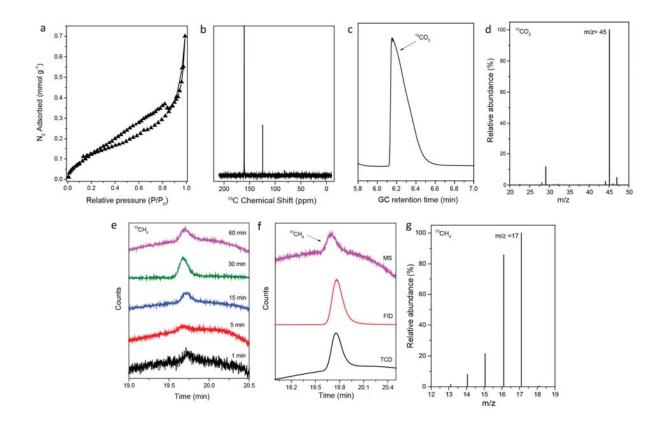
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

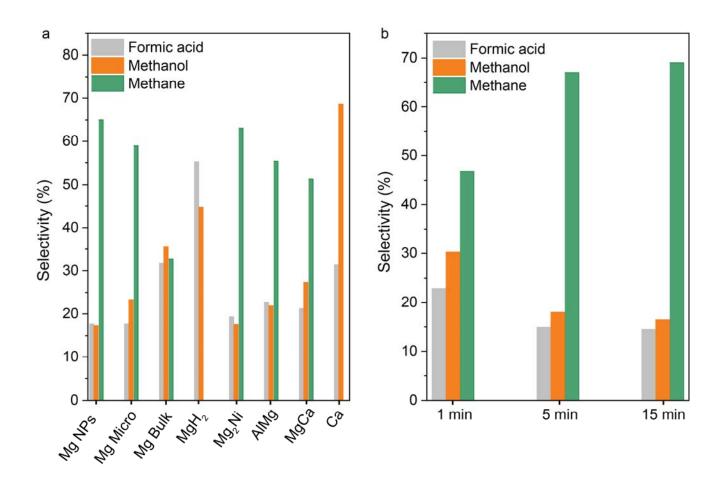
Direct CO₂ Capture and Conversion to Fuels on Magnesium Nanoparticles at Ambient Conditions

