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Figure S.I.1. Molecules forwhich theRRHOapproximation introduces an error ofmore than 3 kcal/mol are shown.Absolute error is shown in red (value in kcal/mol) The hydrogen that changes position is highlighted in red.

Figure S.I.2. The single point energy deviation between the ANI-1x and its corresponding level of theory is shown forthe individual molecules of the tautomer set (A) and for the tautomer pairs (B).



name ΔGexp
solv ΔGcalc

solv

tp_1668 5.5 15.9

tp_1669 9.5 21.5

tp_1670 6.8 17.6

tp_1559 2.7 18.9

tp_331 2.2 12.8

tp_853 1.4 18.6

Table S.I.1. 5 out of the 6 tautomer pairs with the highest absolute error have common scaffolds. Tautomer pairswith absolute errors above 10 kcal/mol are shown.

Figure S.I.3. Alchemical free energy overlap and accumulated free energy estimates (with the accumulated free energyuncertainty added) are shown.



tautomer pair ΔGcalc
solv [kcal/mol] ΔGcalc

vac [kcal/mol] ΔGexp
solv [kcal/mol]

tp_113 4.0 ± 0.2 9.0 ± 0.2 8.0
tp_1000 -0.8 ± 0.2 3.5 ± 0.2 -2.6
tp_1001 -4.5 ± 0.2 -1.8 ± 0.2 -3.7
SAMPLmol4 -6.3 ± 0.2 2.4 ± 0.2 -2.3
SAMPLmol2 -7.6 ± 0.2 -2.7 ± 0.2 -6.1
tp_1072 5.0 ± 0.2 3.4 ± 0.2 0.3

MAE: 2.8 kcal/mol MAE: 3.4 kcal/mol
Table S.I.2. Performing the above described alchemical simulations inside a 16 Å water droplet to model the solventeffects directly shows for 6 selected tautomer pairs an improvement of the mean absolute error by ≈ 0.5 kcal/mol. Thealchemical free energy calculation was performed using 11 equidistant lambda states and 200 decorrelated snapshotsper lambda state. Samples were drawn from 100 ps simulations.



Figure S.I.4. Each of the three blocks show the QM calculations done with different level of theory indicated by the title inthe plots in column A. In each block the top penal shows the results obtained with multiple minimum conformations, thebottom penal shows the results obtain with a single conformation. Column D shows the difference between the multipleminimum and single minimum approach and E show the the number of minimum conformations against the differencebetween the lowest and highest energy for each tautomer. These results were obtained without the additional structuresymmetry correction.



Figure S.I.5. Each of the three blocks show the QM calculations done with different level of theory indicated by thetitle in the plots in column A. In each block the top penal shows the results obtained with multiple minimum conforma-tions, the bottom penal shows the results obtain with a single conformation. Column D shows the difference betweenthe multiple minimum and single minimum approach and E show the the number of minimum conformations againstthe difference between the lowest and highest energy for each tautomer. These results were obtained with structuresymmetry correction.



Figure S.I.6. Molecules for which the difference between their highest and lowest free energy at a minimum conforma-tion was higher than 10 kcal/mol, calculated with B3LYP/aug-cc-pVTZ. Names are in accordance with Figure S.I.13 andS.I.14.



Figure S.I.7. The top panel of the figure shows the RMSE of the training/validation set. The red dotted line indicates thevalidation set performance of final results shown in Figure 8. The twomiddle panels show theΔE(�, �∗) for the coordinatesets in the training (blue), validation (red) and test set (green). The top middle panel shows the full range of the values onthe y-axis, while the bottom middle panel is limited to the interval [0,10] kcal/mol. The bottom panel shows the scalingvariables used to scale the two terms (free energy and energy deviation) of the molecular loss function. In addition tothe scaling variables used in the loss function there were three hyper parameters controlling the performance of theoptimizer: the learning rate (LR) for the SGD and AdamW optimizer (optimizing the bias and the weight of the neural net)and the weight decay. The following list contains the LR for the training runs shown, if weight decay or a learning ratereduction method was used it is explicitly mentioned. A, H, J, K, L, M, R, U, V, W: AdamW: LR of 1e-4, SGD: LR of 1e-4. B :LR AdamW: 1e-4, LR SGD: 1e-9. F, I, N, X, S: LR AdamW: 1e-4, LR SGD: 0. D: LR AdamW 1e-5, LR SGD: 0. O: LR AdamW 1e-4,LR SGD: 1e-6. E : LR AdamW 1e-5, LR SGD: 1e-6. G : LR AdamW 1e-4, LR SGD: 1e-4, weight decay: 1e-05. Q : LR AdamW1e-4, LR SGD: 1e-4, with LRReduction on Plateau for AdamW. T : LR AdamW 1e-4, LR SGD: 1e-6, weight decay: 1e-9.



Figure S.I.8. Perturbed free energy uncertainty increases with the number of training epochs. The free energyestimate uncertainty was calculated using the MBAR implementation in pyMBAR.



Figure S.I.9. The scaling factors for f(epoch) and g(epoch) used in the molecular loss function in the reported results in8.

Figure S.I.10. The learning curve shows the performance of the optimized parameter set on a test set resulting fromdifferent retraining runs performed with increasing percentage of the training set. Scaling factors and learning rate werechosen as in Figure 8. The MAE was calculated with the parameter set with the best performance on the validation set.The training and validation set was kept constant, molecules from the training set were randomly selected.



Figure S.I.11. The neural net ensemble standard deviation is plotted for the potential energy calculation with the end-point potential energy functions (Ut1 andUt2) on the conformations obtained along the alchemical path for the 11 � states,starting with conformations from � = 0. The red lines indicate the different states along the alchemical path starting atthe left end with � = 0 and ending at � = 1 The slow increase of the standard deviation along the alchemical path indicatesthat ANI-1ccx is well suited to efficiently perform alchemical free energy calculations for tautomer pairs and the QML hasconfidence in the potential energy values even at � = 0.5. The high standard deviation for Ut1 on samples generated at
� = 1 and vice versa are to be expected since the dummy hydrogen of Ut2 at � = 1 is moving freely inside a sphericalrestraint; but this hydrogen is a real atom for Ut1.

Figure S.I.12. The neural net ensemble standard deviation is plotted for the potential energy calculation with the end-point potential energy functions (Ut1 and Ut2) on the conformations obtained along the alchemical path for the 11 �states.



Figure S.I.13. The full tautomer set is shown (part 1). The hydrogen that is moved in the reaction is highlighted in red,
ΔG indicates the experimental free energy difference in solution.



Figure S.I.14. The full tautomer set is shown (part 2). The hydrogen that is moved in the reaction is highlighted in red,
ΔG indicates the experimental free energy difference in solution.


