (dt, J = 12.0, 7.5 Hz, 1H), 2.49 (dt, J = 11.9, 7.4 Hz, 1H), 1.56 – 1.47 (m, 2H), 1.28 (d, J = 3.9 Hz, 32H), 1.23 (s, 9H), 0.92 – 0.84 (t, 3H), 0.81 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone) δ 174.3, 136.5, 136.2, 135.4, 134.7, 130.6, 130.3, 128.4, 128.2, 83.2, 77.4, 32.6, 30.4, 30.4, 30.3, 30.1, 30.1, 29.8, 28.0, 27.8, 23.3, 14.4, -3.8.

HRMS (ESI+) *m/z* calcd for C₃₇H₆₀O₃SSi [M+Na]⁺: 635.3925, found: 635.3925.

IR (neat) 2923, 2853, 1743, 1700, 1462, 1429, 1369, 1254, 1114, 959, 835, 793, 731, 699, 490.

	Retention Time	Area	% Area
1	5.332	767980	50.62
2	8.752	749198	49.38

	Retention Time	Area	% Area
1	5.414	34577	3.14
2	9.178	1065469	96.86

Tert-butyl (R)-2-hydroxy-2-(isobutylthio)-2-(methyldiphenylsilyl)acetate (3s)

Colorless oil. 41.0 mg, 99% yield, 96% ee. **Specific rotation** $[\alpha]^{20}_{D} = +23$ (c = 0.71, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 5.91 min, tr (major) = 10.63 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.77 (tt, J = 6.7, 1.6 Hz, 4H), 7.45 – 7.29 (m, 6H), 4.67 (s, 1H), 2.50 (dd, J = 12.1, 6.9 Hz, 1H), 2.40 (dd, J = 12.1, 6.8 Hz, 1H), 1.74 (dp, J = 13.4, 6.7 Hz, 1H), 1.24 (s, 9H), 0.93 (dd, J = 6.7, 2.2 Hz, 6H), 0.83 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.5, 136.7, 136.4, 135.6, 134.9, 130.7, 130.5, 128.6, 128.4, 83.4, 77.4, 37.0, 29.5, 28.0, 22.7, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₃H₃₂O₃SSi [M+Na]⁺: 439.1734, found: 439.1732.

IR (neat) 3443, 3050, 2960, 2871, 1698, 1590, 1461, 1428, 1390, 1369, 1252, 1155, 1112, 1049, 963, 844, 791, 731, 699.

	Retention Time	Area	% Area
1	5.904	9049934	50.05
2	10.662	9030271	49.95

	Retention Time	Area	% Area
1	5.914	227584	2.20
2	10.628	10113388	97.80

Colorless oil. 46.0 mg, 99% yield, 97% ee. **Specific rotation** $[\alpha]^{25}_{D} = +50$ (c = 0.98, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 7.65 min, tr (major) = 14.43 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.73 (ddt, J = 6.2, 4.4, 1.6 Hz, 4H), 7.44 – 7.32 (m, 6H), 7.28 –

7.23 (m, 2H), 7.21 – 7.11 (m, 3H), 3.93 (s, 1H), 2.90 – 2.80 (m, 3H), 2.73 – 2.63 (m, 1H), 1.21 (s, 9H), 0.83 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.2, 140.7, 135.7, 135.5, 133.8, 133.2, 130.1, 129.9, 128.6, 128.5, 127.9, 127.8, 126.4, 83.6, 76.9, 36.1, 29.3, 27.7, -4.3.

HRMS (ESI+) *m/z* calcd for C₂₇H₃₂O₃SSi [M+Na]⁺: 487.1733, found: 487.1733.

IR (neat) 3439, 2977, 2928, 1697, 1454, 1428, 1393, 1369, 1255, 1156, 1111, 1052, 959, 844, 788, 731, 699, 524, 490.