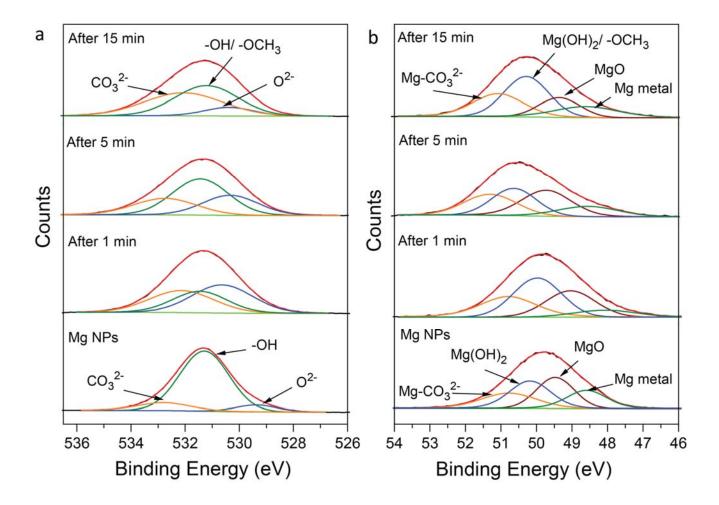
Simply Using Water

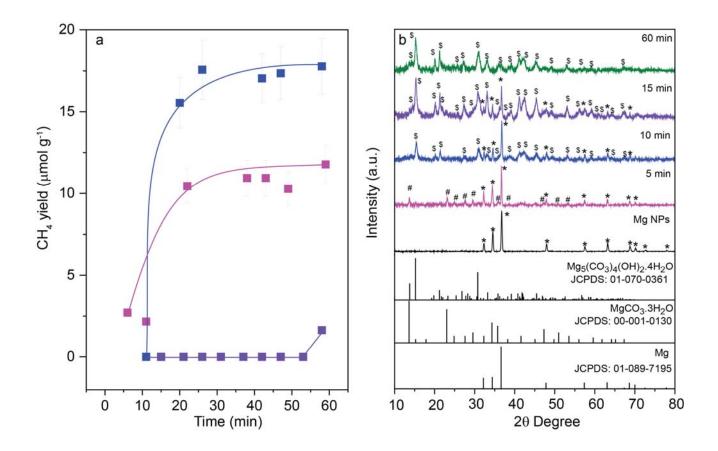
Sushma A. Rawool,¹ Rajesh Belgamwar,¹ Rajkumar Jana,² Ayan Maity,¹ Ankit Bhumla,¹ Nevzat Yigit,³ Ayan Datta,² Günther Rupprechter,³ Vivek Polshettiwar,¹*

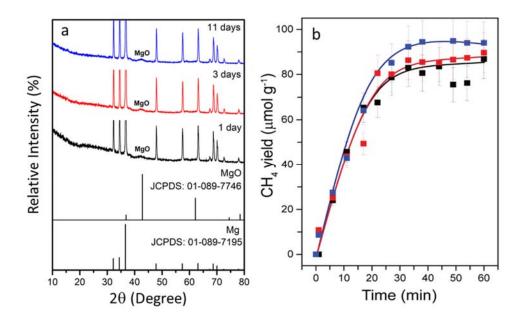

¹Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, India. ²School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India. ³Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/BC/165, 1060, Vienna, Austria. Email: <u>vivekpol@tifr.res.in</u>, Phone: (91) 8452886556

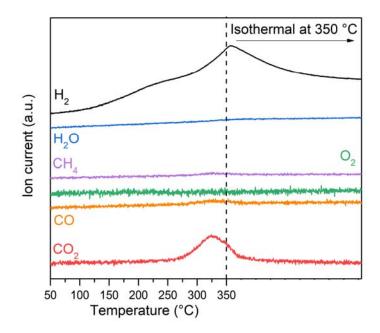
Detailed procedure for liquid product analysis by ¹H NMR spectroscopy: The reaction was carried out in 5 ml of water and after completion of the reaction, the solution was recovered and centrifuged to separate the supernatant solution and solid residue. The supernatant aqueous solution was directly analyzed (for quantification, 0.5 mL of the supernatant solution and 60 μ L of D₂O was mixed) by ¹H NMR (using water suppression pulse sequence). Quantification was carried out using the standard calibration curve.


Detailed procedure for gas product analysis by GC and GC-MS: The online monitoring of the gaseous products during the reactions as carried out using Micro GC (Agilent Technologies 490 Micro GC) directly connected to the reactor, using thermal conductivity detector (TCD), molecular-sieve column and argon as carrier gas. The gaseous products of the labeled ¹³CO₂ experiment were analyzed off-line by gas chromatograph equipped with TCD, flame ionization detector (FID) and mass spectrometer (MS) (Agilent 7890B, Agilent Technologies), Agilent hybrid column CP7430 and helium as carrier gas.


Experimental setup for Mg-assisted CO₂ conversion. The gaseous product of the reaction was identified and quantified using online microGC, offline GCMS and liquid product by ¹*H NMR.*


Figure S1. (a) N₂ sorption isotherm of Mg NPs; (b) ¹³C NMR spectrum of the reaction mixture after 1 h of reaction using unlabeled CO₂, under exactly the same NMR pulse sequence and total number of scans (that of the ¹³CO₂ experiment). (c) gas chromatogram of CO₂ (peak of CO₂ at retention time 6.2 min), (d) mass spectrum of ¹³CO₂ (m/z = 45) (e) GC-MS recorded (peak of methane at retention time 19.7 min) with increasing reaction time, (f) Gas chromatogram recorded at 60 min with thermal conductivity detector (TCD), flame ionization detector (FID) and mass spectrometer (MS), (g) MS spectrum of isotopic ¹³CH₄ (m/z = 17) obtained at 60 min. For this, 50 mg of Mg NPs was taken in a 50 ml round bottom flask, and then ¹³CO₂ was purged through it for 1 min. Then, 5 ml water were added and the reaction products were monitored at 0, 1, 5, 15, 30 and 60 min, using a GC coupled with a TCD, FID and MS. The mass spectrum of ¹³CO₂ gas.