	Retention Time	Area	% Area
1	7.560	1331764	50.81
2	14.060	1289506	49.19

	Retention Time	Area	% Area
1	7.654	147882	1.69
2	14.429	8620821	98.31
Tert-butyl (*R*)-2-hydroxy-2-(methyldiphenylsilyl)-2-((3-(triethoxysilyl)propyl)thio)acetate (**3u**)

Colorless oil. 56.1 mg, 99% yield, 91% ee. **Specific rotation** $[\alpha]^{25}_{D} = +20$ (c = 0.98, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 210 nm): tr (minor) = 6.90 min, tr (major) = 12.52 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.77 (td, *J* = 8.3, 1.6 Hz, 4H), 7.37 (m, 6H), 4.67 (s, 1H), 3.79 (q, *J* = 7.0 Hz, 6H), 2.59 (m, 2H), 1.64 (m, 2H), 1.25 (s, 9H), 1.18 (t, *J* = 7.0 Hz, 9H), 0.82 (s, 3H), 0.70 – 0.63 (m, 2H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.6, 136.7, 136.4, 135.6, 134.9, 130.8, 130.5, 128.6, 128.4, 83.5, 77.5, 59.0, 31.4, 28.0, 24.5, 18.9, 11.2, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₈H₄₄O₆SSi₂ [M+Na]⁺: 587.2289, found: 587.2289. **IR** (neat) 2973, 1699, 1429, 1369, 1251, 1158, 1075, 957, 844, 784, 730, 699, 487.

	Retention Time	Area	% Area
1	6.899	344910	4.69
2	12.516	7008305	95.31

Tert-butyl (*R*)-2-(allylthio)-2-(dimethyl(phenyl)silyl)-2-hydroxyacetate (**3v**)

Yellowish oil. 38.0 mg, 95% yield, 93% ee. Specific rotation $[\alpha]^{20}_{D} = +22$ (c = 0.76, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane =3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 7.13 min, tr (major) = 12.52 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.77 (m, 4H), 7.45 – 7.31 (m, 6H), 5.82 (m, 1H), 5.16 (dd, *J* = 17.0, 1.6 Hz, 1H), 5.01 (dd, *J* = 10.0, 1.5 Hz, 1H), 4.78 (s, 1H), 3.34 – 3.25 (m, 1H), 3.23 – 3.08 (m, 1H), 1.25 (s, 9H), 0.83 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.0, 136.5, 136.2, 135.2, 135.2, 134.5, 130.6, 130.4, 128.5, 128.3, 117.8, 83.4, 77.8, 31.5, 27.8, -4.0

HRMS (ESI+) *m/z* calcd for C₂₂H₂₈O₃SSi [M+Na]⁺: 423.1421, found: 423.1422.

IR (neat) 3439, 2977, 2362, 1698, 1428, 1396, 1369, 1254, 1155, 1112, 1050, 991, 920, 843, 789, 731, 699, 489.

	Retention Time	Area	% Area
1	7.381	910329	49.97
2	13.073	911334	50.03

	Retention Time	Area	% Area
1	7.134	104650	3.47
2	12.520	2907918	96.53

Methyl (R)-3-((2-(tert-butoxy)-1-hydroxy-1-(methyldiphenylsilyl)-2-oxoethyl)thio)propanoate (3w)

White solid. **m.p.** 92-93 °C. 44.6 mg, 99% yield, 86% ee. Specific rotation $[\alpha]^{20}_{D} = +25$ (c = 0.53, CH_2Cl_2). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 10/90, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 7.86 min, tr (major) = 13.22 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.76 (ddt, J = 12.9, 6.6, 1.6 Hz, 4H), 7.45 – 7.32 (m, 6H), 4.87 (s, 1H), 3.62 (s, 3H), 2.81 (d, J = 7.2 Hz, 2H), 2.57 (td, J = 7.2, 1.4 Hz, 2H), 1.25 (s, 9H), 0.82 (s, 3H). ¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 174.3, 172.8, 136.6, 136.3, 135.3, 134.7, 130.8, 130.5, 128.6, 128.44, 83.6, 77.5, 51.9, 35.5, 27.9, 23.6, -3.9.

HRMS (ESI+) *m/z* calcd for C₂₃H₃₀O₅SSi [M+Na]⁺: 469.1475, found: 469.1475.