Figure S2. The selectivity of carbon-containing products (methanol, methane, and formic acid), using a) Mg and Mg alloy, b) Mg nanoparticles at various reaction time points, at room temperature and atmospheric pressure in water.


Figure S3. XPS spectra of (a) O 1s and (b) Mg 2p of Mg NPs and the solid product recovered after 1, 5 and 15 min of reaction time.

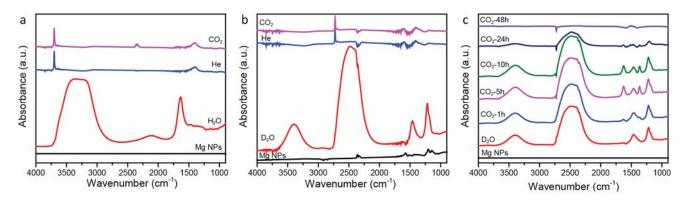

Figure S4. (a) Methane yield with reaction time from the reduction of CO₂ at room temperature and ambient pressure, using Mg NPs after initial products formed were flushed out after 5, 10, and 15 min of reaction. (b) PXRD patterns of the dried solid reaction mixture after 0, 5, 10, 15 and 60 min of reaction. Standard XRD patterns of Mg (JCPDS no.:01-089-7195), MgCO_{3.3}H₂O (JCPDS No.:00-001-0130) and Mg₅(CO₃)₄(OH)_{2.4}H₂O (JCPDS No.:01-070-0361) are also shown. (*Mg metal, [#]MgCO_{3.3}H₂O and ^{\$}Mg₅(CO₃)₄(OH)_{2.4}H₂O))


Figure S5. (a) PXRD pattern of Mg nanoparticles exposed to air 1, 3 and 11 days and standard patterns of Mg (JCPDS No.:01-089-7195) and MgO (JCPDS No.:01-089-7746), (b) methane yield with reaction time by reduction of CO₂ using water at room temperature and atmospheric pressure, using magnesium nanoparticles, exposed to air for 1, 3 and 11 days. Black- 1 day, Red- 3 days, Blue- 11 days. A weak PXRD peak indicated a thin MgO shell.

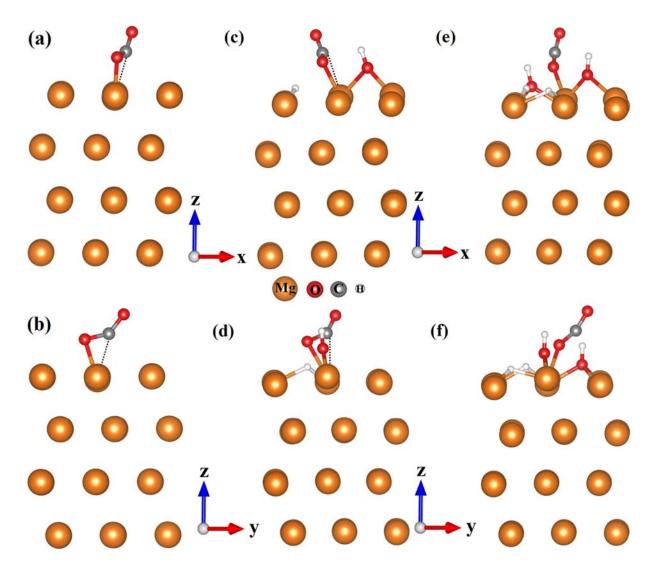

Figure S6. TPD-MS: To obtain clean surfaces, Mg NPs were pretreated at 350 °C in helium flow (heating rate 10 °C/min) before in situ ATR-FTIR studies. TPD-MS profiles revealed desorption of hydrogen (150-350 °C) and CO₂ (250-350 °C), resulting from the decomposition of bicarbonates on the Mg metal surface.

Figure S7. In situ ATR-FTIR spectra recorded (a) by adding (liquid) H₂O to the Mg NPs and subsequently purging with He and CO₂ gas, (b) by replacing H₂O with D₂O and subsequently purging with He and CO₂ gas, (c) by adding D₂O to the Mg NPs and then purging with CO₂ for 1, 5, 10, 24 and 48 h.

Figure S8. Comparison of ATR spectra recorded after passing CO₂ over Mg NPs treated with H₂O and D₂O, respectively. The absorption band at 1273 cm⁻¹ of the C-OH bending mode of bicarbonate appeared at lower frequency 1024 cm⁻¹ (marked as #).

Figure S9. Different views of CO₂ adsorbed on the Mg surface: (a-b) adsorption on pristine Mg surface, (c-d) adsorption on hydrated Mg surface, (e-f) adsorption on Mg(OH)₂ surface (black dotted lines indicate weak interaction between carbon atom of CO₂ and surface Mg atom).

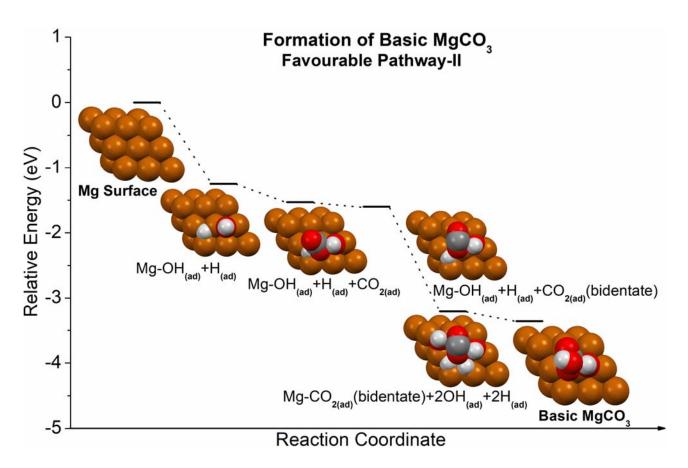


Figure S10. Potential energy surface of the formation of basic MgCO₃ via pathway-II.

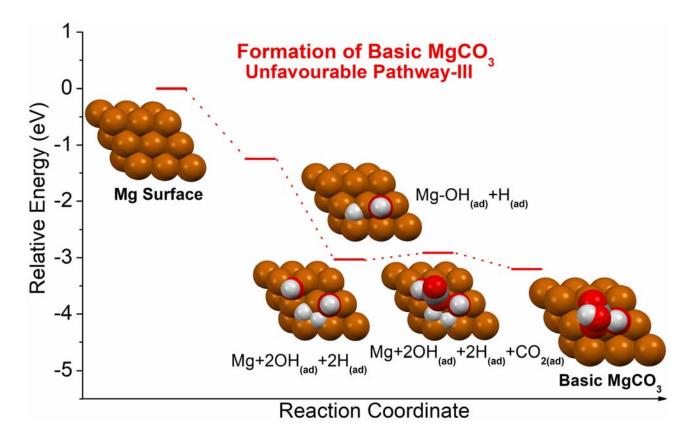
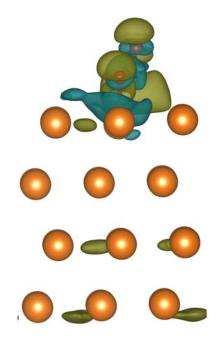
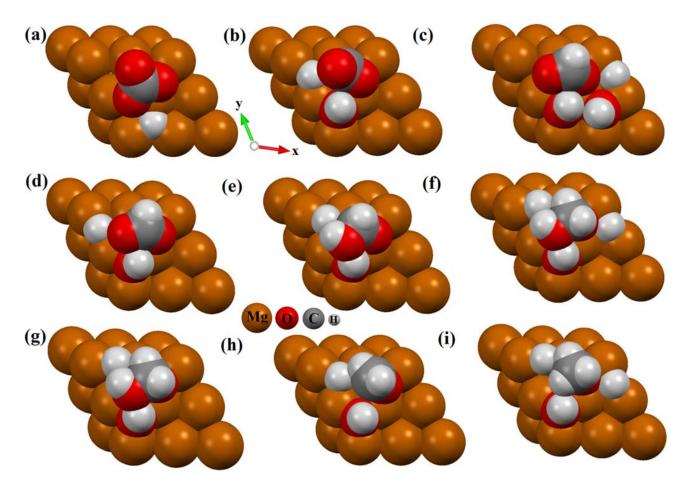