IR (neat) 3735, 3448, 2980, 2288, 2190, 2180, 2146, 2077, 2046, 1996, 1966, 1900, 1429, 1369, 1251, 1156, 1112, 793, 731, 699, 580, 531, 445, 410.

	Retention Time	Area	% Area
1	7.866	8727134	50.05
2	13.670	8710778	49.95

0.00

	Retention Time	Area	% Area
1	7.729	133174	6.94
2	13.221	1786673	93.06

Tert-butyl (*R*)-2-hydroxy-2-(isopropylthio)-2-(methyldiphenylsilyl)acetate (**3x**)

Colorless oil. 36.2 mg, 90% yield, 94% ee. **Specific rotation** $[\alpha]^{20}_{D} = +29$ (c = 0.72, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 1/99, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 9.25 min, tr (major) = 14.74 min.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.75 – 7.63 (m, 4H), 7.39 – 7.27 (m, 6H), 3.88 (s, 1H), 3.08 (td, *J* = 6.8, 1.8 Hz, 1H), 1.23 (d, *J* = 6.7 Hz, 3H), 1.18 (s, 9H), 1.15 (d, *J* = 7.8 Hz, 3H), 0.75 (s, 3H).

 ${}^{13}C\{{}^{1}H\} NMR (101 \text{ MHz}, CD_2Cl_2) \\ \delta 175.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 133.9, 130.5, 130.3, 128.3, 128.1, 136.3, 136.0, 134.7, 130.3, 136.3, 136.0, 134.7, 130.3, 136.3, 136.0, 130.3, 136.3,$

84.1, 78.1, 34.5, 28.0, 26.1, 24.9, -4.1.

HRMS (ESI+) *m/z* calcd for C₂₂H₃₀O₃SSi [M+Na]⁺: 425.1577, found: 425.1577.

IR (neat) 3442, 2973, 1696, 1455, 1428, 1369, 1253, 1155, 1111, 1033, 960, 844, 786, 730, 698, 488, 443.

	Retention Time	Area	% Area
1	9.154	60461	50.01
2	14.320	60428	49.99

	Retention Time	Area	% Area
1	9.332	223620	3.02
2	14.970	7170961	96.98

Tert-butyl (*R*)-2-(cyclopentylthio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (**3**y)

Colorless oil. 41.9 mg, 98% yield, 96% ee. **Specific rotation** $[\alpha]^{25}_{D} = +48$ (c = 0.84, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 6.27 min, tr (major) = 10.44 min.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.68 (ddd, *J* = 8.0, 4.4, 1.6 Hz, 4H), 7.39 – 7.26 (m, 6H), 3.89 (s, 1H), 3.14 (p, *J* = 7.5 Hz, 1H), 1.94 (dddd, *J* = 15.8, 12.3, 9.7, 6.6 Hz, 2H), 1.70 – 1.57 (m, 2H), 1.56 – 1.34 (m, 4H), 1.18 (s, 9H), 0.76 (s, 3H).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 175.0, 136.1, 135.8, 134.6, 133.8, 130.3, 130.1, 128.1, 128.0, 83.8, 78.0, 41.7, 35.8, 34.8, 27.8, 25.4, 25.1, -4.2.

HRMS (ESI+) *m/z* calcd for C₂₄H₃₂O₃SSi [M+Na]⁺: 451.1734, found: 451.1727.

IR (neat) 3446, 3050, 2960, 2867, 2361, 2040, 1967, 1699, 1455, 1428, 1394, 1369, 1257, 1157, 1114, 1048, 962, 844, 791, 732, 699, 489.

	Retention Time	Area	% Area
1	6.265	162887	1.89
2	10.444	8438317	98.11

Tert-butyl (*R*)-2-hydroxy-2-(methyldiphenylsilyl)-2-(phenylthio)acetate (**3aa**)

Colorless oil. 43.6 mg, 99% yield, 94% ee. **Specific rotation** $[\alpha]^{20}{}_{\rm D}$ = +94.3 (*c* = 0.88, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ADH column, *i*-PrOH/*n*-hexane = 1/99, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 12.79 min, tr (major) = 18.15 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.79 (ddt, J = 8.0, 3.3, 1.8 Hz, 4H), 7.53 – 7.47 (m, 2H), 7.43 –

7.29 (m, 9H), 4.55 (s, 1H), 1.08 (s, 9H), 0.88 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 173.0, 136.7, 136.6, 136.4, 135.1, 134.4, 132.0, 130.9, 130.6, 129.9, 129.6, 128.6, 128.5, 83.7, 81.1, 27.9, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₅H₂₈O₃SSi [M+Na]⁺: 459.1242, found: 459.1418.