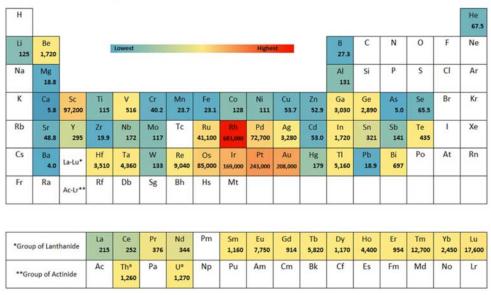
Figure S11. Potential energy surface of the formation of basic MgCO₃ via pathway-III.

Figure S12. Charge density difference (CDD) plot (isodensity value at surfaces is ± 0.002 e/au³ (Positive: olive and Negative: cyan)) of CO₂ adsorbed on the pristine Mg surface, showing charge transfer in the region between CO₂ and surface atoms upon adsorption of CO₂.

Figure S13. Structures of different intermediates for CO₂ to CH₄ formation: (a-i) represent the corresponding intermediate from intermediate A to I in figure 5.

Figure S14. (a) HCOOH, (b) CH₃OH and (c) CH₄ adsorbed on the Mg surface during CO₂ reduction.

Mg Process Sustainability: The crucial magnesium electrolysis step to produce magnesium from Mg^{2+} requires low energy, and this process is highly efficient in industrial magnesium production from sea salts, with Faradaic efficiencies approaching 90%.¹ In comparison to other metals that convert CO₂ to chemicals and fuels, magnesium needs the lowest energy for production. For example,. Mg needs 18.8 MJ/kg for production, while metals like Au need 208.000 MJ/kg, and Rh needs 683.000 MJ/kg.² The energy required for other metals, as compared to Mg, is summarised in Fig. S16. Notably, Mg is one of the metals with the lowest energy demand for production. Magnesium electrolysis costs are further minimized by operating the process commercially at a large scale and hence the total energy required can be further reduced. Currently, Mg costs not more than 4 USD per kg ³ Recently, Mg was even produced for as low as ~1 USD per kg using a solar-energy pumped laser.⁴


In magnesium production, no CO₂ is released if the source is MgCl₂ or Mg-silicates. More excitingly, the entire Mg production process has one of the lowest impacts on global warming as compared to other metal catalysts for CO₂ reduction.⁵ Magnesium produces 5.2 kg CO₂ per kg Mg, while metals like gold produce 12.500 kg CO₂ per kg Au, and rhodium produces 35000 kg CO₂ per kg Rh. CO₂ produced by other metals, as compared to Mg, is summarised in Fig. S17, indicating that Mg is one of the metals producing the lowest amount of CO₂ during production.

Thus, magnesium is the 8th most abundant metal, and costs only about \$1.00 to 4.00 per kg. However, even being one of the cheapest metals, the cost of magnesium is still higher than that of the methane produced. However, the methane cost is low because currently, we get methane from natural sources. Methane is a greenhouse gas with 25 times more warming impact than CO₂, and ideally, methane should not be exposed to the environment, causing further damage. Since all the products (methane, methanol, formic acid and hydrogen) in this Mg process are produced from CO₂, it is an ideal CO₂ negative process. Thus, the price of these fuels can not be directly compared with that from current conventional processes (from fossil fuel or drilling natural methane). The idea of "cyclic economy" and "net-zero-emissions energy systems" is to use excess CO₂ by converting it to fuel (methane, methanol, formic acid, dimethyl ether (DME) etc) and then, after burning these fuels (to get energy), the CO₂ produced will again be captured and converted to fuel. This way, no CO₂ is released in the environment (CO₂ neutral process) and both of our problems of energy as well as global warming get resolved.