IR (neat) 3440, 3051, 2978, 1705, 1585, 1473, 1430, 1393, 1369, 1253, 1155, 1111, 963, 844, 787, 731, 697, 526, 489.

	Retention Time	Area	% Area
1	12.765	5160118	50.89
2	18.410	4979144	49.11

	Retention Time	Area	% Area
1	12.785	411336	2.83
2	18.152	14128533	97.17

Tert-butyl (*R*)-2-hydroxy-2-((4-methoxyphenyl)thio)-2-(methyldiphenylsilyl)acetate (**3ab**)

Colorless oil. 46.2 mg, 99% yield, 95% ee. **Specific rotation** $[\alpha]^{20}_{D} = +152.8$ (c = 0.92, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 10/90, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 5.79 min, tr (major) = 6.57 min.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.82 – 7.74 (m, 4H), 7.44 – 7.31 (m, 8H), 6.90 – 6.83 (m, 2H), 4.36 (s, 1H), 3.76 (s, 3H), 1.12 (s, 9H), 0.87 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 173.2, 161.8, 138.8, 136.6, 136.4, 135.3, 134.5, 130.8, 130.5, 128.6, 128.5, 121.6, 115.1, 83.6, 80.7, 55.7, 28.0, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₆H₃₀O₄SSi [M+Na]⁺: 489.1526, found: 489.1256.

IR (neat) 3444, 2977, 1706, 1591, 1492, 1461, 1429, 1394, 1369, 1248, 1156, 1110, 1032, 964, 830, 798, 731, 699, 523, 489.

	Retention Time	Area	% Area
1	5.783	5327130	49.92
2	6.626	5344606	50.08

	Retention Time	Area	% Area
1	5.794	354683	2.72
2	6.566	12684174	97.28

Tert-butyl (*R*)-2-hydroxy-2-(methyldiphenylsilyl)-2-(*o*-tolylthio)acetate (**3ac**)

Colorless oil. 44.1 mg, 98% yield, 93% ee. **Specific rotation** $[\alpha]^{20}_{D} = +64$ (c = 0.90, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ADH column, *i*-PrOH/*n*-hexane = 1/99, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 11.60 min, tr (major) = 15.23 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.90 – 7.76 (m, 4H), 7.55 (d, J = 7.7 Hz, 1H), 7.46 – 7.35 (m, 6H), 7.22 (m, 2H), 7.10 (t, J = 7.6 Hz, 1H), 4.64 (s, 1H), 2.42 (s, 3H), 1.04 (s, 9H), 0.93 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 173.1, 143.3, 137.4, 136.8, 136.5, 135.0, 134.5, 132.3, 131.2, 130.9, 130.7, 129.9, 128.7, 128.5, 127.0, 83.8, 81.9, 27.8, 22.0, -3.8.

HRMS (ESI+) *m/z* calcd for C₂₆H₃₀O₃SSi [M+Na]⁺: 473.1577, found: 473.1577.

IR (neat) 3435, 3052, 2978, 1704, 1589, 1469, 1428, 1393, 1370, 1253, 1156, 1111, 1033, 963, 844, 787, 731, 699, 676.