The LCA and cost calculations are tabulated below. This process is sustainable and economical, even without Mg regeneration.

Process	Energy (+ required or - produced)		CO ₂ (+ released or - mitigated)		
Electrolysis of	+ 0 MJ		+ 0 kg		
Mg ²⁺ to	(Ideally + 18.8 MJ energy is required by	ut was obtained	(No CO ₂ is released in the Mg production		
produce	from Solar Energy)		process when the source used is chloride or		
1 Kg Mg			silicates.)		
CO ₂ conversion	No external energy was required for	0 MJ			
by 1 kg Mg	this reaction				
	Product-Methane:	-0.0816 MJ	0.0044 kg (mitigated)		
	Energy (50.1 kJ/g) released by burning 1.6 g of Methane		0.1 mol CO_2 converted to methane - 0.1 x 44 = 4.4 g		
	Product- <mark>Methanol</mark> :	-0.0185 MJ	0.0011176 kg (mitigated)		
	Energy (22.7 kJ/g) released by burning 0.8138 g of Methanol		0.0254 mol CO_2 converted to methanol -0.0254 x 44 = 1.1176 g		
	Product-Formic Acid:	-0.00627 MJ	0.001196kg (mitigated)		
	Energy (6.4 MJ/lit) released by burning 0.98 mL of Formic Acid		0.026 mol CO_2 converted to formic acid-0.026 x 46 = 1.196 g		
	Product- <mark>Hydrogen:</mark> Energy (0.490 MJ/kg) required to	-0.0406 MJ	- 0.76 kg (stopped from releasing to the environment)		
	produce 0.083kg hydrogen from fossil fuel (steam reforming of methane), which is saved by this process		9.21 kg CO_2 per kg H_2 emitted if produced from methane reforming, i.e. 0.76 kg CO_2 could have been emitted if H_2 was produced from methane.		
	Energy (141.86 MJ/kg) released by burning 0.083 kg hydrogen	-11.77 MJ	0 kg (no emission)		
	Product- Mg Basic Carbonate:	-2.08 MJ	- 1.44 kg (mitigated)		
	Mg basic carbonate (heat of formation of carbonate)		1 kg Mg produced 3.85 kg basic carbonate by reacting with 1.44 kg $\rm CO_2$		
	Total	11.91 MJ (Energy generated)	2.2 kg) (CO ₂ mitigated)		

(A) Cumulative Energy Demand (MJ-eq / kg)

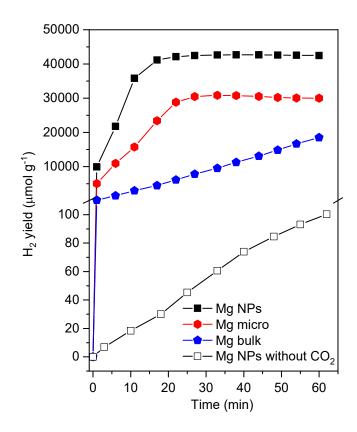


Figure S15. Cradle-to-gate cumulative energy demand (CED) (MJ-eq/kg) per kilogram of each element, including various metals used in CO₂ conversion. Reproduced from Ref. 5, Copyright PLOS.

н	(A) Global Warming Potential (kg CO ₂ -eq/kg)										He 0.9						
Li 7.1	Be 122)	Lowest					Highe	st		B 1.5	С	N	0	F	Ne
Na	Mg 5.4											Al 8.2	Si	Р	S	CI	Ar
К	Ca 1.0	Sc 5,710	Ti 8.1	V 33.1	Cr 2.4	Mn 1.0	Fe 1.5	Co 8.3	Ni 6.5	Cu 2.8	Zn 3.1	Ga 205	Ge 170	As 0.3	Se 3.6	Br	Kr
Rb	Sr 3.2	Υ 15.1	Zr 1.1	Nb 12.5	Mo 5.7	Tc	Ru 2,110	Rh 35,100	Pd 3,880	Ag 196	Cd 3.0	In 102	Sn 17.1	Sb 12.9	Te 21.9	I	Xe
Cs	Ba 0.2	La-Lu*	Hf 131	Ta 260	W 12.6	Re 450	Os 4,560	lr 8,860	Pt 12,500	Au 12,500	Hg 12.1	Tl 376	Pb 1.3	Bi 58.9	Ро	At	Rn
Fr	Ra	Ac-Lr**	Rf	Db	Sg	Bh	Hs	Mt									

*Group of Lanthanide	La 11.0	Ce 12.9	Pr 19.2	Nd 17.6	Pm	Sm 59.1	Eu 395	Gd 46.6	Tb 297	Dy 59.6	Ho 226	Er 48.7	Tm 649	Yb 125	Lu 896
**Group of Actinide	Ac	Th 74.9	Ра	U 90.7	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Figure S16. Global warming potential (CO₂ produced) per kilogram of each element, including various metals used in CO₂ conversion. Reproduced from Ref. 5, Copyright PLOS.

Figure S17. Hydrogen yield with reaction time during reduction of CO₂ at room temperature and ambient pressure. Notably, in the absence of CO₂, Mg does not react efficiently with water and hydrogen yield was extremely low, 100 μ mol g⁻¹ as compared to 42000 μ mol g⁻¹ in the presence of CO₂. This was due to poor solubility of magnesium hydroxide formed by reaction of Mg with water, restricting the internal Mg surface to react further with water. However, in the presence of CO₂, magnesium hydroxide gets converted to carbonates and basic carbonates, which are more soluble in water than magnesium hydroxide and gets peeled off from Mg, exposing fresh Mg surface to react with water. Thus, this protocol can even be used for hydrogen production (940 mL g⁻¹), which is nearly 420 times more than hydrogen produced by the reaction of Mg with water alone (2.24 mL g⁻¹).

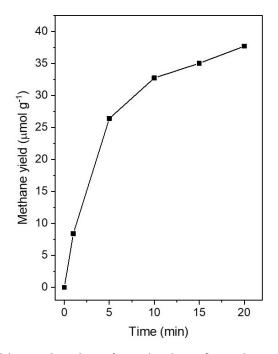


Figure S18. Methane yield with reaction time, for reduction of CO₂ in water using Mg NPs, at -1 to +1 °C at atmospheric pressure.

Table S1. Elemental analysis of Mg NPs by SEM-EDX

Sample	Mg (wt%)	O (wt%)*
Mg NPs	80.06	19.94

* SEM-EDX is surface elemental techniques, indicating the presence of MgO layer on Mg NPs surface.

Table S2. Methanol, formic acid, and methane yield (normalized by Mg contents) for reduction of CO₂ using water at room temperature and atmospheric pressure in 1 h.

Sample	Composition	Composition		CH ₄	Formic acid	Methanol
Name	of sample	(w1	t. %)			
		Mg	Metal	µmol/g of Mg	µmol/g of Mg	µmol/g of Mg
Mg2Ni	Mg2Ni	80	20	107	32	30
MgCa	Ca0.06Mg0.93	90	10	59	24	31
MgAl	Al0.6Mg0.4	62	38	87	35	34
Mg NPs	Mg	100	0	96	26	25
Mg bulk	Mg	100	0	16	15	17
Mg micro	Mg	100	0	78	23	31
MgH ₂	MgH ₂	100	0	0	4	3

Table S3. Contribution from different carbons with respect to the adventitious carbon at different time
intervals.