	Retention Time	Area	% Area
1	12.299	2808218	50.00
2	16.211	2808207	50.00

	Retention Time	Area	% Area
1	11.600	800112	3.46
2	15.231	22313953	96.54

Tert-butyl (*R*)-2-hydroxy-2-(methyldiphenylsilyl)-2-(*m*-tolylthio)acetate (**3ad**)

Colorless oil. 44.3 mg, 98% yield, 90% ee. **Specific rotation** $[\alpha]^{20}{}_{D} = +76.2$ (c = 0.90, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ADH column, *i*-PrOH/*n*-hexane = 1/99, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 10.22 min, tr (major) = 13.84 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.80 (dq, J = 6.6, 1.4 Hz, 4H), 7.43 – 7.36 (m, 6H), 7.34 – 7.28 (m, 2H), 7.21 – 7.14 (m, 2H), 4.55 (s, 1H), 2.27 (s, 3H), 1.10 (s, 9H), 0.89 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 173.0, 139.3, 137.2, 136.7, 136.4, 135.2, 134.5, 133.7, 131.6, 130.9, 130.6, 129.4, 128.6, 128.5, 83.7, 81.1, 27.9, 21.3, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₆H₃₀O₃SSi [M+Na]⁺: 473.1577, found: 473.1577.

IR (neat) 3443, 3050, 2977, 1705, 1591, 1474, 1428, 1394, 1369, 1253, 1155, 1111, 1052, 693, 846, 783, 730, 697, 520, 489.

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	10.221	1729927	5.00
2	13.835	32868762	95.00

Tert-butyl (R)-2-hydroxy-2-(methyldiphenylsilyl)-2-(p-tolylthio)acetate (3ae)

Colorless oil. 45.0 mg, 99% yield, 90% ee. **Specific rotation** $[\alpha]^{20}{}_{D} = +117.8$ (c = 0.90, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ADH column, *i*-PrOH/*n*-hexane = 1/99, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 13.35 min, tr (major) = 19.50 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.82 – 7.75 (m, 4H), 7.43 – 7.33 (m, 8H), 7.12 (d, J = 7.9 Hz, 2H), 4.43 (s, 1H), 2.29 (s, 3H), 1.11 (s, 9H), 0.88 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 173.1, 140.0, 137.0, 136.7, 136.4, 135.2, 134.5, 130.9, 130.6, 130.3, 128.6, 128.5, 128.0, 83.7, 80.9, 27.9, 21.3, -3.7.

HRMS (ESI+) *m/z* calcd for C₂₆H₃₀O₃SSi [M+Na]⁺: 473.1577, found: 473.1577.

IR (neat) 3443, 3049, 2977, 2926, 1706, 1593, 1489, 1428, 1395, 1369, 1253, 1157, 1111, 1056, 964, 845, 799, 731, 699, 489.

	Retention Time	Area	% Area
1	12.938	899498	49.99
2	19.002	899986	50.01

	Retention Time	Area	% Area
1	13.354	718412	4.97
2	19.504	13739491	95.03

Tert-butyl (R)-2-((4-fluorophenyl)thio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (3af)

Colorless oil. 39.9 mg, 88% yield, 87% ee. **Specific rotation** $[\alpha]^{20}_{D} = +99$ (c = 0.80, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ADH column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 7.69 min, tr (major) = 11.28 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.73 (m, 4H), 7.49 – 7.36 (m, 8H), 7.01 – 6.94 (m, 2H), 3.86 (s, 1H), 1.13 (s, 9H), 0.90 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.8, 163.72 ($J_{C-F} = 249.3 \text{ Hz}$), 138.20 ($J_{C-F} = 8.4 \text{ Hz}$), 135.75, 135.55, 133.73, 132.96, 130.18, 129.99, 127.93, 127.86, 125.5 ($J_{C-F} = 3.3 \text{ Hz}$), 115.9 ($J_{C-F} = 21.8 \text{ Hz}$)., 83.64, 79.48, 31.73, 27.71, 22.80, 14.26, -4.24.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.9.

HRMS (ESI+) *m/z* calcd for C₂₅H₂₇FO₃SSi [M+K]⁺: 493.1066, found: 493.1068.

IR (neat) 3434, 2977, 2926, 1702, 1587, 1486, 1428, 1394, 1369, 1253, 1223, 1153, 1110, 1055, 963, 911, 833, 784, 729, 698, 633, 515, 488.