Sample	Ratio of different species with respect to adventitious carbon						
	OCH ₃	С-О	Carbonyl species (C=O)	Carbonate (CO ₃ ²⁻)			
Mg NPs	0	0.095	0.265	0.475			
After 1 min	0.676	0	0.484	0.676			
After 5 min	0.627	0	0.671	0.629			
After 15 min	0.552	0	0.613	0.975			

Table S4. Analysis of CO2 activation via different proposed pathways.

Pathways	C-O bond length (Å)		OCO bond angle (°)	Charge transferred	CO ₂ Binding
				(Mg to CO_2) Δq (e)	Energy (eV)
Ι	1.22	1.19	140.80	0.17	-0.31
II	1.21	1.18	145.12	0.15	-0.28
III	1.19	1.17	155.34	0.11	0.42

Table S5. Different parameters of Mg surface adsorbed HCOOH, CH₃OH and CH₄ species.

Adsorbed Species	Observed distance (Å)	bonding distance (Å)	Reaction Energy (eV)
НСООН	d(Mg-O) = 2.22	2.10	-0.26
CH ₃ OH	d(C-O) = 1.61	1.43	-0.32
CH ₄	d(C-O) = 2.60	1.43	-0.68

Table S6. Methane production cost-comparison of Mg mediated process with various reported room
temperature CO ₂ conversion protocols.

S.	Metal (energy)	Methane Yield	Price of	Methane Yield	References
No			Metal	(per USD)	
1	Mg NPs	100 μmol g ⁻¹	1\$ per Kg	100000 µmol/\$	This work
	(No external energy)				
2	Au NPs	0.63 µmol g ⁻¹	45\$ per g	0.014 µmol/\$	6
	(visible light)				
3	Au Colloidosomes	1.5 μmol g ⁻¹	45\$ per g	0.033 µmol/\$	7
	(visible light)				
4	Pd ₇ Cu ₁	19.6 µmol g ⁻¹	50\$ per g	0.392 µmol/\$	8
	(visible light)				
5	Au-Co	0.13 μmol g ⁻¹	45\$ per g	0.0029 µmol/\$	9
	(visible light)				

References:

- 1. Polmear, I. J. *Magnesium and Magnesium Alloys*, Eds. M. M. Avedesian and H. Baker (ASM International, OH, USA, 1999, 3–6).
- 2. Nuss, P., Eckelman, M. J. Life Cycle Assessment of Metals: A Scientific Synthesis, *PLoS ONE* **9** e101298 (2014).
- 3. Demirci, G., Karakaya, I. *Magnesium Technology 2012*, Eds. Mathaudhu, S. N., Sillekens, W. H., Neelameggham, N. R., Hort N. (John Wiley & Sons, Hoboken, NJ, USA, 2012, 59–62).
- 4. Kostanyan R. K. Use of magnesium as renewable energy source. *Int. J. Chem. Mol. Eng.* **11**, 416-421 (2017).
- 5. Nuss, P., Eckelman, M. J. Life Cycle Assessment of Metals: A Scientific Synthesis. *PLoS ONE* 9, e101298 (2014).
- Yu, S., Wilson, A. J., Heo, J. Jain, P. K. Plasmonic control of multi-electron transfer and C-C coupling in visible-light-driven CO₂ reduction on Au nanoparticles. *Nano Lett.* 18, 2189-2194 (2018).
- Dhiman, M., Maity, A., Das, A., Belgamwar, R., Chalke, B., Lee, Y., Sim, K., Jwa-Min Nam, J.-W., Polshettiwar, V. Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO₂ to fuel conversion. *Chem. Sci.* 10, 6694-6603 (2019).
- Long, R., Li, Y., Liu, Y., Chen, S., Zheng, X., Gao, C., He, C., Chen, N., Qi, Z., Song, L., Jiang, J., Zhu, J., Xiong, Y. Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO₂ to CH₄. *J. Am. Chem. Soc.* **139**, 4486–4492 (2017).
- 9. Cui, X., Wang, J., Liu, B., Ling, S., Long, R., Xiong. Y., Turning Au nanoclusters catalytically active for visible-light-driven CO₂ reduction through bridging ligands. *J. Am. Chem. Soc.* 140, 16514-16520 (2018).