	Retention Time	Area	% Area
1	7.666	1669020	50.40
2	11.219	1642269	49.60

	Retention Time	Area	% Area
1	7.693	3567298	6.59
2	11.280	50587657	93.41

Tert-butyl (R)-2-((3-chlorophenyl)thio)-2-hydroxy-2-(methyldiphenylsilyl)acetate (3ag)

Colorless oil. 45.8 mg, 97% yield, 81% ee. **Specific rotation** $[\alpha]^{20}_{D} = +63$ (c = 0.92, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ADH column, *i*-PrOH/*n*-hexane = 3/97, flow rate: 1.0 mL/min, 230 nm): tr (minor) = 6.32 min, tr (major) = 7.69 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (ddd, *J* = 8.0, 3.4, 1.6 Hz, 4H), 7.49 (t, *J* = 1.9 Hz, 1H), 7.46 – 7.36 (m, 7H), 7.30 (ddd, *J* = 8.1, 2.1, 1.1 Hz, 1H), 7.20 (t, *J* = 7.9 Hz, 1H), 3.98 (s, 1H), 1.12 (s, 10H), 0.90 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 135.8, 135.6, 135.5, 134.2, 133.9, 133.5, 132.8, 132.6, 130.2, 130.1, 129.7, 129.3, 128.0, 127.9, 83.9, 80.0, 27.7, -4.3.

HRMS (ESI+) *m/z* calcd for C₂₅H₂₇O₃ClSSi [M+Na]⁺: 493.1031 and 495.1001, found: 493.1033 and 495.1001.

IR (neat) 3433, 3051, 2977, 1702, 1568, 1459, 1428, 1397, 1369, 1253, 1111, 1064, 962, 842, 780, 730, 698, 520, 488.

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 Minutes

	Retention Time	Area	% Area
1	6.336	4109538	49.81
2	7.734	4140716	50.19

	Retention Time	Area	% Area
1	6.321	648728	9.39
2	7.687	6258118	90.61

Tert-butyl 2-hydroxy-2-(methyldiphenylsilyl)-2-((2-methylfuran-3-yl)thio)acetate (3ah)

Colorless oil. 44.0 mg, 99% yield, 94% ee. **Specific rotation** $[\alpha]^{20}_{D} = +93.3$ (c = 0.614, CH₂Cl₂). Dissolved in *n*-hexane for HPLC; HPLC (Chiral ADH column, *i*-PrOH/*n*-hexane = 2/98, flow rate: 1.0 mL/min, 254 nm): tr (major) = 4.54 min, tr (minor) = 4.12 min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.82 – 7.77 (m, 4H), 7.45 – 7.35 (m, 7H), 6.32 (d, J = 2.0 Hz, 1H), 2.28 (s, 3H), 1.29 (s, 1H), 1.18 (s, 9H), 0.89 (s, 3H).

¹³C{¹H} NMR (101 MHz, Acetone-*d*₆) δ 173.4, 158.7, 141.6, 136.6, 136.4, 135.3, 134.5, 130.9, 130.6, 128.7, 128.5, 117.3, 106.6, 83.6, 80.3, 27.9, 12.5, -3.8.

HRMS (ESI+) *m/z* calcd for C24H28O4SSi [M+Na]⁺: 463.1370, found: 463.1370.

IR (neat) 3447, 3050, 2977, 2926, 1707, 1584, 1515, 1457, 1429, 1391, 1369, 1254, 1225, 1157, 1113, 1087, 965, 887, 845, 787, 731, 699,488.

	Retention Time	Area	% Area
1	4.327	1704560	50.04
2	4.921	1701689	49.96

	Retention Time	Area	% Area
1	4.123	1036749	97.09
2	4.540	31047	2.91

Benzyl 2-(benzylthio)-2-(dimethyl(phenyl)silyl)-2-hydroxyacetate (3ai)

Colorless oil. 40.0 mg, 94% yield, 61% ee. Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 10/90, flow rate: 1.0 mL/min, 230 nm): tr (major) = 7.35 min, tr (minor) = 8.32 min. ¹**H NMR** (600 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.38 – 7.33 (m, 4H), 7.30 – 7.20 (m, 8H), 4.93 (d, *J* = 12.0 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 1H), 3.75 (d, *J* = 12.6 Hz, 1H), 3.73 (s, 1H), 3.56 (d, *J* = 12.6 Hz, 1H), 0.48 (s, 3H), 0.44 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 175.1, 137.2, 135.0, 134.6, 133.8, 130.0, 129.4, 128.7, 128.6, 128.6, 128.4, 127.7, 127.1, 77.2, 67.9, 32.3, -4.7, -4.8.

HRMS (ESI+) *m/z* calcd for C24H26O3SSi [M+Na]⁺: 445.1264, found: 445.1217.

	Retention Time	Area	% Area
1	7.350	385428	49.19
2	8.301	398147	50.81

	Retention Time	Area	% Area
1	7.352	5212121	80.65
2	8.320	1250225	19.35

Benzyl 2-(benzylthio)-2-((dimethyl(phenyl)silyl)oxy)acetate (4ai)

Colorless oil. Dissolved in *n*-hexane for HPLC; HPLC (Chiral IF column, *i*-PrOH/*n*-hexane = 10/90, flow rate: 1.0 mL/min, 230 nm): tr = 4.61 min, tr = 5.01 min.

¹**H NMR** (600 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.42 – 7.38 (m, 1H), 7.36 – 7.31 (m, 6H), 7.25 – 7.18 (m, 4H), 7.17 – 7.13 (m, 2H), 5.16 (s, 1H), 5.08 (q, *J* = 12.2 Hz, 2H), 3.82 (d, *J* = 12.8 Hz, 1H), 3.72 (d, *J* = 12.5 Hz, 1H), 0.46 (s, 3H), 0.44 (s, 4H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 169.3, 137.2, 136.2, 135.5, 133.8, 130.2, 129.3, 128.8, 128.7, 128.5, 128.5, 128.4, 128.1, 128.1, 127.2, 127.2, 33.1, -1.1, -1.3.

HRMS (ESI+) m/z calcd for C24H26O3SSi [M+H]+: 423.1445, found: 423.1445

	Retention Time	Area	% Area
1	4.611	206878	49.67
2	5.082	209600	50.33

9. The X-ray data for 3w and N,N'-Dioxide/Y(OTf)₃ complexes

The colourless crystal in block-shape, with approximate dimensions of $0.486 \times 0.179 \times 0.136$ mm³, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 300(2)K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved, and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{a,b,c,d}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^e.

The crystal suitable for X-ray structure analysis was obtained from the solution of 3w in THF and Et₂O at 10°C. The data has been deposited at the Cambridge Crystallographic Data Center (CCDC 2056433).

Crystallographic Data for C23H30O5SSi.

1003331
2
4(3)
4(3)
78(4)
40(10)
54(7)
78

$ \rho_{\text{calcd}} (\text{g cm}^{-3}) $	1.213
μ (mm ⁻¹)	1.889
Transmission factors	0.580-0.848
$2\theta_{\max}(\deg)$	68.300
No. of unique data, including $F_0^2 < 0$	4408
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	4343
No. of variables	280
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})$	0.0240
$R_{\rm w}(F_{\rm o}^2)$	0.0659
Goodness of fit	1.071

^{*a*} $R(F) = \sum ||F_o| - |F_c|| / \sum |F_o|.$

 ${}^{b} R_{\rm w}(F_{\rm o}{}^{2}) = \left[\sum [w(F_{\rm o}{}^{2} - F_{\rm c}{}^{2})^{2}] / \sum wF_{\rm o}{}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{\rm o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{\rm o}{}^{2}, 0) + 2F_{\rm c}{}^{2}\right] / 3.$

References:

a Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.

b Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.

c Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

d Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J. A. K., Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

e Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.

The colourless crystal in block-shape, with approximate dimensions of $0.389 \times 0.283 \times 0.163 \text{ mm}^3$, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 140(2)K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178\text{ Å}$). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{a,b,c,d}. The value observed herein is indicative of racemic twinning and was accommodated during the refinement (using the SHELXL TWIN instruction). In this case, the relatively large standard uncertainty indicates that the structural data alone should not be used to confirm absolute stereochemistry, but should be used in conjunction with the established stereochemistry of the precursor compound. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^e.

The crystal of L-RaEt₂/Y(OTf)₃ was obtained in the solvents of MeOH and Et₂O. The data has been deposited at the Cambridge Crystallographic Data Center (CCDC 2064772).

Crystallographic Data for C39H56N4O4Y.

Formula	C39H56N4O4Y
Formula mass (amu)	1351.24
Space group	P 21
<i>a</i> (Å)	11.9751(5)
b (Å)	20.8149(9)
<i>c</i> (Å)	12.9319(6)
α (deg)	90
β (deg)	106.231(1)
γ (deg)	90
$V(Å^3)$	3094.9(2)
Ζ	2
λ (Å)	1.54178
<i>T</i> (K)	140 K

$ \rho_{\text{calcd}} (\text{g cm}^{-3}) $	1.450
μ (mm ⁻¹)	3.102
Transmission factors	0.642-0.898
$2\theta_{\max}(\deg)$	80.719
No. of unique data, including $F_0^2 < 0$	13286
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	13233
No. of variables	776
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})$	0.0265
$R_{\rm w}(F_{\rm o}^2)$	0.1760
Goodness of fit	1.050

^{*a*} $R(F) = \sum ||F_o| - |F_c|| / \sum |F_o|.$

 ${}^{b} R_{\rm w}(F_{\rm o}{}^{2}) = \left[\sum [w(F_{\rm o}{}^{2} - F_{\rm c}{}^{2})^{2}] / \sum wF_{\rm o}{}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{\rm o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{\rm o}{}^{2}, 0) + 2F_{\rm c}{}^{2}\right] / 3.$

References:

a Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.

b Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.

c Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

d Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J. A. K., Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

e Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.

10. Copy of ¹H, ¹³C{¹H} and ¹⁹F{¹H} NMR Spectra.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -0 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200

7.67 7.67 7.67 7.67 7.67 7.66 7.67 7.66 7.67 7.66 7.67 7.67 7.67 7.67 7.67 7.67 7.67 7.67 7.67 7.33 7.67 7.33 7.733 7.33 <tr

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

11. Copy of CD spectra in n-Hexane

CD spectra for product 3w (Characterized in DCM)

CD spectra for product 3a

3b

CD spectra for product 3b

3d

CD spectra for product 3e

3f

CD spectra for product 3g

3i

CD spectra for product 3i

CD spectra for product 3j

3k

CD spectra for product 3k

CD spectra for product 31

3m

CD spectra for product 3m

CD spectra for product 3n

CD spectra for product 3p

3t

CD spectra for product 3t

3x

CD spectra for product 3x

CD spectra for product 3y

3aa

CD spectra for product 3ab

3ac

CD spectra for product 3ad

CD spectra for product 3ae

3ah

CD spectra for product 3ah

12. References

- (a) D. A. Nicewicz and J. S. Johnson, J. Am. Chem. Soc., 2005, 127, 6170; (b) C. Bolm, A. Kasyan, P. Heider, S. Saladin, K. Drauz, K. Günther and C. Wagner, Org. Lett., 2002, 4, 2265.
- 2. W. Uhlig, J, Organomet. Chem., 1993, 452, 29.
- 3. Y. H. Wen, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, Synlett, 2005, 2445.
- 4. V. Gupta and S. K. Mandal, Chem. Eur. J., 2020, 26, 2658.
- 5. L. Zhang, Y. Xia, M. Li, D. Li and R. Hou, Tetrahedron, 2016, 72, 7438.
- 6. T. Hoshi, T. Nakamura, T. Suzuki, M. Ando and H. Hagiwara, Organometallics, 2000, 19, 4483.
- 7. S. K. Ray, M. M. Sadhu, R. G. Biswas, R. A. Unhale and V. K. Singh, Org. Lett., 2019, 21, 417.
- 8. M.-Y. Han, J. Lin, W. Li, W.-Y. Luan, P.-L. Mai and Y. Zhang, *Green Chem.*, 2018, **20**, 1228.
- W. Li, J. Wang, X. L. Hu, K. Shen, W. T. Wang, Y. Y. Chu, L. L. Lin, X. H. Liu and X. M. Feng, J. Am. Chem. Soc., 2010, 132, 8532.